
HAL Id: hal-01643723
https://inria.hal.science/hal-01643723

Submitted on 21 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Combinatorial Approach to Analyzing Cross-Site
Scripting (XSS) Vulnerabilities in Web Application

Security Testing
Dimitris E. Simos, Kristoffer Kleine, Laleh Ghandehari, Bernhard Garn, Yu

Lei

To cite this version:
Dimitris E. Simos, Kristoffer Kleine, Laleh Ghandehari, Bernhard Garn, Yu Lei. A Combinatorial
Approach to Analyzing Cross-Site Scripting (XSS) Vulnerabilities in Web Application Security Test-
ing. 28th IFIP International Conference on Testing Software and Systems (ICTSS), Oct 2016, Graz,
Austria. pp.70-85, �10.1007/978-3-319-47443-4_5�. �hal-01643723�

https://inria.hal.science/hal-01643723
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Combinatorial Approach to Analyzing
Cross-Site Scripting (XSS) Vulnerabilities

in Web Application Security Testing

Dimitris E. Simos1, Kristoffer Kleine1, Laleh Shikh Gholamhossein
Ghandehari2, Bernhard Garn1, and Yu Lei2

1 SBA Research, Vienna, 1040, Austria
{dsimos,kkleine,bgarn}@sba-research.org

2 Department of Computer Science and Engineering, University of Texas at
Arlington, Arlington, TX 76019, USA

laleh.shikhgholamhosseing@mavs.uta.edu,ylei@cse.uta.edu

Abstract. Web applications typically employ sanitization functions to
sanitize user inputs, independently whether this input is assumed to be
legitimate, invalid or malicious. When such functions do not work cor-
rectly, a web application immediately becomes vulnerable to security
attacks such as XSS. In this paper, we report a combinatorial approach
to analyze XSS vulnerabilities in web applications. Our approach first
performs combinatorial testing where a set of test vectors is executed
against a subject application. If one or more XSS vulnerabilities are
triggered during testing, we analyze the structure of each test vector
to identify XSS-inducing combinations of its parameter model. If an at-
tack vector contains an XSS-inducing combination, then the execution
of this vector will successfully exploit an XSS vulnerability. Identifica-
tion of XSS-inducing combinations provides insights about which kinds
of user input might still be leverageable for XSS attacks and how to cor-
rect the function to provide better security guarantees. We conducted
an experiment in which our approach was applied to four sanitization
functions from the Web Application Vulnerability Scanner Evaluation
Project (WAVSEP). The experimental results show that our approach
can effectively identify XSS-inducing combinations for these sanitization
functions.

Keywords: Combinatorial Testing, XSS, Fault Localization, Security
Testing

1 Introduction

Web application security is as important as ever but pervasive ubiquitous com-
puting, bundled with 24/7 network access, makes any connected web application
especially susceptible to attacks. Naturally, injection attacks are remote exploits
which can cause security breaches. Cross-site scripting (XSS) falls into this cat-
egory and constitutes the third serious vulnerability according to the Open Web

2 D. Simos et al.

Application Security Project (OWASP) [22]. We focus on analyzing XSS vul-
nerabilities where we distinguish between two different types of XSS, namely
reflected XSS and stored XSS. In the former case the web server response con-
tains some data from the corresponding request, while the latter case includes
data stored permanently on the server (e.g., in a database). In line of this work
we are concerned only for reflected XSS vulnerabilities.

In this paper, we apply for the first time a fault-localization technique based
on combinatorial methods to identify one or more combinations of input pa-
rameter values that would definitely trigger an XSS vulnerability for a given
system under test (SUT). We refer to these combinations as XSS-inducing com-
binations or simply inducing combinations. If an XSS attack vector (test vector)
contains an inducing combination, then the execution of this test vector against
the SUT will successfully exploit an XSS vulnerability. The identification of in-
ducing combinations provides important information about why an input filter
fails to sanitize a malicious vector, which in turns helps to make necessary cor-
rections.

Note that this is different from traditional fault localization, which is aimed
at identifying the location of a fault in the source code. Sanitization functions
are typically employed in web applications to sanitize invalid or malicious user
inputs. XSS vulnerabilities, if they exist, are in most cases contained in these
sanitization functions, which are mostly simply referred to as filters. Thus, the
location of an XSS vulnerability in the source code is typically considered known
or not difficult to be identified. However, designing and implementing rigorous
and secure input filters is a very complicated and challenging task [1]. In partic-
ular, when an input filter does not work as expected, it could be difficult for one
to understand why it does not work and how to correct a vulnerable filter. The
results of this paper enhance the capabilities of security testers to design better
attack models for web applications but at the same time guide the developers
on how to improve the filtering mechanisms met in such applications.

In Section 2 we describe related work for web application security testing
and fault localization techniques. Sections 3 and 5 reviews past achievements
on combinatorial testing for web security testing and fault localization meth-
ods, respectively, that relate to this work. Section 4 discusses the test execution
method used in this work. In Section 6 we present our methodology for ana-
lyzing XSS vulnerabilities using combinatorial based fault localization methods.
An experimental evaluation that validates our approach is given in Section 7.
Finally, Section 8 concludes the work and discusses directions for future work.

2 Related Work

In this section, we describe related works with respect to fault localization ap-
proaches for combinatorial testing and security testing frameworks devoted to
XSS detection. For a systematic literature review on research devoted to XSS we
refer to [12] while for important contributions in combinatorial testing and fault

A Combinatorial Approach to Analyzing XSS Vulnerabilities 3

localization that relate to the work presented in this paper we refer to Sections
3 and 5, respectively, and cited references there in.

Web Application Security Testing Frameworks Security testing is meant
to support vulnerability detection, and for this task several approaches and tools
have been developed in the past. In the following, we depict the most important
of them. A comparison of several penetration testing tools is given in [7] and
[15]. The authors of these works compare commercial as well as open source
penetration testing tools by testing several web applications. Security testing
tools incorporating fuzzing techniques have been presented in [20], [5] and [6].
The authors of the last two works apply evolutionary approaches and learning in
order to detect potential vulnerabilities. Even though these works add towards
test automation, complete automation of the security testing process remains a
very active challenge. Recent works on XSS vulnerability detection include unit
testing methods that can detect XSS vulnerabilities which cannot be found by
static analysis tools [16] and attack patterns for black-box security testing of
web applications [19].

It is evident that even though a lot of works have been devoted to XSS
vulnerability detection very few of them focus on analyzing these vulnerabilities
and even fewer correlate malicious vectors with sanitizing functions.

Fault Localization Techniques based on Combinatorial Methods Com-
binatorial testing has been shown to be a very effective testing strategy [13]. A
t-way combinatorial test set is designed to detect failures that are triggered by
combinations involving no more than t parameters. After a failure is detected,
the next task is to identify the fault that causes the failure. The problem of
fault localization can be divided into two sub-problems: 1) Identifying failure-
inducing combinations. A combination is failure-inducing or simply inducing if
its existence in a test causes the test to fail. 2) Identifying actual faults in the
source code. A fault is a code defect that can be an incorrect, extra, or missing
statement. As explained in Section 1, we are mainly interested in identifying
XSS-inducing combinations. Thus, in the following, we will focus on existing
approaches to identify failure inducing combinations.

Two techniques, called FIC and FIC BS [24], take as input a single failed
test from a combinatorial test set, and identify as output a minimal inducing
combination that causes the test to fail. The main idea of the two techniques
consists of changing, in a systematic manner, the parameter values in the failed
test. A parameter value is considered to be involved in an inducing combination
if changing it to a different value causes the failed test to pass. It is assumed that
changing a parameter value does not introduce any new inducing combination.

The AIFL technique in [18] first identifies a set of suspicious combinations as
candidates for being inducing. Second, it generates a group of tests for each failed
test. After executing the newly generated tests, combinations which appeared in
the passed tests are removed from the suspicious set. The IterAIFL technique

4 D. Simos et al.

is an iterative approach proposed by Wang et al. in [21]. It iteratively generates
and refines suspicious set until it becomes stable.

In our earlier work, we developed a approach called BEN that identifies
suspicious combinations in the same way as AIFL and IterAIFL. However, BEN
produces a ranking of suspicious combinations and focuses on the most suspicious
combinations. Moreover, BEN significantly differs from AIFL and IterAIFL in
the way of generating new tests. A detailed description of BEN is given in Section
5.

Lastly, to the best of our knowledge this is the first work where combinatorial
based fault localization techniques are applied to analyze security vulnerabilities.

3 Combinatorial Testing for Web Security Testing

Combinatorial testing has been successfully applied for testing (critical) software
systems in large organizations [11]. It is an already proven method for black-
box security testing of large-scale web software systems [7], [3], [2] where t-way
testing was applied successfully to XSS detection. In this section, we review
these key contributions in web security testing that are based on combinatorial
methods and are used as a basis for analyzing XSS vulnerabilities via fault
localization methods throughout this paper. For a general treatment of the field
of combinatorial testing we refer the interest reader to the surveys of [4] and
[17].

Throughout this paper, we are uniformly using a strength four (t = 4) test
set against the SUTs for reasons explained later in this section. The underlying
combinatorial model of XSS attack vectors is a refined and extended version
from the works in [7] and [2] and is a form of input parameter model [10]. Its
goal is to discretize the input space to parameters and discrete values so that
these can be given to combinatorial testing tools.

The generated test vectors aim at producing valid JavaScript code when
these are executed against SUTs. A description of parameters that appear in
the input model has briefly been mentioned in [7] and [2], however we give an
excerpt here, for the sake of completeness:

– The JSO (JavaScript Opening Tags) type represents tags that open a JavaScript
code block.

– The WS (white space) type family represents white space characters.

– The INT (input termination) type represents values that terminate the orig-
inal valid tags (HTML or others).

– The EVH (event handler) type contains values for JavaScript event handlers.

– The PAY (payload) type contains executable JavaScript.

– The PAS (payload suffix) type contains different values that should termi-
nate the executable JavaScript payload (PAY parameter).

– The JSE (JavaScript end tag) type contains different forms of JavaScript
end tags.

A Combinatorial Approach to Analyzing XSS Vulnerabilities 5

Moreover, this input model is optimized to fit to the employed test execution
method (see Section 4). A suitable metric has been introduced in [2] to assess the
quality of produced combinatorial test sets for XSS detection, called exploita-
tion rate (ER), which measures the proportion of XSS attack vectors that were
successful, e.g. the ones that exploit an XSS vulnerability, per given test set and
SUT.

In particular, past work of ours has revealed that the usage of a 4-way test
set (with constraints) yields satisfactory practical results for web application
security testing and is justified as follows:

– In the majority of our past security testing experiments [2], [3], [7] we have
witnessed that higher strength interaction testing yields better results w.r.t.
exploitation rate. More specifically, we were able to report an increase in
the exploitation rate when moving from 2-way to 3-way and 4-way testing.
Also, in [2] we reported on cases where only a 4-way test set was able to
successfully trigger XSS exploits for specific SUTs but none of the test sets
with weaker t-way coverage properties could.

– In some of our past experiments [7], we have noticed performance issues when
moving from pairwise-testing to higher interaction testing. Depending on the
test execution method (see Section 4) (i.e. used penetration testing tool), the
SUT (i.e. tested HTTP parameter of a web application) and the underlying
operating system, we have seen execution times to vary greatly between
repeated test runs. We further noticed SUTs to become unresponsive, as
well as, increased memory usage. However, we were still able to exploit XSS
vulnerabilities using a 4-way test set.

– An important finding in the post-processing of 2-way test sets used in [3]
was that it revealed a surprising high percentage of 3-way and 4-way combi-
nations covered in the successful XSS attack vectors (per test set and SUT).

These statements are in accordance with a relationship known as interaction
rule in combinatorial testing which is based on empirical data and shows that
most software faults are triggered by a single parameter value, or interactions
between a small number of parameters, generally two to six [14].

4 Penetration Testing Execution Methods

In this section, we provide details about the penetration testing execution method
we have used in our experimental evaluation. We give a detailed description of its
procedure, functionality and test oracle, applicable when testing for XSS vulner-
abilities. The described method can be applied to security testing in general, but
in this paper we focus explicitly on penetration testing, e.g. exploiting XSS vul-
nerabilities, where the main difference (to security testing) relies on the fact that
we initiate the testing procedure once the web applications are installed in an
operational environment. The main difference to conventional penetration test-
ing is that we are not interested in pinpointing where a vulnerability is located
in the source code, but rather to analyze a known vulnerable input field in a web

6 D. Simos et al.

application in order to get insights into its structure, i.e. the necessary degree of
interaction to trigger the successful exploitation of an XSS vulnerability.

Test Execution. As test execution environment we used the the Burp Suite 3

which is an integrated platform for performing security testing of web applica-
tions. It is widely used by security professionals since it allows to perform many
penetration testing tasks.

In our case the Intruder module of BURP was used to execute our test
vectors. Intruder offers automated customized attacks against web applications,
to identify and exploit all kinds of security vulnerabilities including XSS attacks.
In order to test an SUT we supplied its location (server, port and URL) to
Intruder and also provided the position for the input parameter. Then, our test
set consisting of XSS attack vectors was loaded and executed one by one. The
response (HTML) of the SUT for each test vector was recorded and supplied to
the test oracle in order to determine whether an XSS vulnerability was triggered.

Test Oracle. The usual penetration testing procedure is mostly concerned
with finding which parts of a web application are potentially vulnerable to an
XSS attack. Here, the tester submits a request with user-controlled string in a
HTTP-parameter (e.g. the user enters a string <script> in a search function
and submits the query) and then examines the HTML response page from the
web application whether it contains any part of the submitted string. If there
are no sanitization functions invoked on the input at all, then this input field
is a very probable candidate for having an XSS vulnerability. It is a common
practice in security testing to rely on string matching as the underlying test
oracle which is commonly referred to as reflection oracle. This process is repeated
with all HTTP parameters in a web application. However, the reflection oracle
can not decide whether an identically reflected user input string would actually
be executed by a web browser. Therefore, the reflection oracle decision is not
indicative of the vector actually triggering an XSS vulnerability. Thus, in relation
to the detection of true XSS an oracle relying on reflection alone is not infallible
as it suffers both from false positives and false negatives. In order to determine
if the XSS vulnerability was indeed triggered by a test vector – meaning that
we have a true XSS – the response of the web application needs to be evaluated
under real-world conditions.

This necessary task can be fulfilled by employing a new test oracle, hencefor-
ward called the execution oracle. As indicated by the name, this oracle operates
similar to a web browser and evaluates/parses the page response from a web ap-
plication. The generated test vectors must be designed in such a way that their
behavior is detectable by the execution oracle. Additionally, in the presented
form it must be ensured that this behavior is distinct from normal intended be-
havior by the SUT, so that we can deduce true XSS by page-parsing anomaly
detection. We have used the XSS Validator extension of BURP to fill the role

3 http://portswigger.net/burp/

A Combinatorial Approach to Analyzing XSS Vulnerabilities 7

of the execution oracle. The inner workings of the Validator are described be-
low in detail. We state an important fact: Under these conditions, every vector
marked as triggering by the execution oracle is indeed a test vector which trig-
gers a true XSS vulnerability exploitation and as such the execution oracle does
not produce false positives. To illustrate this point, consider the test vector
onError=alert(1) which is reflected inside the body tag of an HTML page.
Under the assumption that the web application applies no filtering to the input
then this vector will be reflected without changes in the page response and the
reflection oracle will flag this vector. The execution oracle however, will not flag
this vector because it does not exploit the vulnerability.

An instantiation of the execution oracle can be found in the XSS Validator
4 extension to BURP. This extension enhances the test execution capabilities of
BURP by adding a detection mechanism of triggered XSS vulnerabilities.

The XSS Validator receives the response from the SUT (including the re-
flected test vector) and renders the HTML. During rendering, JavaScript con-
tained in the website will be executed. When it is detected that JavaScript was
executed which originated from a test vector then this test vector is flagged as
having triggered the XSS vulnerability.

Since the Validator extension comes with its own set of test vectors and
is targeted towards the detection of XSS vulnerabilities triggered by them we
modified the code to use our own test vectors and adapted the detection code
to recognize behavior triggered by them (see Section 6.2 for more details).

5 Fault Localization based on Combinatorial Methods

BEN [8], [9] adopts a spectrum-based fault localization technique and has been
applied to a Siemens test set and two programs i.e., grep and gzip. It leverages
the results of the combinatorial test set and generates the ranking of statements
in terms of their likelihood of being faulty. BEN consists of two major phases:
1) In phase 1, BEN identifies a combination that is very likely to be a failure-
inducing combination. 2) In phase 2, BEN takes the failure-inducing combination
identified in phase 1 and then produces a ranking of statements in the source
code by analyzing the spectra of the small group of tests.

In this work, we only applied the first phase of BEN because we are not
interested on the ranking of statements in the source code since we are following
a black-box security testing approach. Therefore, we focus solely on the first
phase, identifying failure-inducing combinations. BEN takes the input parameter
model and a t-way combinatorial test set with execution results as input, and
adopts an iterative framework to identify inducing combinations of size t or
larger. At each iteration, BEN analyzes a test set F , which initially is the t-
way combinatorial test set taken as input. BEN first identifies a set of t-way
suspicious combinations, π, then, ranks them based on their suspiciousness, i.e.,
likelihood to be inducing.

4 https://portswigger.net/bappstore

8 D. Simos et al.

Next, a small set of new tests, F ′, is generated. If all tests in F ′ that contain a
suspicious combination c are failing, then c is marked as an inducing combination,
and the process stops. Otherwise, all tests in F ′, will be added to test set F ,
to refine the set of suspicious combinations and their ranking. BEN continues
the two steps, i.e., rank and test generation iteratively until a t-way suspicious
combination is marked as an inducing combination or a stopping condition is
satisfied [9]. In the latter case, no t-way inducing combination is identified, BEN
increases the size of inducing combination, and tries to identify a (t + 1)-way
inducing combination.

Rank generation and test generation are based on two notions, suspiciousness
of a combination and suspiciousness of the environment of a combination. Infor-
mally, the environment of a combination consists of other parameter values that
appear in the same test case. The higher the suspiciousness of a combination,
the lower the suspiciousness of its environment, the higher this combination is
ranked. Moreover, new tests are generated for the most suspicious combinations.
Let f be a new test generated for a suspicious combination c. Test f is gener-
ated such that it contains c and the suspiciousness of the environment for c is
minimized. If f fails, it is more likely to be caused by c instead of other values
in f .

This process is repeated until an inducing combination is found. Note that
this process must terminate, as a failed test is by definition an inducing combina-
tion. Note that if there is a resource limitation, the user can stop the process. The
top-ranked suspicious combination is reported as failure-inducing combination,
in this case.

6 Methodology

In this section, we present our approach for analyzing XSS vulnerabilities using
combinatorial based fault localization methods. Our methodology is comprised
of two parts: First executing XSS attack vectors against SUTs and second iden-
tifying one or more combinations of input values that can trigger a successful
XSS exploit. Our utter goal is to map the failure-inducing combinations found to
XSS-inducing combinations. As explained in Sections 4 and 5, respectively, we
used the BURP suite for the first part and the BEN tool for the second. Further,
we discuss below modifications of the BEN tool needed for XSS detection and
also the necessity for a refinement of the attack model.

6.1 Modifications of BEN for XSS Detection

As explained in Section 5, BEN first looks for a t-way inducing combination,
where t is the strength of the initial test set. Since all t-way combinations are
covered by the t-way combinatorial test set, BEN guarantees to identify t-way
inducing combination if such a combination exists. When there is no t-way in-
ducing combination, BEN looks for (t + 1)-way inducing combination that is
covered by the t-way test set.

A Combinatorial Approach to Analyzing XSS Vulnerabilities 9

For our experiments, we modified BEN to take the size of inducing combi-
nation as well as the t-way combinatorial test set. The user can search for an
inducing combination whose size is equal to, greater or less than the strength
of combinatorial test set, t. When the size of inducing combination is equal to
or less than t, BEN could identify inducing combination of a requested size, if
there is any. When the size of inducing combination is greater than the strength
of the combinatorial test set, BEN starts looking for an inducing combination
with the requested size is covered by the test set. In this case, BEN does not
search for t-way inducing combination, although it may exist.

In the test generation step, a set of new tests is generated for a user-specified
number of top-ranked suspicious combinations. Note that the user could spec-
ify the number of top-ranked suspicious combinations and the number of tests
generated for each top-ranked combination. The more tests generated, the more
effort it takes to execute them, but the more confidence we have about the iden-
tified inducing combinations. Moreover, the bigger the top-ranked set, the more
effort to generate and execute the new tests, but the faster an inducing combina-
tion may be identified. This is because if an inducing combination c is included
in the top-ranked set, c is identified to be an inducing combination in the first
iteration. Otherwise, it may take multiple iterations for c to move up into the
top-ranked set.

For our experiments, we configure BEN to generate two tests for each of the
five top ranked suspicious combinations at each iteration. So, at each iteration
maximum 10 new tests will be added to the test set. Note that this is a practical
decision made in consideration with resource constraints.

6.2 Model Refinement

We revised our combinatorial model of XSS attack vectors from [7] and [2] to
fit to the new execution oracle based on the Validator extension of BURP and
to limit the size of the generated 4-way test set (due to the performance issues
mentioned in Section 3), resulting in a significantly more robust and sophisti-
cated test framework able to cast a 100% confidence decision on triggering test
cases. To this end, we changed some parameter values and removed some others
such that the resulting test vectors are in line with the implementation of hooks
in the Validator so we can detect triggering test vectors. Most importantly, we
chose two kinds of values for the payload parameter. One kind contains a call
to the built-in JavaScript alert function while the other defines the src at-
tribute pointing to some predefined and non-existing resource. Both types of
these payloads trigger detectable behavior at runtime by PhantomJS. We have
also verified this kind of JavaScript is not contained in our SUTs used in the
experimental evaluation.

7 Experimental Evaluation

In this section, we conduct an experimental evaluation in order to validate our
methodology for analyzing XSS vulnerabilities.

10 D. Simos et al.

7.1 Design of the Experiment

The purpose of the experiment is to have a setup where we can evaluate our
methodology for analyzing XSS vulnerabilities using combinatorial based fault
localization techniques. To this end we choose 4 input fields as SUTs from
WAVSEP, the Web Application Vulnerability Scanner Evaluation Project 5, ver-
sion 1.2. WAVSEP is a web application specifically designed to allow testing for
various kinds of XSS exploits, among other vulnerabilities. In contrast with train-
ing applications for web application security testing that have been thoroughly
tested in the past [12], WAVSEP offers sophisticated filter mechanisms and the
majority of its SUTs can be tested for XSS vulnerabilities. In the following, we
give details about the chosen input fields.

In particular, we use four input HTTP parameters as SUTs out of the
WAVSEP when testing for XSS vulnerabilities. Each SUT receives over HTTP
one GET parameter which is reflected on the page in different contexts. Also,
the input might optionally be filtered by a SUT specific sanitization function.

SUT ID SUT name reflection site

1 Tag2HtmlPageScope <body>$input</body>

2 Tag2TagStructure <input type="text" value="$input">

3 Event2TagScope

4 Event2DoubleQuotePropertyScope

We give an description of these four SUTs, below:

SUT 1 This SUT just outputs the received parameter without modifications
into the HTML body tag. Thus, possible exploits could just inject any HTML
tag without having to worry about properly terminating a preceding tag in
the page.

SUT 2 This SUT outputs the received parameter without modifications into
the value attribute of an input tag.

SUT 3 This SUT outputs the received parameter into the src attribute of an
image tag and filters angle brackets.

SUT 4 This SUT outputs the received parameter into the src attribute of an
image tag and filters angle brackets and single quotes.

Test vectors We have employed the ACTS combinatorial test generation tool
[23] for automated test generation of test vectors. The tool is developed jointly
by the US National Institute of Standards and Technology and the University of
Texas at Arlington and currently has more than 1400 individual and corporate
users. In line of this work, we generated a 4-way test set consisting of 6891 test
vectors.

5 https://github.com/sectooladdict/wavsep

A Combinatorial Approach to Analyzing XSS Vulnerabilities 11

Workflow The test vectors described above were then all executed against all
four SUTs and classified as either triggering an XSS vulnerability or not. Then,
BEN was run on the abstract test set together with the positions of vectors which
did trigger a vulnerability (positive vectors) one time for each SUT. In the first
round BEN searched for 4-way suspicious combinations and produced a set of
recommended tests. These tests were then translated to concrete attack vectors
and executed again. Depending on the result, BEN classified the underlying
suspicious combinations either as inducing (in the case of all recommended tests
succeeding) or not.

In the case that inducing combinations were found, we instructed BEN to
look for lower strength faults to confirm if the fault was a true 4-way fault or
an embedded lower strength fault. In the other case, when not all recommended
tests succeeded, we instructed BEN to look for 5 or 6-way inducing combinations.

7.2 Results and Analysis

Here, we present our evaluation results grouped per analyzed SUT. In particu-
lar, we evaluate our findings w.r.t. underlying vulnerabilities and also correlate
failure-inducing combinations with shortcomings in the filter mechanisms.

SUT 1 The initial test execution revealed 24 test vectors to trigger the XSS
vulnerability. All ten recommended tests produced by BEN for 4-way suspi-
cious combinations did not trigger the vulnerability. Therefore, we increased the
strength and searched for 5 and 6-way suspicious combinations. As all eight rec-
ommended tests from 6-way suspicious combinations triggered the vulnerability
we arrived at four inducing combinations of strength 6. In Table 1 we show
the composition of these recommended tests and highlight in red the inducing
combinations.

In the table the common structure of the triggering vectors is clearly visible as
they all start with an opening img tag and contain a reference to the predefined
resource. The other components of the inducing combination make sure that the
vector does not contain any interfering characters to ensure that the vector will
be parsed correctly when reflected in the page response.

JSO WS1 INT WS2 EVH WS3 PAY WS4 PAS WS5 JSE

<img ε ε ε ε src="invalid" ε ε ε ε
<img ε ε ε ε src="invalid" ε ε ε <</script>

>

<img ε ε ε ε src="invalid" ε ε ε </script>">

<img ε ε ε ε src="invalid" ε ε ε </script>

Table 1. Recommended tests with embedded 6-way inducing combinations

12 D. Simos et al.

Since this SUT applies no filter to the input parameter the final page response
will include the following HTML body when the first recommended test in the
table above is submitted:

<body></body>

This will force the application to load the resource invalid and thus trigger
the XSS vulnerability.

SUT 2 The initial test execution revealed 3 test vectors to trigger the XSS vul-
nerability. Four out of ten generated recommended tests derived from 4-way sus-
picious combinations triggered the vulnerability. Because of this we instructed
BEN to search for 5-way inducing combinations. Since all four recommended
tests for 5-way suspicious combinations triggered, we found two inducing com-
binations. The final recommended tests and inducing combinations are summa-
rized in Table 2.

JSO WS1 INT WS2 EVH WS3 PAY WS4 PAS WS5 JSE

"><script> ε ε alert(1) ε </script>">

"><script> ε onLoad= alert(1) ε </script>">

"><script> ε ε ε ε ε alert(1) ε ε ε </script>">

"><script> ε ε ε onError= ε alert(1) ε ε ε </script>">

Table 2. Recommended tests with embedded 5-way inducing combinations

This SUT also does not perform any filtering of the input parameter and
the page response will include the following HTML expression after the first
recommended test from the table above is reflected:

<input type="text" value=""><script> alert(1) </script>">">

This vector, as well as the other recommended 5-way tests, triggers the XSS
vulnerability because of the embedded inducing combination. First the value

field and the input tag are terminated and then a new script environment with
the payload is created. Upon rendering the payload inside the script environment
is then executed.

SUT 3 In the initial test execution 228 test vectors triggered the XSS vul-
nerability. Based on these results, BEN recommended 10 tests using the found
4-way suspicious combinations. All of these tests triggered the vulnerability. We
also instructed BEN to look for 2-way and 3-way suspicious combinations but
none were found. This means that the reported 4-way inducing combinations
are truly 4-way and not lower-strength inducing combinations embedded inside
higher-strength combinations. The recommended tests and the inducing combi-
nations are displayed in Table 3.

As this SUT encodes angle brackets a page response contains the following
HTML part after the first recommended test is reflected:

A Combinatorial Approach to Analyzing XSS Vulnerabilities 13

JSO WS1 INT WS2 EVH WS3 PAY WS4 PAS WS5 JSE

<<script> "> onError= alert(1) ’> \>
<<script> "> onError= alert(1) ’) \>
<<script> "> onError= ’alert(1)’ ’> \>
<<script> "> onError= ’alert(1)’ ’) \>
<script "> onError= alert(1) ’) \>
<script "> onError= alert(1) < \>
<script "> onError= ’alert(1)’ ’) \>
<script "> onError= ’alert(1)’ < \>
<script> "> onError= alert(1) < \>
<<script> "> onError= alert(1) < \>

Table 3. Recommended tests with embedded 4-way inducing combinations

<img src="<<script> "> onError= alert(1) ’> \>">

This vector succeeds in triggering the vulnerability because it contains an in-
ducing combination which first defines the src attribute as "<<script>
" which of course is not a valid image resource. This causes the onError handler
to be called which activates the payload, in this case alert(1).

SUT 4 The initial test execution showed 280 vectors to trigger the XSS vulner-
ability. As all ten tests recommended by BEN for 4-way suspicious combinations
triggered the vulnerability five inducing combinations were found. As for SUT 3,
we also instructed BEN to look for 2-way and 3-way suspicious combinations but
none were found, meaning that the inducing 4-way combinations are minimal
inducing combinations. The recommended tests can be found in Table 4.

JSO WS1 INT WS2 EVH WS3 PAY WS4 PAS WS5 JSE

"><script> ’; onError= alert(1) ’> \>
"><script> ’> onError= alert(1) ’> \>
"><script> ’> onError= alert(1) ’) \>
"><script> ε onError= alert(1) ’> \>
"><script> ε onError= alert(1) ’) \>
"><script> ’>> onError= alert(1) ’) \>
"><script> ’; onError= src="invalid" ’> \>
"><script> ’> onError= src="invalid" ’> \>
"><script> ’> onError= src="invalid" ’) \>
"><script> ε onError= src="invalid" ’> \>

Table 4. Recommended tests with embedded 4-way inducing combinations

To illustrate how the inducing combinations trigger the vulnerability consider
the example below which shows the first recommended test vector from the above
table reflected in the page response after all angle brackets and single quotes have
been encoded by the SUT.

14 D. Simos et al.

<script> '; onError= alert(1) '> \>">

Here the vector succeeds in triggering the vulnerability because it first closes
the src attribute leaving it empty. Since the empty string is not a valid resource
the onError handler is called which in turn calls the alert(1) statement.

8 Conclusion and Future Work

In this paper we have presented a combinatorial approach to analyzing XSS
vulnerabilities in web applications. Our approach is based on the notion of XSS-
inducing combinations. An XSS-inducing combination is a combination of input
parameter values whose appearance in a test vector would definitely result in a
successful triggering of an XSS vulnerability at runtime when executed against
the SUT. Identification of XSS-inducing combinations helps to better understand
the root cause of an XSS vulnerability and provides insights about how to fix
a flawed sanitization function. Our approach is developed based on our earlier
work on applying combinatorial methods to security testing. In particular, our
approach consists of a refinement of a combinatorial model of XSS attack vectors
and a modification of a combinatorial testing-based fault localization method
that are developed in our earlier works. We have reported an experiment in
which our approach is applied to four sanitization functions from WAVSEP.
The experimental results show that our approach can effectively identify XSS-
inducing combinations and that these combinations provide significant insights
about the inner working of these sanitization functions.

We plan to continue our work in the following three directions. First, we
plan to conduct additional experiments for a more thorough evaluation of our
approach. In particular, we plan to apply our approach to more sanitization
functions that are found in real-life web applications. Second, we plan to apply
our approach to other types of vulnerabilities, e.g., SQL injections. We believe
that the principles embodied in our approach are general, i.e. not limited to
XSS vulnerabilities. Finally, we plan to build a software tool that automates
our approach with the goal to make our approach accessible to web application
developers.

Acknowledgments. This work has been funded by the Austrian Research Promotion

Agency (FFG) under grant 851205 and the Austrian COMET Program (FFG).

References

1. Argyros, G., Stais, I., Kiayias, A., Keromytis, A.G.: Back in black: Towards for-
mal, black box analysis of sanitizers and filters. In: Proceedings of the 37th IEEE
Symposium on Security and Privacy (2016)

2. Bozic, J., Garn, B., Kapsalis, I., Simos, D., Winkler, S., Wotawa, F.: Attack
pattern-based combinatorial testing with constraints for web security testing. In:
Proceedings of the 2015 IEEE International Conference on Software Quality, Reli-
ability and Security. pp. 207–212. QRS’15 (2015)

A Combinatorial Approach to Analyzing XSS Vulnerabilities 15

3. Bozic, J., Garn, B., Simos, D.E., Wotawa, F.: Evaluation of the IPO-family al-
gorithms for test case generation in web security testing. In: Software Testing,
Verification and Validation Workshops (ICSTW), 2015 IEEE Eighth International
Conference on. pp. 1–10 (2015)

4. Brcic, M., Kalpic, D.: Combinatorial testing in software projects. In: MIPRO, 2012
Proceedings of the 35th International Convention. pp. 1508–1513 (2012)

5. Duchene, F., Groz, R., Rawat, S., Richier, J.L.: Xss vulnerability detection using
model inference assisted evolutionary fuzzing. In: Proceedings of the 2012 IEEE
Fifth International Conference on Software Testing, Verification and Validation.
pp. 815–817. ICST ’12, IEEE Computer Society, Washington, DC, USA (2012)

6. Duchene, F., Rawat, S., Richier, J.L., Groz, R.: KameleonFuzz: Evolutionary
Fuzzing for Black-Box XSS Detection. In: CODASPY. ACM (2014)

7. Garn, B., Kapsalis, I., Simos, D., Winkler, S.: On the applicability of combinatorial
testing to web application security testing: a case study. In: Proceedings of the 2014
Workshop on Joining AcadeMiA and Industry Contributions to Test Automation
and Model-Based Testing. pp. 16–21. ACM (2014)

8. Ghandehari, L.S., Lei, Y., Kung, D., Kacker, R., Kuhn, R.: Fault localization based
on failure-inducing combinations. In: Software Reliability Engineering (ISSRE),
2013 IEEE 24th International Symposium on. pp. 168–177. IEEE (2013)

9. Ghandehari, L.S.G., Lei, Y., Xie, T., Kuhn, R., Kacker, R.: Identifying failure-
inducing combinations in a combinatorial test set. In: Software Testing, Verification
and Validation (ICST), 2012 IEEE Fifth International Conference on. pp. 370–379.
IEEE (2012)

10. Grindal, M., Offutt, J.: Input parameter modeling for combination strategies. In:
Proceedings of the 25th Conference on IASTED International Multi-Conference:
Software Engineering. pp. 255–260. SE’07, ACTA Press, Anaheim, CA, USA (2007)

11. Hagar, J.D., Wissink, T.L., Kuhn, D., Kacker, R.N.: Introducing combinatorial
testing in a large organization. Computer 48(4), 64–72 (Apr 2015)

12. Hydara, I., Sultan, A.B.M., Zulzalil, H., Admodisastro, N.: Current state of re-
search on cross-site scripting (XSS) a systematic literature review. Information
and Software Technology 58, 170–186 (2015)

13. Kuhn, D.R., Okun, V.: Pseudo-exhaustive testing for software. In: Software Engi-
neering Workshop, 2006. SEW’06. 30th Annual IEEE/NASA. pp. 153–158. IEEE
(2006)

14. Kuhn, D., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. Chapman &
Hall/CRC Innovations in Software Engineering and Software Development Series,
Taylor & Francis (2013)

15. van der Loo, F.: Comparison of Penetration Testing Tools for Web Applications.
Master’s thesis, University of Radboud, Netherlands (2011)

16. Mohammadi, M., Chu, B., Lipford, H.R., Murphy-Hill, E.: Automatic web security
unit testing: Xss vulnerability detection. In: Proceedings of the 11th International
Workshop on Automation of Software Test. pp. 78–84. AST ’16, ACM, New York,
NY, USA (2016)

17. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2),
11:1–11:29 (Feb 2011)

18. Shi, L., Nie, C., Xu, B.: A software debugging method based on pairwise testing.
In: Computational Science–ICCS 2005, pp. 1088–1091. Springer (2005)

19. Sudhodanan, A., Armando, A., Carbone, R., Compagna, L.: Attack patterns for
black-box security testing of multi-party web applications. In: Proceedings of the
Network and Distributed system Security Symposium (NDSS) (2016)

16 D. Simos et al.

20. Tripp, O., Weisman, O., Guy, L.: Finding your way in the testing jungle: A learn-
ing approach to web security testing. In: Proceedings of the 2013 International
Symposium on Software Testing and Analysis. pp. 347–357. ISSTA 2013, ACM,
New York, NY, USA (2013)

21. Wang, Z., Xu, B., Chen, L., Xu, L.: Adaptive interaction fault location based
on combinatorial testing. In: Quality Software (QSIC), 2010 10th International
Conference on. pp. 495–502. IEEE (2010)

22. Williams, J., Wichers, D.: OWASP Top 10 2013 (2013),
https://www.owasp.org/index.php/Top 10 2013

23. Yu, L., Lei, Y., Kacker, R., Kuhn, D.: Acts: A combinatorial test generation tool.
In: Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth Inter-
national Conference on. pp. 370–375 (2013)

24. Zhang, Z., Zhang, J.: Characterizing failure-causing parameter interactions by
adaptive testing. In: Proceedings of the 2011 International Symposium on Soft-
ware Testing and Analysis. pp. 331–341. ACM (2011)

	A Combinatorial Approach to Analyzing Cross-Site Scripting (XSS) Vulnerabilities in Web Application Security Testing
	Introduction
	Related Work
	Web Application Security Testing Frameworks
	Fault Localization Techniques based on Combinatorial Methods

	Combinatorial Testing for Web Security Testing
	Penetration Testing Execution Methods
	Test Execution.
	Test Oracle.

	Fault Localization based on Combinatorial Methods
	Methodology
	Modifications of BEN for XSS Detection
	Model Refinement

	Experimental Evaluation
	Design of the Experiment
	Test vectors
	Workflow

	Results and Analysis
	SUT 1
	SUT 2
	SUT 3
	SUT 4

	Conclusion and Future Work

