
HAL Id: hal-01639619
https://inria.hal.science/hal-01639619

Submitted on 20 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Attacking and Defending Dynamic Analysis
System-Calls Based IDS

Ishai Rosenberg, Ehud Gudes

To cite this version:
Ishai Rosenberg, Ehud Gudes. Attacking and Defending Dynamic Analysis System-Calls Based IDS.
10th IFIP International Conference on Information Security Theory and Practice (WISTP), Sep 2016,
Heraklion, Greece. pp.103-119, �10.1007/978-3-319-45931-8_7�. �hal-01639619�

https://inria.hal.science/hal-01639619
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Attacking and Defending Dynamic Analysis
System-Calls Based IDS

Ishai Rosenberg1 and Ehud Gudes1,2

1 The Open University of Israel, Raanana, Israel
2 Ben-Gurion University, Beer-Sheva, Israel

Abstract. Machine-learning augments today’s IDS capability to cope
with unknown malware. However, if an attacker gains partial knowledge
about the IDS’s classifier, he can create a modified version of his mal-
ware, which can evade detection. In this article we present an IDS based
on various classifiers using system calls executed by the inspected code as
features. We then present a camouflage algorithm that is used to modify
malicious code to be classified as benign, while preserving the code’s func-
tionality, for decision tree and random forest classifiers. We also present
transformations to the classifier’s input, to prevent this camouflage - and
a modified camouflage algorithm that overcomes those transformations.
Our research shows that it is not enough to provide a decision tree based
classifier with a large training set to counter malware. One must also be
aware of the possibility that the classifier would be fooled by a camou-
flage algorithm, and try to counter such an attempt with techniques such
as input transformation or training set updates.

Keywords: malware detection, malware obfuscation, decision trees, be-
havior analysis, camouflage algorithm, machine learning

1 Introduction

Past intrusion detection systems (IDS) generally used two methods of malware
detection: 1) Signature-based detection, i.e., searching for known patterns of data
within the executable code. A malware, however, can modify itself to prevent
a signature match, for example by using encryption. Thus, this method can be
used to identify only known malware. 2) Heuristic-based detection is composed
of generic signatures, including wild-cards, which can identify a malware family.
This method can identify only variants of known malware.

Machine-learning can be used in-order to extend the IDS capabilities to clas-
sify software unseen before as malicious or benign by using static or dynamic
features. However, our research shows that malware code can be transformed
to render machine learning classifiers almost useless, without losing the original
functionality of the modified code. We call such a generic transformation, based
on the classifier type and the features used, a camouflage algorithm.

In this paper, we present a camouflage algorithm for decision tree and ran-
dom forest based classifiers whose input features are sequences of system calls
executed by the code at run-time. Our research has three main contributions:



1. Developing an automatic algorithm to decide which system calls to add to
a malware code to make this code being classified as benign by our IDS,
without losing its functionality. We then alleviate the assumption of full
knowledge of the classifier by the attacker, showing that partial training set
information might be enough.

2. Evaluating the algorithm against a large subset of malware samples, while
previous work evaluated specific examples only.

3. Investigating possible transformations of the IDS input in-order to counter
the camouflage algorithm - as-well-as a modified camouflage algorithm to
evade those transformations.

While the above contributions are shown for specific classifier types (decision tree
and random forest) and for specific features as input (system calls sequences), we
believe the ideas are more general, and can be applied also to different classifiers
with different features. The rest of the paper is structured as follows: Section
2 discusses the related work. Section 3 presents the problem definition and the
evaluation criteria for the camouflage algorithm. Section 4 describes the IDS in
detail and section 5 discusses the camouflage algorithm implementation. Section
6 presents the experimental evaluation and section 7 concludes the paper and
outlines future research.

2 Background and Related Work

2.1 Machine Learning Binary Classifiers

The use of system calls to detect abnormal software behavior was shown in [3,14].
System call pairs (n-grams of size 2) from test traces were compared against those
in the normal profile. Any system call pair not present in the normal profile is
called a mismatch. If the number of system calls with mismatches within their
window in any given time frame exceeded a certain threshold, an intrusion was
reported.

Various machine learning classifiers, such as decision trees, SVM, boosted
trees, Bayesian Networks and Artificial Neural Networks have been compared
to find the most accurate classification algorithm; with varying results (e.g.: [2]
chose decision trees, [7] chose boosted decision trees, etc.). The different results
were affected, e.g., by the training set and the type of the feature set used.

There are two ways to extract the classifier features. They can be extracted
statically (i.e., without running the inspected code), e.g.: byte-sequence (n-gram)
in the inspected code ([7]). The features can also be extracted dynamically (i.e.,
by running the inspected code), including: CPU overhead, time to execute, mem-
ory and disk consumption ([11]) or executed system calls sequences, either con-
secutive ([14]) or not ([13]). A survey of system calls monitors and the attacks
against them was conducted in [4], stating that in-spite of their disadvantages,
they are commonly used by IDS machine learning classifiers.

While using static analysis has a performance advantage, it has a main dis-
advantage: Since the code isn’t being run, it might not reveal its “true features”.



For example, if one looks for byte-sequence (or signatures) in the inspected code
([7]), one might not be able to catch polymorphic malware, in which those sig-
natures are either encrypted or packed and decrypted only during run-time, by
a specific bootstrap code. Other limitations of static analysis and techniques to
counter it appear in [10]. Obviously, a malware can still try to hide if some other
application (the IDS) is monitoring its features dynamically. However, in the
end, in-order to operate its malicious functionality, a malware must reveal its
true features during run-time.

Since a dynamic analysis IDS must run the inspected code, it might harm
the hosting computer. In-order to prevent that, it’s common to run the code in
a sandbox; a controlled environment, which isolates between the malicious code
to the rest of the system, preventing damage to the latter. This isolation can
be done: 1) At the application-level, meaning that the malicious code is running
on the same operating system as the rest of the system, but its system calls
affect only a quarantined area of the system, e.g., Sandboxie3. 2) At the oper-
ating system level (e.g., VMWare Workstation), meaning the operating system
is isolated but the processor is the same. 3) At the processor level, meaning all
machine instruction are generated by an emulator like Qemu (e.g. TTAnalyze).
While an emulator-based sand-boxing technique might be harder to detect, it
can be done, e.g., using timing attacks due-to the emulator performance degra-
dation, as shown in [12]. Therefore, we have used the VM sandbox mechanism
to implement our IDS.

2.2 The Camouflage Algorithms

Modification of the input to a decision-tree classifier based on static analysis
features (binary n-grams) was presented in [6]. A simulation of the IDS classifier
of the installed anti-virus program was constructed by submitting a collection of
malicious and benign binaries to the classifier via a COM (Component Object
Model) interface, which runs the installed anti-virus on a file path argument and
returns the classifier’s decision for this file. Then, a feature-set similar to the
attacker’s code that would be classified as benign was found manually in the
simulated decision tree. Finally, the authors appended the feature bytes to posi-
tions ignored by the system loader in the attacker’s code, manually transforming
its feature set to the benign one. In contrast, we encountered a dynamic analysis
classifier, which is harder to fool ([10]).

Suggested ways to modify system call sequences were presented in [17]. It
deals with mimicry attacks, where an attacker is able to code a malicious exploit
that mimics the system calls trace of benign code, thus evading detection. [17]
presents several methods: 1) Make benign system calls generate malicious behav-
ior by modifying the system calls parameters. This works since most IDSs ignore
the system call parameters. 2) Adding semantic no-ops - system calls with no
effect, or whose effect is irrelevant, e.g.: opening a non-existent file. The authors
showed that almost every system call can be no-op-ed and thus the attacker can

3 http://www.sandboxie.com/

http://www.sandboxie.com/


add any needed no-op system call to achieve a benign system call sequence. 3)
Equivalent attacks – Using a different system call sequence to achieve the same
(malicious) effect.

In our work, we also use the second technique, since it’s the most flexible.
Using it, we can add no-op system calls that would modify the decision path
of the inspected code in the decision tree, as desired. Main differences: 1) We
have created an automatic algorithm and tested it on a large group of malware
to verify that it can be applied to any malware, not only specific samples. 2)
We verified that the modified malicious code functions properly and evade by
executing it after its camouflage. 3) We refer to partial knowledge of the attacker.
The authors mentioned several other limitations of their technique in [4] due-to
the usage of code injection, which don’t apply to our paper. One may claim that
the IDS should consider only successful system calls to counter this method.
However, every system call in a benign code may return either successfully or
not, depending on the system’s state and therefore may cause such IDS to falsely
classify this code.

A similar method to ours was presented in [9]. The authors used system
calls dependence graph (SCDG) with graph edit distance and Jaccard index
as clustering parameters of different malware variants and used several SCDG
transformations on the malware source code to “move” it to a different cluster.
Our approach is different in the following ways: 1) Our classification method is
different, and handles cases which are not covered by their clustering mechanism.
2) [9] showed a transformation that can cause similar malware variants to be
classified at a different cluster - but not that it can cause a malware to be
classified (or clustered) as a benign program, as shown in this paper. 3) Their
transformations are limited to certain APIs only - and would not be effective for
malware code that doesn’t have them.

[15] presented an algorithm for automated mimicry attack on FSA (or over-
lapping graph) classifier using system call n-grams. However, this algorithm lim-
its the malware code that can be camouflaged using it, to one that can be
assembled from benign trace n-grams.

In [1], attacker-generated samples were added to the training set of the clas-
sifier, in-order for it to subvert the classification of malware code to benign,
due-to its similarity to the added samples. However, it requires the attacker to
have access to the classifier’s DB, which is secured. In contrast, our method,
which does not modify the classifier, is more feasible to implement.

3 Problem Description

We deal with two separated issues: 1) Classification of the inspected code, which
was not encountered before, by the IDS as benign or malicious, using its system
calls sequences. 2) Developing an algorithm to transform the inspected code, in-
order to change the classification of the inspected code by the IDS from malicious
to benign, without losing its functionality. The general problem can be defined
formally as follows:



Given the traced sequence of system calls as the array sys call, where the cell:
sys call[i] is the i-th system call being executed by the inspected code (sys call[1]
is the first system call executed by the code).

Define the IDS classifier as:
classify(benign training set, malic training set, inspected code sys calls),

where inspected code sys calls is the inspected code’s system calls array, be-
nign training set is a set of system calls arrays used to train the classifier with
a known benign classification and malic training set is a set of system calls ar-
rays used to train the classifier with a known malicious classification. classify()
returns the classification of the inspected code: either benign or malicious.

Given that an inspected code generates the array: malic inspected code sys calls,
define the camouflage algorithm as a transformation on this array, resulting with
the array: C(malic inspected code sys calls). The success of the camouflage algo-
rithm is defined as follows: Given that:

classify (benign training set, malic training set, malic inspected code sys calls)
= malicious, the camouflage algorithm result is:

classify(benign training set, malic training set, C(malic inspected code sys calls))
= benign and:

malic behavior(C(malic inspected code sys calls)) =
malic behaviour (malic inspected code sys calls).

While in section 6.3 we would show that partial knowledge of the training
set is enough to generate a probabilistic camouflage, we initially assume that the
attacker has access to the IDS and to the decision tree model it is based upon.
Such knowledge can be gained by reverse engineering the IDS on the attacker’s
computer, without the need to gain access to the attacked system - just to have
access to IDS. As shown in [6], an IDS decision tree can be recovered this way by
exploiting public interfaces of an IDS and building the decision tree by feeding it
with many samples and examining their classifications. Reconstruction attacks
such as the one described in [5] for a C4.5 decision tree could also be used for
this purpose. This assumption, that the IDS classifier, can be reconstructed, is
common in several papers on this subject (e.g.: [1,4,9,15,17], etc.), as-well-as
in cryptography (Kerckhoffs’s principle). We further assume the attacker knows
the system calls trace that would be produced by the malware on the inspected
system. While the system calls trace might be affected by, e.g., files’ existence
and environment variables’ values on the target system, it is highly unlikely,
since the IDS should be generic enough to work effectively on all the clients’
systems, making system-dependent flows rare.

The effectiveness of our IDS is determined by two factors (P is the probabil-
ity):

1. We would like to minimize the false negative rate of the IDS, i.e. to minimize
P(classify(benign training set, malic training set, malic inspected code sys calls)
= benign).

2. We would like to minimize the false positive rate of the IDS, i.e. to minimize
P(classify(benign training set, malic training set, benign inspected code sys calls)
= malicious).



The overall effectiveness of the camouflage algorithm will be measured by the
increased number of false negatives, i.e. we would like that:

P(classify(benign training set, malic training set,
C(malic inspected code sys calls))=benign)≥

P(classify(benign training set, malic training set,
malic inspected code sys calls) = benign).
Therefore, the effectiveness of the camouflage algorithm is defined as the dif-
ference between the two probabilities (which are computed by the respective
frequencies). The higher the difference between those frequencies, the more ef-
fective is the camouflage algorithm.

One way to fight the camouflage algorithm is to apply transformations on
the input sequences of system calls and apply the classifier on the transformed
sequences. The assumption is that the transformed sequences would reduce the
effectiveness of the camouflage algorithm. We define a transformation of the
system calls trace of the inspected code as T(malic inspected code sys calls). We
define the transformation T to be effective iff:

1. It would not reduce the malware detection rate, i.e.:
P(classify(T(benign training set), T(malic training set),
T(malic inspected code sys calls))= malicious)≥ P(classify(benign training set,
malic training set, malic inspected code sys calls) = malicious)

2. It would not reduce the benign software detection rate, i.e.:
P(classify(T(benign training set), T(malic training set),
T(benign inspected code sys calls))= benign)≥ P(classify(benign training set,
malic training set, benign inspected code sys calls) = benign)

3. It would reduce the camouflage algorithm effectiveness:
P(classify(benign training set, malic training set,
C(malic inspected code sys calls))= benign)≥ P(classify(T(benign training set),
T(malic training set), T(C(malic inspected code sys calls)))=benign) .

In the next two sections we describe in detail the IDS and camouflage algorithm
implementations.

4 IDS Implementation

In-order to implement a dynamic analysis IDS that would sandbox the inspected
code effects, we have used VMWare Workstation, where changes made by a
malicious code can be reverted. We used a Windows XP SP3 OS without an
internet connection (to prevent the possibility of infecting other machines). The
inspected executables were run for a period of 10 seconds (and then forcefully
terminated), which resulted in about 10,000 recorded system calls per executable
on average (the maximum number recorded per executable was about 60,000).4

4 Tracing only the first seconds of a program execution might not detect certain mal-
ware types, like “logic bombs” that commence their malicious behavior only after
the program has been running some time. However, this can be mitigated both by
classifying the suspension mechanism as malicious or by tracing the code operation
throughout the program execution life-time, not just when the program starts.



The system calls recorder we have used for Windows records the Nt* system-
calls. The usage of this low layer of system calls was done in-order to prevent
malware from bypassing Win32API (e.g. CreateFile()) recording by calling those
lower-level, Nt* APIs (e.g. NtCreateFile()). We have recorded 445 different sys-
tem calls, such-as NtClose(), etc.

We have implemented the classifier using scikit-learn5. We selected the CART
decision tree algorithm, similar to C4.5 (J48) decision tree, which was already
proven to be a superior algorithm for malware classification ([2]).

The training set for the binary classifier contains malicious and benign ex-
ecutables. The malicious executables were taken from VX Heaven6. They were
selected from the ’Win32 Virus’ type. Focusing on this specific mode of action
of the malicious code reduce the chance of infection of other computers caused
by using, e.g., worm samples. The number of malicious and benign samples in
the set was similar (521 malicious samples and 661 benign samples) to prevent
a bias towards classification with the same value as the majority of the training
samples.

As features for the decision tree we used the position and the type of the
system call, e.g.: sys call[3] = NtCreateFile. Thus, the number of available fea-
ture values was very large (about 850,000). Therefore, we performed a feature
selection of the 10,000 (best) features with the highest values for the χ2 (chi-
square) statistic of the training set, and created the decision tree based only
on the selected features. This choice was made to ease the explanation of our
algorithm in the next section. In section 6.2 we would use more robust features
and show that our algorithm works in this case either.

5 The Camouflage Algorithm Implementation

The goal of the camouflage algorithm is to modify the sequence of system calls
of the inspected code in a way that would cause the classifier to change its
classification decision from malicious to benign without harming its functionality.
This is done by finding a benign decision path (i.e., a path that starts from the
tree root and ends in a leaf with benign classification) in the decision tree with
the minimal edit distance ([8]) from the decision path of the malware (or the
minimal Levenshtein distance between the paths’ string representations). Then
we add (not remove or modify, to prevent harming the malware functionality)
system calls to change the decision path of the modified malware code to that of
the benign path. Selecting the minimal edit distance means less malware code
modifications.

In-order to modify the system calls sequence without affecting the code’s
functionality, we add the required system calls with invalid parameters. This
can be done for most system calls with arguments. Others can be called and
ignored. For example: opening a (non-existent) file, reading (0 bytes) from a file,
closing an (invalid) handle, etc. One may claim that the IDS should consider

5 http://scikit-learn.org/
6 http://vxheaven.org/

http://scikit-learn.org/
http://vxheaven.org/


only successful system calls. However, it is difficult for it to determine whether a
system call is invoked with invalid parameters just to fool it, since even system
calls of legitimate programs are sometimes being called with arguments that
seem to be invalid, e.g., non-exiting registry key. In addition, IDSs that verify
the arguments tend to be much slower (4-10 times slower, as mentioned in [16]).

In the basic version of our classifier, an internal node in the decision tree
contains a decision condition of the form: system call[i] =? system call type[k].
Assume without loss of generality that if the answer is yes (i.e., system call[i]
= system call type[k]), the branch is to the right (R child), and if the answer
is no, the branch is to the left (L child). An example of a decision tree is pre-
sented in Figure 1. In this decision tree, if the malware code trace contains:
{sys call[1]=NtQueryInformationFile, sys call[2]=NtOpenFile, sys call[3]=NtAddAtom,
sys call[4]=NtWriteFile} (decision path: M’=RRRR, classified as a malicious)
and if the algorithm will insert as the fourth system call a system call with a
type different than NtWriteFile, the classifier will declare this malware code as
benign, since the decision path would change from M’ to P1.

While there is no guarantee that the algorithm would converge (step 3 in
Algorithm 1 exists in-order to prevent an infinite loop by switching back and
forth between the same paths), it did converge successfully for all the tested
samples, as shown in section 6. The reason for this is the rationale behind the
decision tree based on system calls: The behavior of malware (and thus the
system calls sequences used by it) is inherently different from that of benign
software. Because-of that, and since the decision tree is trying to reduce the
entropy of its nodes, the malicious and benign software do not spread uniformly
at the leaf nodes of the decision tree but tend to be clustered at certain areas.
Our path modifications direct the decision path to the desired cluster.

The general algorithm is depicted in Algorithm1. Before explaining the de-
tails of the algorithm, let’s discuss the possible edit operations when modifying
a malware decision path. We will demonstrate the edit operations using the
decision tree depicted in Figure 1:

1. Substitution: There can be two types of substitutions: SubL - a substitution
L→R (e.g., from P=RRRL to P’=RRRR) and SubR - a substitution R→L
(e.g., from M=RRL to P3=LRL in Figure 1).

2. Addition: AddR - an addition of R (e.g., from M=RRL to P1=RRRL in
Figure 1) or AddL - an addition of L (e.g., from P=RRL to P’=LRRL).

3. Deletion: DelL - A deletion of L (e.g., from P=LRL to P’=RL) or DelR - a
deletion of R (e.g., from P=RRL to P’=RL).

Since the only allowed modification is an insertion of a dummy system call, the
algorithm handles the above 6 edit operations as follows:

– If the edit op is SubL, or AddR, or DelL: Given that the condition (in the
parent node of the modified\added node) is: sys call[i] =? sys call type[k],
add sys call[i]=sys call type[k]. Note that the equivalent of DelL is SubL
followed by a tree re-evaluation, since this is the only edit op allowing you
to remove the L without actually deleting a system call, which might harm
the code’s functionality.



– If the edit op is SubR, or AddL or DelR: Given that the condition: sys call[i]
=? sys call type[k], add sys call[i]=sys call type[m] s.t. m != k. The above
note about deletion applies here too.

After each edit operation, the malware trace changes: The dummy system call
addition might have affected every condition on the tree in the form of: sys call[j]
=? sys call type[k] s.t. j≥i. Therefore, we need to re-evaluate the entire decision
path and find again the benign paths which are closest to it. Step 2(a) exists
in-order to minimize the effects of the current edit operation on the path after
re-evaluating it. The system calls insertion would ideally be done automatically,
e.g, by usage of tools such-as LLVM, as done in [9], However, as mentioned by
the authors, such tools are currently lack support for dealing with the Windows
CRT and Platform SDK API calls, which are used by most Windows malware.
Thus we assume that the attacker would manually insert the system calls, added
by the camouflage algorithm, to the malware source code. This is demonstrated
for the “Beetle” virus, in the next section.

Algorithm 1 System-Calls Based Decision Tree’s Camouflage Algorithm

1. Given the decision tree of the IDS and a specific malware trace (i.e. its sequence
of system calls as recorded) with the decision tree’s path M, find all the IDS’s
decision tree’s benign paths, P1..Pm, and create a list l of m tuples to check:
l={(M, P1)..(M, Pm)}. Set path count[M] = 0

2. For each tuple (dec path, Pj) in l, find the minimum edit distance between dec path
and Pj, d(dec path, Pj). Select the tuple with the minimal such edit distance and
find the minimal sequence of edit operations needed to change dec path to Pj,
ordered from the root of the tree to the leaf\classification node (i.e. by position in
the decision path). If l is empty: Report failure.

(a) If there is more than a single path with the same minimal edit distance, look
at the first edit operation in each such path. Assuming the condition is of the
form: system call[i] =? system call type[k], select the path that maximizes i.

3. Set path count[des path] += 1. If path count[des path]≥max decision path count :
Remove all tuples that contain dec path from l and go to step 2.

4. Assuming the benign path to fit is Pj, modify the malware code based on the first
edit operation in the edit sequence, as was explained above:

(a) If the edit op is SubL, AddR, or DelL then: Add sys call[i]=sys call type[k].
Else: Add sys call[i]=sys call type[m] s.t. m != k.

5. system call[i..n] from before the modification now become system call[i+1..n+1].
Re-evaluate the new system calls sequence and generate a new decision path M’.

6. If M’ ends with a benign leaf: Report success. Else: Remove (dec path, Pj) from l,
and add all the tuples with the modified malware code {(M’, P1)..(M’, Pm)} to
l. Set path count[M’] = 0

7. Go to step 2.

Example 1. We demonstrate Algorithm 1 using the decision tree in Figure 1:



Fig. 1. A System Calls Based Decision Tree

Given the malware code:
{sys call[1]=NtQueryInformationFile, sys call[2] = NtOpenFile,

sys call[3]=NtWriteFile, sys call[4]=NtClose},
Its path in the IDS’s decision tree is: M=RRL (=Right-Right-Left), and the

benign paths in the decision tree are: P1=RRRL, P2=LLL and P3=LRL, the
edit distances are d(M, P1)=1, d(M, P2)=2, d(M, P3)=1. The tuples to check
are: {(M, P1), (M, P2), (M, P3)}. We have two paths with a minimal edit
distance: edit sequence(M, P1)={AddR (at position 3)} and edit sequence(M,
P3) = {SubR(at position 1)}. The condition for-which we need to add R in P1
is: system call[3] = NtAddAtom. Thus: i=3. The condition for-which the edit
operation applies in P3 is: system call[2] = NtOpenFile. Thus: i=2. Therefore,
we start from P1 and not from P3, since its index is larger.

In-order to modify M to P1, we add: sys call[3] = NtAddAtom(NULL, 0,
NULL) (the edit op is AddR). Notice that we add the system call with invalid
parameters. The new malware code is:
{sys call[1]=NtQueryInformationFile, sys call[2] = NtOpenFile, sys call[3]=

NtAddAtom, sys call[4]= NtWriteFile, sys call[5]=NtClose}.
Its decision path is M’=RRRR. M’ is not classified as benign – so we remove

(M, P1), and add all the tuples with the modified code M’. Thus, we need to
examine:
{{M, P2), (M, P3), (M’, P1), (M’, P2), (M’, P3)}.
The tuple we would inspect in the next iteration is (M’, P1): d(M’, P1)=1

and i=4 (which is larger than 2 for (M, P3)). The algorithm would converge
after the next iteration, in which we would add sys call[4]!= NtWriteFile, and
the modified malware code would be classified as benign (P1 ).

5.1 Random Forest Camouflage Algorithm

In section 6.2, the classifier with the best performance was random forest. Since
a random forest is actually a collection of decision trees, if we extend the same



assumptions made in section 3, that-is: we know all the trees in the random
forest, we can create a camouflage algorithm for random forest.

The rationale of the algorithm is simple: Since all decision trees in the random
forest actually represents parts of the same code flow, we can modify each of them
in turn, using Algorithm 1, and keep using the modified system calls trace, until
we can fool the majority of them, thus fooling the entire random forest.

6 Experimental Evaluation

In-order to test the detection rate of our IDS, we used benign files collection
from the Program Files folder of Windows XP SP3 and from our collection
of third party benign programs and malware of Win32 Virus type, from VX
Heaven’s collection. The test set contained about 650 benign programs and 500
malware, which were different from the ones used to train the IDS in section 4.
The malware detection rate and the benign detection rate (as computed by the
definitions specified in section 3), were 84.3% and 88.9% respectively, as shown
in the first line of Table 2.

In-order to test our camouflage algorithm, we have selected all the malware
samples from our test set, which were correctly classified (i.e., as malicious) by
our IDS (436 samples). We applied the camouflage algorithm on them: None of
the camouflaged system calls sequences of those samples were identified by our
IDS (effectiveness of 100%, by the definition in section 3).

We have applied the random forest camouflage algorithm on all the malware
code that were detected by the random forest: 445 different samples. While there
is no guarantee that the algorithm would converge, all modified section traces
were classified as benign by our IDS, i.e., camouflage algorithm effectiveness of
100%. This is due-to the same rationale mentioned in section 5.

To test a complete “end-to-end” application of our system in real-life, we
used the source code of the virus “Beetle”7. We compiled the source code and
ran it through our IDS. The virus system calls trace was classified correctly as
malicious by our IDS. After using our camouflage algorithm, we received the
modified system calls sequence, classified as benign by our IDS. We manually
matched the system calls in this sequence to the virus original source code, and
applied the same modifications to it - and then recompiled the modified version.
The modified version of the virus was then run in our IDS, and was falsely
classified by it as benign. As expected, the malicious functionality of the code
remained intact.

6.1 Comparison to Other Classification Algorithms

We’ve implemented and compared the effectiveness of different classification al-
gorithms, using the same features, training set and test set. In-order to take

7 The description and the source code of this virus are available at:
http://vxheaven.org/lib/vpe01.html

http://vxheaven.org/lib/vpe01.html


into account true and false positives and negatives, we tried to maximize the
Matthews correlation coefficient (MCC), which is used in machine learning as a
measure of the quality of binary classifications ([?]).

The results appear in Table 1.

Table 1. Detection Rate of the IDS by Classifier Type

Classifier Type
Malware
Detection

Rate (TPR)

Benign
Software
Detection

Rate (TNR)

MCC

Decision Tree 84.3 88.9 0.76

Random Forest 86.1 89.5 0.77

K-Nearest Neighbors 89.4 86.0 0.77

Näıve Bayes (Gaussian) 87.0 54.5 0.50

Näıve Bayes (Bernoulli) 97.9 59.9 0.64

Ada-Boost 87.4 84.8 0.74

Support Vector Machine (Linear) 87.5 86.4 0.76

Support Vector Machine (RBF) 96.3 74.9 0.74

Linear Discriminant Analysis 82.6 82.6 0.68

The Random Forest classifier and k-Nearest Neighbors classifier were the
best overall, taking into account both malware and benign software detection
rate (by maximizing the MCC).

6.2 Countering the Camouflage: Section-Based Transformations

The basic form of decision tree node condition is: system call[i]=?system call type[k].
However, using this kind of input makes the IDS classification fragile: It’s enough
that we add a single system call in the middle of the sequence or switch the po-
sitions of two system calls, to change the entire decision path.

Therefore, we want to transform the input data (the system calls array) in a
way that would make a modification of the inspected code harder to impact the
decision tree path of the modified code, thus counter the camouflage algorithm.
In-order to define those transformations, we first divide the system calls sequence
to small sections of consecutive system calls. Each system calls section would
have a fixed length, m. Thus, section[i]=(sys call[(i-1)*m+1],..,sys call[i*m]).

In an order-preserving without duplicates removal section-based transforma-
tion, we define the discrete values of the the decision nodes in the tree to be:
section[i] =? (sys call[(i-1)*m+1], sys call[(i-1)*m+2],.., sys call[i*m]).
However, this transformation is more specific than the basic model - so it would
be easier to fool - and thus we didn’t use it. This changes when adding dupli-
cates removal : If there is more than a single system call of the same type in
a section - only the first instance (which represent all other instances) appears



in the section. This transformation prevents the possibility to split a system
call into separate system calls (e.g. two NtWriteFile() calls, each writing 100
bytes, instead of a single call writing 200 bytes). Therefore, this was the first
transformation we used.

The second transformation we examined is non-order-preserving without du-
plicates removal. This transformation is identical to the order-preserving without
duplicates removal transformation, except for the fact that the system calls in
each section are ordered in a predetermined order (lexicographically), regardless
of their order of appearance in the trace. Using this transformation makes the
probability of affecting the decision tree path by switching the places of two ar-
bitrary system calls much smaller. Only the switching of two system calls from
different sections might affect the decision path.

The last transformation we considered is non-order-preserving with duplicates
removal. It is identical to the former, except for the fact that if there is more
than a single system call of the same type in a section - only one instance (which
represent all other instances) would appear in the section. This transformation
handles both system calls switching and splitting. Notice that this transforma-
tion makes a section similar to a set of system calls: Each value can appear at
most once, without position significance.

In-order to test the detection rate of our modified IDS, we used the same test
set used for the basic model. A section size of m=10 was chosen. The detection
rate, computed by the definitions specified in section 3, appear in Table 2.

Table 2. Detection Rate of the IDS by Input Transformation Type

Input Type
Malware

Detection Rate
Benign Software
Detection Rate

No transformation (original DB) 84.3 88.9

Non order-preserving, without duplicates removal 87.4 90.7

Non order-preserving, with duplicates removal 86.5 88.1

Order-preserving, with duplicates removal 87.6 91.3

No transformation (updated DB) 86.5 88.7

As can be seen from this table, section-based transformations are effective,
by the definition in section 3.

In-order to test our camouflage algorithm effectiveness vs. the modified IDS,
we have used the camouflage algorithm shown in Algorithm 1 to modify the
system calls trace. Then we have applied the input transformation on the modi-
fied system calls trace - and then we fed it to the input-transformed IDS variant.
Without transformation we got a false-negative rate of 100%. With section-based
transformation, non order-preserving, without duplicates removal - we got 18.8%.
With section-based transformation, non order-preserving, with duplicates re-
moval we got 17.2%. With section-based transformation, order-preserving, with
duplicates removal - we got 17.4%.



We see that each input transformation reduces the effectiveness of the cam-
ouflage dramatically, since the camouflage we applied was designed against in-
dividual system calls and not against input transformations.

Countering the Input Transformations with Custom-Fit Camouflage
Algorithm
One might argue that camouflaging a system calls trace in our basic IDS (with-

out the transformations suggested in section 6.2) is an easy task. One needs to
add only a single system call at the beginning to change all following system
calls positions, thus affecting the decision path in the tree. Can we apply our
camouflage algorithm on our section-based IDS with the same effectiveness?

In-order to fit our camouflage algorithm to section-based transformations, we
have used Algorithm 1, except that in each iteration we added an entire system
calls section, instead of a single system call. This is done in step 4: Assuming
the condition is:

section[i] =? (sys call[(i-1)*m+1], sys call[(i-1)*m+2],.., sys call[i*m]),
if the edit op is SubL, AddR, or DelL then:
Add section[i] = (sys call[(i-1)*m+1], sys call[(i-1)*m+2],.., sys call[i*m])

(add the same section).
Else: Add section[i]=(sys call’[(i-1)*m+1], sys call[(i-1)*m+2],.., sys call[i*m])

s.t. sys call’[(i-1)*m+1] != sys call[(i-1)*m+1]
(add a section with a different first system call).
The section is added with the same transformation type as the IDS: either

order preserving or not, and either with or without duplicates removal.
We have applied this algorithm on all section-based transformations de-

scribed in section 6.2. Like Algorithm 1, there is no guarantee that the algo-
rithm would converge. However, all 436 modified section traces were classified
as benign by our IDS, with all input transformations, i.e., camouflage algorithm
effectiveness of 100%. This is due-to the same rationale mentioned in section
5. This was also the case when modifying the random forest camouflage algo-
rithm mentioned in section 5.1 to counter input transformations by replacing
Algorithm 1 used by it with this variant.

6.3 Partial Knowledge of the IDS

So far, we assumed that the attacker has full knowledge of both the classifier
type, the training set used to create it and its features, in-order to generate the
exact same classifier and then use it to camouflage the malicious code. We can
alleviate this assumption: If the attacker can gain partial knowledge about the
training set, he can construct the simulated classifier using only the training
set he knows about and use it in Algorithm 1. Such partial knowledge is easy to
gather, e.g., using the VirusTotal8 samples closest to the IDS release date, which
are very probable to be used by the IDS. We have trained the attacker classifier

8 https://www.virustotal.com/

https://www.virustotal.com/


using a part of the training set which is used by the IDS classifier, as mentioned
in section 6. We then camouflaged the entire test set using Algorithm 1, based
on the attacker partial knowledge based classifier.

We discovered that a knowledge of 86.4% of the IDS training set is enough
to create a camouflage that is 56.6% effective. A knowledge of 77.7% of the
training set provides camouflage effectiveness of 31.3% and 69.1% of it provides
effectiveness of 25.4%. We also tested a full knowledge of the training set, with
different features being selected (in case of chi-square equality). In this case, the
camouflage is 64% effective. Finally, we tested a full knowledge of the attacker
on the training set and features, followed by an update of the IDS training set
size by 1.7%, without the attacker knowledge. In this case,the generated camou-
flage was 75.5% effective. This means that training set updates can decrease the
camouflage algorithm effectiveness, which was supported by our results, which
are not shown due to space limitation.

From all the experiments, it is clear that the camouflage algorithm is useful
to an attacker even with partial knowledge of the classifier.

7 Conclusions

In this article, we have shown that malware code which has been identified
by a specific machine learning classifiers (decision tree or random forest) can
be camouflaged in-order to be falsely classified as benign. We have done so
by modifying the actual code being executed, without harming its malicious
functionality. We then applied a defense mechanism to the camouflage algorithm,
called input transformations, making it more robust, and showed that it can also
be evaded.

This suggests that it is not enough to use a machine learning classifier with
a large DB of benign and malicious samples to detect malware - one must also
be aware of the possibility that such classifier would be fooled by a camouflage
algorithm - and try to counter it with techniques such as continuous updating
of the classifier’s training set or application of the input transformation that we
discussed. However, as we have shown, even such transformations are susceptible
to camouflage algorithms designed against them.

Our future work in this area would examine the effectiveness of our camou-
flage algorithm on other machine-learning classifiers (e.g. SVM, boosted trees,
etc.) and find other algorithms to cope with such classifiers.

References

1. Baldi P., Brunak S., Chauvin Y., Andersen CA., Nielsen H.: Assessing the accu-
racy of prediction algorithms for classification: an overview. In: Bioinformatics,
Volume 16 Issue 5, pp. 412-24 (2000)Biggio, B., Rieck, K., Ariu, D., Wressnegger,
C., Corona, I., Giacinto, G., Rol., F.: Poisoning behavioral malware clustering.
In: Proceedings of the 7th ACM Workshop on Artificial Intelligence and Security
(2014)



2. Firdausi, I., Lim, C., Erwin, A.: Analysis of Machine Learning Techniques Used
in Behavior Based Malware Detection. In: Proceedings of 2nd International Con-
ference on Advances in Computing, Control and Telecommunication Technologies,
pp. 201-203 (2010)

3. Forrest, S., Hofmeyr, S., Somayaji, A., Longsta, T.: A Sense of Self for Unix Pro-
cesses. In: IEEE Symposium on Security and Privacy, pp. 120-128, IEEE Press,
USA (1996)

4. Forrest, S., Hofmeyr, S., Somayaji, A.: The evolution of system-call monitoring.
In: Proceedings of the Annual Computer Security Applications Conference, pp.
418–430 (2008)

5. Gambs, S., Gmati, A., Hurfin, M.: Reconstruction attack through classifier anal-
ysis. In: Proceedings of the 26th Annual IFIP WG 11.3 Working Conference on
Data and Applications Security and Privacy, pp. 274-281 (2012)

6. Hamlen, K.W., Mohan, V., Masud, M.M., Khan L., Thuraisingham B.: Exploiting
an Antivirus Interface. In: Computer Standards & Interfaces, Volume 31 Issue 6,
pp. 1182-1189 (2009)

7. Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild.
In: Proceedings of the 10th International Conference on Knowledge Discovery and
Data Mining, pp. 470–478 (2004)

8. Navarro, G.: A guided tour to approximate string matching. In: ACM Computing
Surveys, vol. 33, no. 1, pp. 31-88 (2001)

9. Ming, J., Xin, Z., Lan, P., Wu, D., Liu, P., Mao, B.: Replacement Attacks: Auto-
matically Impeding Behavior-based Malware Specifications. In: The 13th Interna-
tional Conference on Applied Cryptography and Network Security (2015)

10. Moser, A., Kruegel, C., Kirda, E.: Limits of Static Analysis for Malware Detection.
In: 23rd Annual Computer Security Applications Conference, pp. 421-430 (2007)

11. Moskovitch, R., Gus, I., Pluderman, S., Stopel, D., Fermat, Y., Shahar, Y., Elovici,
Y.: Host Based Intrusion Detection Using Machine Learning. In: Proceedings of
Intelligence and Security Informatics, pp. 107-114 (2007)

12. Raffetseder, T., Kruegel, C., Kirda, E.: Detecting System Emulators. In: Proceed-
ings of Information Security, 10th International Conference, pp. 1-18 (2007)

13. Rozenberg, B., Gudes, E., Elovici, Y., Fledel, Y.: Method for Detecting Unknown
Malicious Executables. In: Proceedings of the 12th International Symposium on
Recent Advances in Intrusion Detection, pp. 376-377 (2009)

14. Somayaji, A., Forrest, S.: Automated Response Using System-Call Delays. In: Pro-
ceedings of the 9th USENIX Security Symposium, pp. 185-198 (2000)

15. Sufatrio, Yap, R. H. C.: Improving Host-Based IDS with Argument Abstraction
to Prevent Mimicry Attacks. In Proceedings of the 5th International Symposium
on Recent Advances in Intrusion Detection, pp. 146–164 (2005)

16. Tandon, G., Chan. P.: On the Learning of System Call Attributes for Host-Based
Anomaly Detection. In: International Journal on Artificial Intelligence Tools, 15(6),
pp. 875–892 (2006)

17. Wagner, D., Soto, P.: Mimicry Attacks on Host-Based Intrusion Detection Systems.
In: Proceedings of the 9th ACM conference on Computer and Communications
Security, pp. 255-264 (2002)


	Attacking and Defending Dynamic Analysis System-Calls Based IDS

