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Abstract. Programs with floating-point computations are often derived
from mathematical models or designed with the semantics of the real
numbers in mind. However, for a given input, the computed path with
floating-point numbers may significantly differ from the path correspond-
ing to the same computation with real numbers. As a consequence, devel-
opers do not know whether the program can actually produce very unex-
pected outputs. We introduce here a new constraint-based approach that
searches for test cases in the part of the over-approximation where errors
due to floating-point arithmetic could lead to unexpected decisions.

1 Introduction

In numerous applications, programs with floating-point computations are derived
from mathematical models over the real numbers. However, computations on
floating-point numbers are different from calculations in an idealised semantics1

of real numbers [8]. For some values of the input variables, the result of a sequence
of operations over the floating-point numbers can be significantly different from
the result of the corresponding mathematical operations over the real numbers.
As a consequence, the computed path with floating-point numbers may differ
from the path corresponding to the same computation with real numbers. This
can entail wrong outputs and dangerous decisions of critical systems. That’s
why identifying these values is a crucial issue for programs controlling critical
systems.

Abstract interpretation based error analysis [3] of finite precision implemen-
tations computes an over-approximation of the errors due to floating-point op-
erations. The point is that state-of-the-art tools [6] may generate numerous false
alarms. In [16], we introduced a hybrid approach combining abstract interpre-
tation and constraint programming techniques that reduces the number of false
alarms. However, the remaining false alarms are very embarrassing since we
cannot know whether the predicted unstable behaviors will occur with actual
data.

? This work was partially supported by ANR COVERIF (ANR-15-CE25-0002)
1 That’s to say, computations as close as possible to the mathematical semantics of

the real numbers; for instance, computations with arbitrary precision or computer
algebra systems.



More formally, consider a program P , a set of intervals I defining the ex-
pected input values of P , and an output variable x of P on which depend criti-
cal decisions, e.g., activating an anti-lock braking system. Let [xR, xR] be a sharp
approximation over the set of real numbers R of the domain of variable x for any
input of P . [xF, xF] stands for the domain of variable x in the over-approximation
computed over the set of floating-point F for input values of I. The range [xR, xR]
can be determined by calculation or from physical limits. It includes a small tol-
erance to take into account approximation errors, e.g. measurement, statistical,
or even floating-point arithmetic errors. This tolerance – specified by the user–
defines an acceptable loss of accuracy between the value computed over the
floating-point numbers and the value calculated over the real numbers. Values
outside the interval [xR, xR] can lead a program to misbehave, e.g. take a wrong
branch in the control flow.

The problem we address in this paper consists of verifying whether there ex-
ist critical values in I for which the program can actually produce a result value
of x inside the suspicious intervals [xF, xR) and (xR, xF]. To handle this prob-
lem, we introduce a new constraint-based approach that searches for test cases
that hit the suspicious intervals in programs with floating-point computations.
In other words, our framework reduces this test case generation problem to a
constraint-solving problem over the floating-point numbers where the domain
of a critical decision variable has been shrunk to a suspicious interval. A con-
straint solver –based on filtering techniques designed to handle constraints over
floating-point numbers– is used to search values for the input data. Preliminary
results of experiments on small programs with classical floating-point errors are
encouraging.

The CPBPV FP, the system we developed, outperforms generate and test
methods for programs with more than one input variable. Moreover, these search
strategies can prove in many cases that no critical value exists.

2 Motivating example

Before going into the details, we illustrate our approach on a small example.
Assume we want to compute the area of a triangle from the lengths of its sides
a, b, and c with Heron’s formula:√

s ∗ (s− a) ∗ (s− b) ∗ (s− c)

where s = (a+ b+ c)/2. The C program in Fig. 1 implements this formula, when
a is the longest side of the triangle.

The test of line 5 ensures that the given lengths form a valid triangle.

Now, suppose that the input domains are a ∈ [5, 10] and b, c ∈ [0, 5]. Over the
real numbers, s is greater than any of the sides of the triangle and squared_area

cannot be negative. Moreover, squared_area cannot be greater than 156.25 over
the real numbers since the triangle area is maximized for a right triangle with



1 /∗ Pre−condition : a ≥ b and a ≥ c ∗/
2 float heron(float a, float b, float c) {

3 float s, squared_area;

4 squared_area = 0.0f;

5 if (a <= b + c) {

6 s = (a + b + c) / 2.0f;

7 squared_area = s*(s-a)*(s-b)*(s-c);

8 }

9 return sqrt(squared_area);

10 }

Fig. 1. Heron

b = c = 5 and a = 5
√

2. However, these properties may not hold over the floating-
point numbers because absorption and cancellation phenomena can occur2.

Tools performing value analysis over the floating-point numbers [6, 15] ap-
proximate the domain of squared_area to the interval [−1262.21, 979.01]. Since
this domain is an over-approximation, we do not know whether input values
leading to squared_area < 0 or squared_area > 156.25 actually exist. Note that
input domains –here a ∈ [5,10] and b, c ∈ [0,5]– are usually provided by the user.

Assume the value of the tolerance3 ε is 10−5, the suspicious intervals for
squared_area are [−1262.21,−10−5) and (156.25001, 979.01]. CPBPV FP, the
system we developed, generated test cases for both intervals:

– a = 5.517474, b = 4.7105823, c = 0.8068917, and squared_area equals
−1.0000001 · 10−5;

– a = 7.072597, b = c = 5, and squared_area equals 156.25003.

CPBPV FP could also prove the absence of test cases for a tolerance ε =
10−3 with squared_area > 156.25 + ε.

In order to limit the loss of accuracy due to cancellation [8], line 7 of Heron’s
program can be rewritten as follows:

squared_area = ((a+(b+c))*(c-(a-b))*(c+(a-b))*(a+(b-c)))/16.0f;

However, there are still some problems with this optimized program. Indeed,
CPBPV FP found the test case a = 7.0755463, b = 4.350216, c = 2.72533, and
squared_area equals−1.0000001·10−5 for interval [−1262.21,−10−5) of squared_area.
There are no more problems in the interval (156.25001, 979.01] and CPBPV FP
did prove it.

2 Let’s remind that absorption in an addition occurs when adding two numbers of
very different order of magnitude, and the result is the value of the biggest number,
i.e., when x + y with y 6= 0 yields x. Cancellation occurs in s− a when s is so close
to a that the subtraction cancels most of the significant digits of s and a.

3 Note that even this small tolerance may lead to an exception in statement 9.



3 Framework for generating test cases

This section details the framework we designed to generate test cases reaching
suspicious intervals for a variable x in a program P with floating-point compu-
tations.

The kernel of our framework is FPCS [14, 13, 1, 12], a solver for constraints
over the floating-point numbers; that’s to say a symbolic execution approach for
floating-point problems which combines interval propagation with explicit search
for satisfiable floating-point assignments. FPCS is used inside the CPBPV
bounded model checking framework [5]. CPBPV FP is the adaptation of CPBPV
for generating test cases that hit the suspicious intervals in programs with
floating-point computations.

The inputs of CPBPV FP are: P , an annotated program; a critical test ct
for variable x; [xF, xR) or (xR, xF], a suspicious interval for x. Annotations of P
specify the range of the input variables of P as well as the suspicious interval
for x. The latter assertion is just posted before the critical test ct.

To compute the suspicious interval for x, we approximate the domain of
x over the real numbers by [xR, xR], and over the floating-point numbers by
[xF, xF]. These approximations are computed with rAiCp [16], a hybrid system
that combines abstract interpretation and constraint programming techniques
in a single static and automatic analysis. The current implementation of rAiCp
is based upon the abstract interpreter Fluctuat [6], the constraint solver over
the reals RealPaver [10] and FPCS. The suspicious intervals for variable x are
denoted [xF, xR) and (xR, xF].

CPBPV FP performs first some pre-processing: P is transformed into DSA-
like form4. If the program contains loops, CPBPV FP unfolds loops k times
where k is a user specified constant. Loops are handled in CPBPV and rAiCp
with standard unfolding and abstraction techniques5. So, there are no more loops
in the program when we start the constraint generation process. Standard slicing
operations are also performed to reduce the size of the control flow graph.

In a second step, CPBPV FP searches for executable paths reaching ct. For
each of these paths, the collected constraints are sent to FPCS, which solves
the corresponding constraint systems over the floating point numbers. FPCS
returns either a satisfiable instantiation of the input variables of P , or ∅.
As said before, FPCS [14, 13, 1, 12] is a constraint solver designed to solve a set of
constraints over floating-point numbers without losing any solution. It uses 2B-
consistency along with projection functions adapted to floating-point arithmetic
[13, 1] to filter constraints over the floating-point numbers. FPCS also provides
stronger consistencies like kB-consistencies, which allow better filtering results.

The search of solutions in constraint systems over floating numbers is trickier
than the standard bisection-based search in constraint systems over intervals of

4 DSA stands for Dynamic Single Assignment. In DSA-like form, all variables are
assigned exactly once in each execution path

5 In bounded model checking, k is usually increased until a counter-example is found
or until the number of time units is large enough for the application.



float slope(float x0, float h) {

float x1 = x0 + h; float x2 = x0 - h;

float fx1 = x1*x1; float fx2 = x2*x2;

float res = (fx1 - fx2) / (2.0*h);

return res;

}

Fig. 2. Approximation of the derivative of x2 by a slope

float polynomial(float a, float b, float c) {

float poly = (a*a + b + 1e-5f) * c;

return poly;

}

Fig. 3. Computation of polynomial (a2 + b + 10−5) ∗ c

real numbers. Thus, we have also implemented different strategies combining
selection of specific points and pruning. Details on theses strategies are given in
the experiments section.

CPBPV FP ends up with one of the following results:

– a test case proving that P can produce a suspicious value for x;
– a proof that no test case reaching the suspicious interval can be generated:

this is the case if the loops in P cannot be unfolded beyond the bound k
(See [5] for details on bounded unfolding) ;

– an inconclusive answer: no test case could be generated but the loops in
P could be unfolded beyond the bound k. In other words, the process is
incomplete and we cannot conclude whether P may produce a suspicious
value.

4 Preliminary experiments

We experimented with CPBPV FP on six small programs with cancellation and
absorption phenomena, two very common pitfalls of floating-point arithmetic.
The benchmarks are listed in the first two columns of table 1.

First two benchmarks concern the heron program and the optimized heron

program with the suspicious intervals described in the section 1.
Program slope (see Fig. 2) approximates the derivative of the square function

f(x) = x2 at a given point x0. More precisely, it computes the slope of a nearby

secant line with a finite difference quotient: f ′(x0) ≈ f(x0+h)−f(x0−h)
2h . Over the

real numbers, the smaller h is, the more accurate the formula is. For this function,
the derivative is given by f ′(x) = 2x which yields exactly 26 for x = 13. Over
the floats, Fluctuat [6] approximates the return value of the slope program to
the interval [0, 25943] when h ∈ [10−6, 10−3] and x0 = 13.



Program polynomial in Fig. 3 illustrates an absorption phenomenon. It com-
putes the polynomial (a2+b+10−5)∗c. For input domains a ∈ [103, 104], b ∈ [0, 1]
and c ∈ [103, 104], the minimum value of the polynomial over the real numbers
is equal to 1000000000.01.

simple interpolator and simple square are two benches extracted from
[9]. The first bench computes an interpolator, affine by sub-intervals while the
second is a rewrite of a square root function used in an industrial context.

All experiments were done on an Intel Core 2 Duo at 2.8 GHz with 4 GB
of memory running 64-bit Linux. We assume C programs handling IEEE 754
compliant floating-point arithmetic, intended to be compiled with GCC without
any optimization option and run on a x86 64 architecture managed by a 64-
bit Linux operating system. Rounding mode was to the nearest, i.e., where ties
round to the nearest even digit in the required position.

4.1 Strategies and solvers

We run CPBPV FP with the following search strategies for the FPCS solver:

– std: standard prune & bisection-based search used in constraint-systems over
intervals : splits the selected variable domain in two domains of equal size;

– fpc: splits the domain of the selected variable in five intervals:
• Three degenerated intervals containing only a single floating point num-

ber: the smallest float l, the largest float r, and the mid-point m;
• Two open intervals (l,m) and (m, r);

– fp3s: selects 3 degenerated intervals containing only a single floating point
number: the smallest float l, the largest float r, and the mid-point m. Hence,
fp3s is an incomplete method that might miss some solutions.

For all these strategies, we select first the variables with the largest domain
and we perform a 3B−consistency filtering step before starting the splitting
process.

We compared CPBPV FP with CBMC [4] and CDFL [7], two state-of-the-
art software bounded model checkers based on SAT solvers that are able to deal
with floating-point computations. We also run a simple generate & test strategy:
the program is run with randomly generated input values and we test whether
the result is inside the suspicious interval. The process is stopped as soon as a
test case hitting the suspicious interval is found.

4.2 Results

Table 1 reports the results for the other strategies and solvers. Since strategy
fpc3s is incomplete, we indicate whether a test case was found or not. Column
s? specifies whether a test case actually exists. Note that the computation times
of CBMC and CDFL include the pre-processing time for generating the con-
straint systems; the pre-processing time required by CPBPV is around 0.6s but
CPBPV is a non-optimised system written in java.



Name Condition CDFL CBMC std fpc fpc3s s?

heron area < 10−5 3.874s 0.280s > 180 0.705 0.022 (n) y
area > 156.25 + 10−5 > 180s 34.512s 22.323 7.804 0.083 (n) y

optimized_heron area < 10−5 7.618s 0.932s > 180 0.148 0.022 (n) y
area > 156.25 + 10−5 > 180s > 180s 8.988 30.477 0.101 (n) n

slope with dh < 26.0− 1.0 2.014s 1.548s 0.021 0.012 0.012 (y) y
h ∈ [10−6, 10−3] dh > 26.0 + 1.0 1.599s 0.653s 0.055 0.011 0.011 (y) y

dh < 26.0− 10.0 0.715s 1.108s 0.006 0.006 0.007 (n) n
dh > 26.0 + 10.0 1.025s 1.080s 0.006 0.006 0.006 (n) n

polynomial r < 109+ 0.170s 0.295s 0.022 0.006 0.006 (y) y
0.0099999904− 10−3

simple_interpolator res < −10−5 0.296s 0.264s 0.018 0.012 0.012 (y) y

simple_square S > 1.453125 −− 1.079s 0.012 0.012 0.012 (n) n
Table 1. Results of the different solvers and strategies on the benchmarks

5 Discussion

5.1 Results analysis

The generate & test strategy behaves quite well on programs with only one input
variable when a test case exists but it is unable to find any test case for programs
with more than one input variable. More precisely, it found a test case in less
than 0.008s for the 6 suspicious intervals of program slope and for program
simple_interpolator. The generate & test strategy failed to find a test within
180s in all other cases.Of course, this strategy cannot show that there is no test
case reaching the suspicious interval; so, it is of little interest here.

Strategy fpc is definitely the most efficient and most robust one on all these
benchmarks. Note that CBMC and CDFL could neither handle the initial, nor
the optimized version of program heron in a timeout of 20 minutes whereas
FPCS found solutions in a reasonable time.

These preliminary results are very encouraging: they show that CPBPV FP
is effective for generating test cases for suspicious values outside the range of
acceptable values on small programs with classical floating-point errors. More
importantly, a strong point of CPBPV FP is definitely its refutation capabili-
ties.

Of course, experiments on more significant benchmarks and on real applica-
tions are still necessary to evaluate the full capabilities and limits of CPBPV FP.

5.2 Related and further work

The goals of software bounded model checkers based on SAT solvers are close
to our approach. The point is that SAT solvers tend to be inefficient on these
problems due to the size of the domains of floating-point variables and the cost
of bit-vector operations [7]. CDFL [7] tries to address this issue by embedding



an abstract domain in the conflict driven clause learning algorithm of a SAT
solver. SAT solvers often use bitwise representations of numerical operations,
which may be very expensive (e.g., thousands of variables for one equation in
CDFL). Brain and al [11, 2] have recently introduced a bit-precise decision pro-
cedure for the theory of floating-point arithmetic. The core of their approach is
a generalization of the conflict-driven clause-learning algorithm used in modern
SAT solvers. Their technique is significantly faster than a bit-vector encoding ap-
proach. Note that the constraint programming techniques used in our approach
are better suited to generate several test cases than these SAT-based approaches.
The advantage of CP is that it provides a uniform framework for representing
and handling integers, real numbers and floats. A new abstract-interpretation
based robustness analysis of finite precision implementations has recently been
proposed [9] for sound rounding error propagation in a given path in presence
of unstable tests.

A close connection between our floating-point solvers and the two above-
mentioned approaches is certainly worth exploring.

A second direction for further work concerns the integration of our constraint-
based approach with new abstract-interpretation based robustness analysis of
finite precision implementations for sound rounding error propagation in a given
path in presence of unstable tests.
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