
HAL Id: hal-01639603
https://inria.hal.science/hal-01639603

Submitted on 20 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards Automatic Risk Analysis and Mitigation of
Software Applications

Leonardo Regano, Daniele Canavese, Cataldo Basile, Alessio Viticchié,
Antonio Lioy

To cite this version:
Leonardo Regano, Daniele Canavese, Cataldo Basile, Alessio Viticchié, Antonio Lioy. Towards Au-
tomatic Risk Analysis and Mitigation of Software Applications. 10th IFIP International Conference
on Information Security Theory and Practice (WISTP), Sep 2016, Heraklion, Greece. pp.120-135,
�10.1007/978-3-319-45931-8_8�. �hal-01639603�

https://inria.hal.science/hal-01639603
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Towards Automatic Risk Analysis and

Mitigation of Software Applications

Leonardo Regano, Daniele Canavese, Cataldo Basile,
Alessio Viticchié, and Antonio Lioy

Politecnico di Torino, Dip. di Automatica e Informatica, Italy
{leonardo.regano,daniele.canavese,cataldo.basile,alessio.viticchie,lioy}@polito.it

Abstract. This paper proposes a novel semi-automatic risk analysis ap-
proach that not only identifies the threats against the assets in a software
application, but it is also able to quantify their risks and to suggests the
software protections to mitigate them. Built on a formal model of the
software, attacks, protections and their relationships, our implementa-
tion has shown promising performance on real world applications. This
work represents a first step towards a user-friendly expert system for the
protection of software applications.

Keywords: software protection, software risk analysis, software attacks

1 Introduction

Software is pervasive in our life. We rely on software applications for our leisure
and to ease our work, regardless of our fields of activity. In addition, software
is one of the pillars of the world economy that moves billions to trillions of dol-
lars. Developers have to protect their applications from tampering and avoid
that confidential data in their software are disclosed. In short, companies have
to protect the assets in their software, assets that are exposed to very power-
ful attacks, known as Man-at-the-End (MatE) attacks, from crackers that fully
control the execution environment of the software to protect.

When the software must be protected, the human experience is the leading
factor and almost the only one. While big companies have ad hoc teams to de-
cide how to protect their applications or they can pay specialized companies,
small and medium enterprises cannot afford the costs for properly protecting
their software. By remaining vulnerable, it can damage the companies them-
selves, generating monetary losses, and all of us, becoming a vector for various
kind of malware. Automatic or assisted techniques are needed to help software
developers in protecting their applications.

In this paper we propose a novel risk analysis approach to (1) identify the
threats against the assets in target applications, (2) quantify their risks against
them and (3) suggest potential mitigations. In this context, the mitigations are
the protections applied to each asset in order to reduce their exposure to the
identified risks. This work represents a first step towards an expert system that

can drive the software developers in all the delicate phases of software protection.
While the ambition is to make software protection another standard, almost
push-button activity like the compilation, in the short term, our approach can
be an interesting solution for small and medium enterprises.

A preliminary version of this work has been already published [1], focusing
only on the automatic threats identification. With respect to our previous ap-
proach, the main improvements in this paper are the risk quantification and
the proposal of mitigations. In addition, we greatly improved the expressivity
of our model, thus leading to an increased accuracy of the attacks identification
phase. A formal modelling of attacker purposes, strategies, and approaches to
tampering, allows a more sophisticated analysis that also associates discovered
attacks to the protections that would reduce their likelihood and consequences.
Together with the formalization of a more sophisticated vulnerability identifica-
tion system, building and validating our novel risk analysis model has required
the impact’s assessment of both attacks and protections on the software assets.
For a better validation of our model, we have collected assessment information
by means of questionnaires proposed to experts in software protection.

This paper is structured as follows. Section 2 presents our approach, its in-
puts, outputs and work-flow. Section 3 introduces a reference application that
we will use to practically describe our achievements. Section 4 describes our
formal model for describing an application for risk analysis purposes. Section 5
introduces the threats and mitigation identification engines whose performance
is detailed in Section 6. Section 7 presents previous works in the field. Finally,
Section 8 draws conclusions and sketches future research directions.

2 Approach

This section presents a general overview of our approach, whose work-flow is
sketched in Fig. 1.

application model build

assets’ identification

vulnerability analysis

strategy classification

mitigation

source code

user

vulnerability report

mitigation report

Fig. 1. General work-flow of our approach.

The input to our system is the set of the source files of the application
to protect. Currently, only the C and C++ languages are supported, but the

same core ideas can be easily extended to any other programming language.
The first phase, application model build, consists of a static analysis of the
source code, which is parsed and analyzed to create an abstract model of the
application. We named application part a generic piece of code of the application
under analysis. The application parts are either data, that include (global and
local) variables, class fields and function/method parameters, and code areas,
which consist of functions, methods, classes or a particular code region in a
function/method. Code areas have a hierarchical structure that allow them to
contain other application parts. For instance, a class (a code area) can contain
a method (another code area) that, in turn, encloses a local variable (a datum).
Apart the containment association, application parts are also linked together via
a set of other relationships, such as the call graph information. More information
about these relationships is available in Section 4.

Once the initial application model has been automatically constructed, the
user must finalize it by selecting which application parts actually need to be
protected and the security properties that need to be guaranteed on them. Ap-
plication parts that are associated to at least one security property are named
assets. This is performed during the assets’ identification phase. Identifying
assets is pivotal in our approach as they are both the elements to protect (de-
velopers’ perspective) and the targets of the attacks (attackers’ perspective).
We focus on four security properties in this work: integrity and confidentiality,
which were already modelled in our previous paper, execution correctness and
weak confidentiality, which are novel contributions.

For instance, some application parts can be marked with the integrity prop-
erty, when they must be preserved from modifications. In this case, either the
parts must be hard to modify or any modification must be detected. In other
cases, the developers may want to guarantee the execution correctness, a stronger
form of integrity that in addition requires that a code area must be called as
expected. For instance, application parts marked with the execution correctness
cannot be skipped, like authentication/license checks. Parts marked with the
confidentiality property must be unintelligible for an attacker, such as keys to
decrypt media streams or patented algorithms. Some data may be also tagged
with the weak confidentiality property. This property is breached when the at-
tacker is able to retrieve the datum at every moment of the application execution
(thus for hard-coded data the weak confidentiality is the same as the normal
confidentiality). This is mostly interesting for attacks that target the assets of a
victim’s application (i.e., not the attacker’s copy) by means of a distributed ap-
proach aiming at continuously obtaining the data values. For instance, in case of
an OTP (One-Time Password) generator1 that generates the next password by
hashing the value of a fixed seed and a counter modified at each generation, the
variable storing the counter can be marked with weak confidentiality. To predict
the next passwords (not only the next one), it does not suffice that the attacker
obtains once the value of victim’s counter, he has to obtain it just before every
generation. Therefore, either he is able to access every time the victim’s appli-

1 See the example in [1] for more details on the OTP generator application.

cation to read the counter value, or he has to obtain one counter, understand
the counter update function, and reproduce it on his copy.

During the assets’ identification, the user is also given the opportunity to
override the relationships that were previously automatically deduced or refine
them with more precise associations. In addition, some important information
may not be extracted by means of automatic tools as its correct identification
would require knowledge that is not inferrable from the source code. For instance,
correctly deducing that a function encrypts or decrypts some data is complex,
especially if the code makes use of ad-hoc cryptographic libraries. Furthermore,
some inferred relationships can be transformed into more accurate ones by means
of a manual user intervention. As an example, a license verification function can
invoke another function if and only if a previous license check is passed. These
functions are automatically related by the automatic analysis with a simple call

relationship. However our model supports a more expressive association, the
enables one, used to indicate that a function can be only executed if another
one has been “successfully” executed. To simplify this phase, we developed a
simple yet effective domain specific language presented in Section 4. With this
language, manually added data can be saved on disk, avoiding to ask the users
to input them again at each analysis.

Once a valid and accurate application model has been constructed and vali-
dated by the user, during the vulnerability analysis phase, our system iden-
tifies all the attacks that can disrupt the security properties of the assets and
produce a vulnerability report for the user. Attacks are sequences of simpler
actions that an attacker must perform to mount it, the attack steps. Therefore,
in our case, an attack is an ordered list of attack steps and will be thus called
attack path. This simplification does not influence the accuracy of our analysis
since we are interested in the effects of the attacks, regardless of their steps’ or-
der. For instance, two attack paths (step1, step2, step3) and (step1, step3, step2)
are produced when both step2 and step3 can be executed at the same time or
when their relative ordering does not matter. When producing the report to the
user our approach will present only one of the two previous attack paths, by
eliminating the clones. These sample attack paths are known as unique attack

paths.

After having detected the attack paths, the strategy identification phase
is performed. This phase consists in the classification of all the attack steps
of the inferred attack paths in order to understand their purpose towards the
goal. In our work, we classify attack steps in seven strategy types: static and
dynamic code analysis, static and dynamic tampering, sniffing and spoofing, and
compromission attacks. Note that, sniffing and spoofing also consider traditional
network Man-in-the-Middle (MitM) attack steps while the compromission type
includes code injection and attempts to control the application victim’s copy2.

2 We have disinguished compromission from tampering as their purpose is different.
When tampering with an application the attacker modifies the application code
to achieve a goal or remove a protection on his own copy, compromission includes

Finally, the mitigation phase produces a mitigation report that lists all the
protection techniques that can be used to mitigate (either block or render more
difficult) all the attack paths. A protection, in our approach, is able to mitigate
a set of attack step types with a particular level of efficacy (low, medium or
high). We assume that an attack path is mitigated by a protection if it is able to
mitigate at least one of its steps. This phase considers the following protections:

– anti-debugging, which makes more difficult to perform dynamic analysis by
attaching a trusted debugger, preventing attackers from using their own [2];

– algorithm hiding, a set of obfuscation techniques against the reverse engi-
neering, protecting a code’s confidentiality and understandability [3];

– call stack checks, which verifies the execution correctness by checking that
functions are called in the right order [4];

– barrier slicing, which enforces the integrity of data and code areas by moving
them to a trusted server where they will be executed [5];

– code guards, which are checks added in an application to detect and react to
integrity breaches [6];

– code mobility, which protects application parts from reverse engineering and
analysis by removing them from the application to be installed at run time
when they need to be executed [7];

– data hiding, which involves altering the data structures and the functions’
data flow for ensuring data confidentiality [8];

– remote attestation, which protects application integrity by forcing the appli-
cation to periodically send integrity proofs to a verification server [9].

After having revised the protection proposed by the mitigation report, the
suggested protections can be applied on the assets. This stage has been imple-
mented within the ASPIRE project by tagging all the variables and code areas
with some special annotations that are later processed by the custom ASPIRE
protection tool-chain.

3 Reference Example

We introduce here one of the applications we used to test our approach, the
Linux Memory Game3, an open source video game written in C based on the
popular card game Memory. The game is played with a set of cards’ pairs placed
face down on a table. The player’s goal is to find all the matching pairs with the
minimum number of card turns. The game provides five skill levels: little one,
beginner, skilled, master and daemon. When playing at the little one difficulty,
all the cards are face up and visible (it is for children). On the other hand, in
the highest difficulty level the cards are moved in different (and increasingly
difficult) ways after every flip.

the cases where the attackers inject code to remotely control a pool of victims’
applications.

3 The source code is available at https://packages.debian.org/stretch/lmemory.

GUI

lmem_flip_card()lmem_Level() lmem_Newgame()

lmem_level click_count

lmem_from_Little_One() lmem_state

calls

calls

calls

initialize

calls

accesses

accesses initialize

Fig. 2. Diagram showing the application parts relationships.

In our reference example, the main goal of the attacker is to win with the
lowest number of flipped cards. On the other hand, the software developer must
preserve the correctness of the game and the validity of the best scores, e.g., to
keep the interest on it, as it happened for World of Warcraft.

Fig. 2 depicts a diagram showing the relationships (function calls, accesses
and initializations of variables) between the most important application parts in
the game. The card values are stored in the global variable lmem_state, a vector
of integers whose elements are the cells in the card matrix, an asset. Its weak
confidentiality must be safeguarded, as the attacker can play with all the cards
visible, but also its integrity, since he can force a known card arrangement.

lmem_state is set by the lmem_Newgame() function, executed when a new game
starts. lmem_Newgame() is also an asset, whose integrity must be preserved.

A critical datum is also click_count, an integer variable that counts the
number of cards flipped. The developer must guarantee its integrity to avoid
unwanted modifications (as an attacker can lower it to increase its final score).

The function lmem_flip_card() is executed every time a card is flipped and
its logic can be summarized in the following steps: (1) when the user has clicked
on a new card, turn its face up; (2) increase the click count; (3) if there are
already two cards face up, then turn them face down; (4) if there is already a
card face up and it matches with new card, remove both cards from the table;
(5) rearrange all the face down cards according to the selected skill level.

The lmem_from_Little_One() function flips back all the cards and it is invoked
by the lmem_Level() function, which in turn is called when the user changes the
difficulty level from the little one level to a higher one. These three functions
must be preserved from modifications since a plethora of attacks can be mounted
against them, that is, their execution correctness must be guaranteed.

In the following sections, we will identify a set of attacks that can be used
to alter the normal work-flow of the application. We will start our discussion by
informally introduce some of them here.

The attacker might start by trying to discover the position of all the cards,
even if they are face down, or to force a known card configuration. An attacker

can locate lmem_state by debugging a function that writes this vector, such as
lmem_Newgame(), executed when a new game starts, thus easily recognizable via
dynamic or static analysis. He can force some card values in lmem_Newgame() by
using a known card configuration from a previously played game.

The attacker can also statically or dynamically change lmem_Level() to avoid
the invocation of lmem_from_Little_One(). In this way the attacker can start
with the little one difficulty level then switch to a higher one to be able to play
with all the card faced up.

Finally, every step of lmem_flip_card() is vulnerable. The attacker can tam-
per the code to avoid the click count increase in order to obtain a reasonable
score (step 2). He can stop cards from being turned face down (step 3). He can
skip the card matching check, thus all the pairs of cards will be removed from
the table, allowing an easy victory (step 4). Finally, he can also pretend to play
at a higher skill level, whilst having a game at a lower difficulty (step 5).

4 Application Modeling

Our approach aims at automatically inferring attacks and protections that mit-
igate them by means of a Knowledge Base (KB). In this context, the starting
knowledge is the application itself. The application code is theoretically the best
source of information, since it models the complete application behavior. How-
ever, it also contains low level details that are not interesting for our kind of
analysis. Therefore, a more abstract form is better suited for our purposes, that
is the application meta-model.

Fig. 3 sketches the UML class diagram of the meta-model describing a generic
application in our approach.

ApplicationPart

+ name

+ weight

CodeArea Datum

+ type

SecurityProperty

calls

enables accesses

initializes

Fig. 3. UML class diagram of the application meta-model.

In our meta-model, an application is essentially a container of several ap-
plication parts that can be either a datum or a code area. A code area can
recursively contain one or more other application parts.

Every application part has a name (e.g., the variable or function name) and a
weight, a non-negative real number used to explicitly indicate its importance (the
greater the weight the more important the part). Weights are only meaningful

for the assets and are used to compute the risk values during the risk assessment
phases. Application parts are associated to a non-empty list of security properties

to ensure, which are also considered as the targets of the attacker.
The Data class stores an additional type attribute stating their data type

(e.g., integer or string). This field is used to discard the unsuitable protections
since some techniques might be applicable only to some kind of instances (e.g.,
data obfuscation for integer variables only).

Code areas are complex types with the following relationships:

– a code area accesses a datum when it reads or writes its content;
– a code area initializes a datum with a value (it represents the first writing

of a value in a variable);
– a code area calls another code area;
– a code area enables another area if its execution depends on the (successful)

execution of another area.

Our meta-model is simple and could be constructed by hand, but this task
can be very time consuming as real applications might have hundreds or thou-
sands of application parts. For this reason, the application model build phase in
our approach automatically extract the application model from its source code
and instantiates its components accordingly. As anticipated in Section 2, static
analysis can lead to inaccurate or incomplete results that need to be comple-
mented by the user input for validation and refinement purposes. To help users
store this additional information, we developed a Domain Specific Language,
the Application Description Language (ADL), which expresses the same con-
cepts as the application meta-model, but in a more human readable form. Its
Backus-Naur syntax rules are shown in Figure 4.

Application ::= ApplicationPart∗;

ApplicationPart ::= Datum | CodeArea;

Datum ::= DatumType ID(“{”
(“properties” SecurityProperty (“,” SecurityProperty)*
“weight” FLOAT)? “}” | “;”);

CodeArea ::= “codeArea” ID ((“{”
(“properties” SecurityProperty (“,” SecurityProperty)*
“weight” FLOAT)?
(Relation ID (“,” ID)*)* “}”) | “;”);

Relation ::= “accesses” | “initializes” | “calls” | “enables”;

DatumType ::= “integer” | “integerArray” | ...;

SecurityProperty ::= “confidentiality” | “weakConfidentiality” | “integrity” |
“executionCorrectness”;

Fig. 4. Grammar of the Application Description Language (ADL).

The terminal symbols ID and FLOAT respectively represents a valid C/C++
identifier and a sign-less floating point value.

As an example, Fig. 5 reports the description in ADL of the lmem_flip_card(),
lmem_Newgame() and lmem_state assets for the Memory game.

code lmem_flip_card {

properties integrity

accesses lmem_level , click_count , lmem_state }

code lmem_Newgame {

properties integrity

initializes lmem_state }

Fig. 5. Assets description in ADL.

5 Vulnerability Analysis and Mitigation

In this section we present the vulnerability analysis and mitigation reporting
steps of our approach. A preliminary work of the vulnerability analysis is avail-
able in a previously published paper [1], whose main ideas are summarized below:

– Facts are stored into a Knowledge Base (KB), initially populated with in-
formation concerning the application obtained from the application model.

– Breaching the assets properties becomes the goal of the attackers. Goals
are modelled as properties. In this paper, the properties are: confidentiality,
weak confidentiality, integrity and execution correctness.

– Attack step are modelled as rules of inference P → C (id), where id is an
identifier of the attack step, that is its name, P is a set of premises, that is a
set of facts in the KB that must be true in order to trigger the step, C is a set
of conclusions, that is a set of additional facts that hold after the attack step
is performed. Note that some attack steps (e.g. setting up a remote server)
do not breach any security property, they are just preliminary actions needed
to breach some properties (like the confidentiality of some data).

– Some inferences are not attack steps, relating different steps/facts and ap-
plication parts (i.e., if x is in the KB do not perform the attack step y).

Once the Knowledge Base has been populated, all the attack paths are ob-
tained by means of backward programming, which starts from the attack steps
that breach the goals and progressively adduces facts that make the premises
of attack steps true until the axioms are reached (i.e., attack steps or facts that
have no premises). Attack paths can be extracted in an automatic way with any
inferential engine of choice.

The previous attack path discovery model has been improved by adding new
inference types that allow the detection of a larger set of attacks. The most
important improvement consists in making the model more expressive by intro-
ducing the concept of attack strategy. Strategies are formal ways to determine

the behavior of an attacker and they are modelled by changing the way the
backward reasoning process work. In some cases, strategies enable a different
set of attack steps. For instance, if the attacker has to tamper with the victim’s
copy, he has to perform several network-oriented attack steps (e.g. creating fake
servers, tampering with the victim’s OS, injecting malware). More strategies
can be enabled at the same time. Moreover, certain facts are derived only if cer-
tain attack strategies are applied and certain premises are enabled or disabled
based on the strategy. Enabling more sophisticated strategies (that may include
more attack steps and render premises more sophisticated require) may have a
significant impact on the performance.

As a first instance of strategy, together with MatE attacks, we have modeled
attack strategies depicting distributed scenarios, where an attacker tries to gain
access to data of an application running on a victim PC. As an example, we have
introduced an attack step modeling a code injection attack, where the attacker
modifies a code of the victim application to send to him all the data accessed by
the code. We also added strategies to breach the weak confidentiality. As antic-
ipated, to breach this property, the attacker must know the value of the datum
on the victim application at every moment of the application execution. In our
internal model, we modelled additional preconditions: the attacker must not only
obtain the value of the datum (e.g., with the code injection attack step described
before), but he must also retrieve, either with static or dynamic attacks, all the
code areas that access (and therefore potentially modify) the datum. Referring
to the example application in Section 3, we have marked lmem_state, which con-
tains the position of the cards, with the weak confidentiality. To breach it, the
attacker must not only locate the datum in memory, but he must also execute
the lmem_Newgame code before reading the datum value, because, as we can see
in Fig. 2, lmem_Newgame initializes lmem_state. We also take into account the call
graph of the application, thanks to the calls relationships: in particular, if a code
has been executed, i.e., if the execute code step is present in the attack path, all
the codes called by the first one are considered as executed.

We can also model indirect attack strategies, when the attacker has to start
tampering with other parts of the application to achieve his goal. For instance,
some code areas are executed only if first enabled by the execution of other
code areas. An example may be an application that contains a license check
function that, if performed successfully, enables the execution of the rest of the
application. In our internal model a code area is enabled not only if the enabler
code area has been executed before, but also if it have been changed, covering
cases such as the license check in which the attacker, instead of using a working
license, modifies the license check code to bypass it.

Another strategy has been defined to represent attacks against the execution
correctness: an attacker can breach the execution correctness of a code not only
modifying the latter, but also avoiding all the calls to it.

Finally, we greatly improved the accuracy of the attack path inference rules,
which now leverage a greater number of relationships between the application
parts, such as the ones described in Section 4. Furthermore, we added several

Symbol Meaning

statLoc staticallyLocate
dynLoc dynamicallyLocate
statCh staticallyChange
dynCh dynamicallyChange
ch changed
avC avoidedCalls
c1 lmem Level
c2 lmem from Little One
br breached
exCor executionCorrectness

br(exCor,c2)

ch(c2)

statCh(c2) statLoc(c2)

dynCh(c2) dynLoc(c2)

avC(c2)

ch(c1)

statCh(c1) statLoc(c1)

dynCh(c1) dynLoc(c1)

Fig. 6. Diagram showing the attack paths breaching the execution correcteness of the
lmem_from_Little_One function.

new kind of attack steps, such as a new one representing the execution of a
single code area, needed to better handle the relationships such as the initializes
association and the dynamic attacks in general.

As as example, the attack where the attacker can play at higher level of diffi-
culty with open cards by avoiding the call by lmem_Level() to lmem_from_Little_One

(Section 3) can be automatically obtained by the attack deduction phase if
lmem_from_Little_One is marked with the execution correctness property. In this
case if the corresponding strategy is enabled it produces the different attack
steps in Fig. 6. Attack paths are represented as rectangles, while attack facts are
drawn with rounded rectangles. Links between attack steps are represented as
thick arrows, while links between attack steps and the produced facts are draw
with normal arrows. Facts deduced by other facts are linked with dashed arrows.

To help security engineers to select the most vulnerable assets and properly
decide what to protect in their applications, we also provide a measure about
how dangerous is an attack path. Of course, custom formulas can be used in
alternative to adapt to target applications and their business models.

Given all the deduced attack paths APi, all their attack steps ASi,j , and all
the assets ak, we define the risk Ωǫ

APi
of an attack path APi against attackers

with expertise ǫ as:

Ωǫ
APi

= π(APi, ǫ) ΓAPi
(1)

The π(APi, ǫ) in Eq. 1 is the probability that an attacker with expertise ǫ

is able to successfully complete of the attack path. Note that, in estimating the
probability to successfully mount an attack path, we consider the probabilities
that an attacker with expertise ǫ is able to successfully execute all the attack
steps needed to complete it, that is, π(APi, ǫ) = f (π(ASi,j , ǫ)). The idea behind
this formula is that an attacker, to successfully complete an attack path, must
correctly undertake all the steps constituting it. We have tested our approach
with f = min (the one that gave us best results), with an unrealistic but very
conservative f = max, and with f = ·.

ΓAPi
is a quantitative measure of the damage resulting from a successful

attack path, calculated as the sum of the damage ΓASi,j
from each attack step:

ΓAPi
=

∑

j

ΓASi,j
=

∑

j

∑

k

(Wak
b(ak, ASi,j))

where Wak
is the user-defined asset weight, and b(ak, ASj) is a function, deduced

by our inference system, that returns the fraction of the security properties of the
asset ak that are breached by the attack step ASj , that is, it returns 1 if all the
security properties are compromised and 0 if none4. Finally, the values obtained
with the risk formulas are mapped on a three values score (low, medium, high)
with an ad hoc mapping.

Our inference system also suggests a list of protections that can be imple-
mented to mitigate the risk of an attack. Protections can be applied to code areas
and data, and are associated to a mitigation level, which is a measure of how
much they reduce the probability of success of a particular attack step. To assess
the mitigation of the risk associated to an attack path against application assets
after the application of a set of protections selected by the user from the pro-
posed ones, we recalculate the risk by using an updated value of the probability
to successfully perform every attack step in the presence of the selected protec-
tions. To this purpose, we override the function π(ASi,j , ǫ) into π(ASi,j , ǫ, {pl}l)
that also considers that {pl}l protections are deployed to protect the asset.

The values of the expertise levels needed by the attacker to undertake an
attack step, and the mitigation levels of the protections (and corresponding
probabilities) that we have used in our experiments have been obtained by means
of questionnaires proposed to 20 software protection experts in the ASPIRE
project (https://aspire-fp7.eu/) consortium and advisory board.

6 Experimental Results

We have implemented our approach in Java 8 as a set of plug-ins for the Eclipse
Mars platform. In addition we used XText 2.9.0 for developing the ADL parser
and SWI-Prolog 7.2.3 for the attack path engine. In order to speed up the compu-
tation, the inference engine is implemented as a multi-threaded Prolog program
so that multiple assets can be evaluated in parallel.

We tested our framework on the Linux Memory Game application described
in Section 3. It is written in C and contains 53 application parts (10 global
variables and 43 functions). We have marked 6 application parts as assets. The
tests have been performed on an Intel i7-4980HQ 2.80 GHz with 16 GB of
memory under Linux Debian 4.5.0, allocating 4 CPU cores for the vulnerability
analysis phase. Table 1 summarizes our results on the application where CW

stands for weak confidentiality, I for integrity and E for execution correctness.

4 In practice, we assume that the whole asset weight assigned by the user is gained by
the attacker when all the security properties are compromised.

assets attacks risks chosen
protection

part property total uniques initial mitigated

click_count I 2 2 medium low anti-debugging
lmem_from_Little_One() E 12 6 high low code guards
lmem_flip_card() E 37 16 high low remote attestation
lmem_level I 3 3 medium low code mobility
lmem_state CW 20 8 high low code guards
lmem_state I 4 4 high low anti-debugging
lmem_Newgame() E 32 14 high low remote attestation

total 110 53 – –

Table 1. Memory game attack statistics.

The whole analysis process completed in 344.1 seconds (less than 6 minutes)
with all the attack strategies enabled. Note that the computation time is heavily
influenced by the indegree and outdegree of the code areas in the call graph.
A higher number of relationships surrounding an application part leads to a
higher number of search combinations, which the vulnerability analysis has to
try and take into account. For instance, click_count is directly used by only 2
application parts and its analysis takes only 1.4 seconds, while lmem_flip_card()

is related to 16 application parts and its analysis takes 322.4 seconds.
The framework found 110 attacks on the assets, which reduces to only 53

unique attacks if we discard the attack step order (see Section 2). For the risk
analysis we opted to use an ‘amateur’ expertise level due to the type of the
example application. The risks columns in the table respectively list the risk
of the most dangerous attack than can be mounted against an asset and the
mitigated risk by using the strongest protection technique supported by our
approach (also shown in the table).

Most of the attacks have a high risk to be performed even by an amateur
attacker, but using the techniques suggested by our framework all of them can
be nearly avoided reducing their risks to low. For instance, the attack path
(statLoc(c2), statCh(c2), ch(c2), br(exCor, c2)) (Fig. 6) against the execution
correctness of lmem_from_Little_One() has a high risk to be executed. However,
our implementation has detected that using the code guards technique will lower
the risk to low since the attack step statCh(c2) will be severely hindered.

7 Related Works

The vulnerability assessment is a common issue for different and interdisciplinary
fields of research. In the same way, knowledge base decision support systems are
employed in several fields that need to take a decision based on a large amount of
pre-collected information. For this reason, several projects have been proposed
in literature. However, to our knowledge there are no works that completely
matches what we have discussed so far. In this section we present some of the

works that are relevant to our discussion. Works can be categorized as ontology-
based, Petri net and graph based, and web-based systems.

7.1 Ontology-based Systems

Applied to risk management, Ekelhart et al. presented a ontology-based system
that aims at acting as a decision support system [10]. The work proposed by
the authors relies on a methodology, called AURUM (AUtomated Risk and Util-

ity Management), which is used to perform risk estimation, risk reduction and
defense cost estimation. The expert system proposed by the authors is able to
support decisions in risk analysis, mitigation and safeguard evaluation.

Fenz et al. have proposed an expert system aiming at semi-automatically
inferring the needed controls to protect a system using an ontology. The expert
system, named FORISK [11], is the result of an extension of two their previous
works [12], [13]. It is a formal representation of information security standards,
risk determination and automated identification of countermeasures.

7.2 Petri Nets

Dalton et al. have shown that it is possible to model and probabilistically analyse
attack trees by using Petri nets [14]. This method aims at automatically simulate
the system behavior and, alongside the attack tree methodology, identify the
proper countermeasures.

Dahl et al. introduced an interval timed coloured Petri net based mechanism
that is able to analyse multi-agent and multi-stage attacks [15]. The proposed
method automatically identifies vulnerabilities in network-based systems.

Coloured Petri nets have been also used by Wu et al. to model hierarchical
attacks. Attacks are subdivided into high level and low level attacks. The former
ones represent all the paths and the system vulnerabilities exploited to perform
the attack. Based on this modelling it is possible to deduce attack cost estima-
tion and risk measurements. The latter ones use separated coloured Petri nets
to describe the details of the attack transitions. This level enhance the attack
understanding and the effective countermeasure identification.

Yao et al. have recently proposed a Petri net based mechanism to analyse
SDN threats [16]. In the proposed mechanism they use Petri nets to model the
SDN structure and data flow. Then, they employs attack trees to model the
attacks. Anyway, they only proposed a method for modelling attacks without
delivering any mechanism to deduce countermeasures or cost evaluations.

7.3 Web-based and Bayesian Network

Xie et al. based their network security analysis under uncertainty on Bayesian
networks [17]. This approach aims at improving the enterprise security analysis.
They built the Bayesian network on the security graph model. They tested and
validated the approach using attack semantics and experimental studies. They
also demonstrated that the system does not suffer parameter perturbation.

A Bayesian network based risk management framework have been proposed
by Poolsappasit et al. [18]. The framework allows system administrators to eval-
uate the chance of network compromises, foreseeing how to mitigate and man-
aging them. The system relies on a genetic algorithm that can perform single
and multiple objective optimization of security administrator objectives.

A comparison of common methods for security information sharing has been
performed by Steffan et al. [19]. They evaluated the capabilities of the systems in
supporting avoidance and discovering of vulnerabilities. Finally, they suggested
a method based on collaborative attack modelling. The proposed methodology
combines graph-based attack modelling with a collaborative web-based tool.

Basset et al. developed a method to analyse network security based on proba-
bilistic graphs [20] modeling actors, events and attributes of a network as nodes.
Then, an estimate is associate to each node; it represents the ease of realizing the
event, condition or attribute of the node. Attacks are modelled as paths in the
graph that reach compromising conditions. They finally associate a probability
to each edge in the attack paths thus allowing the final attack chance.

8 Conclusions and Future Work

In this paper we have extended the work initially proposed in [1]. Our approach
semi-automatically constructs a representation of an application source code,
searches the attacks against software assets and identifies the protections that
can mitigate them, performing a risk analysis and protection evaluation cycle.

We have shown that our implementation is able to infer a great number of
attacks that could be probably be identified by manual inspection of the code
in a very long time. Based on this information, it assesses the risks against the
application assets. Furthermore, our inference engine suggests if a protection can
mitigate an attack, hence it is able to propose how to protect an application in
an automatic way and estimates the residue risk, with minimal user intervention.

For the future, we aim to boost the performance of our approach and support
more complex inference rules. We are planning to add the support to suggest an
optimal sequence of protections that can be applied to an application, taking into
account their synergies (protections that are known to work well when applied
on the same assets) and their suggested order of application of the protections.

Acknowledgements. The research leading to these results has received fund-
ing from the European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement number 609734.

References

1. Basile, C., Canavese, D., D’Annoville, J., De Sutter, B., Valenza, F.: Automatic
discovery of software attacks via backward reasoning. In: Proceedings of SPRO
2015: the 1st International Workshop on Software Protection. (2015) 52–58

2. Shields, T.: Anti-debugging - a developers view. Technical report, Veracode (2009)
3. Anckaert, B., Madou, M., De Sutter, B., Bus, B.D., Bosschere, K., Preneel, B.:

Program obfuscation: a quantitative approach. In: Proceedings of QOP 2007: the
3rd Workshop on Quality of Protection. (2007) 15–20

4. De Sutter, B.: D2.08 ASPIRE Offline Code Protection Report (2015)
5. Ceccato, M., Preda, M.D., Nagra, J., Collberg, C., Tonella, P.: Barrier slicing

for remote software trusting. In: Proceedings of 7th IEEE International Working
Conference on Source Code Analysis and Manipulation 2007. (2007) 27–36

6. Chang, H., Atallah, M.J.: Protecting software code by guard. In: Proceedings of
CCS 2001: the 8th Conference on Computer and Communications Security. (2001)
160–175

7. Falcarin, P., Carlo, S.D., Cabutto, A., Garazzino, N., Barberis, D.: Exploiting code
mobility for dynamic binary obfuscation. In: Proceedings of the WorldCIS 2011:
1st World Congress on Internet Security. (2011) 114–120

8. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformation.
Technical report, University of Auckland (1997)

9. Coker, G., Guttman, J., Loscocco, P., Herzog, A., Millen, J., O’Hanlon, B., Rams-
dell, J., Segall, A., Sheehy, J., Sniffen, B.: Principles of remote attestation. Inter-
national Journal of Information Security 10 (2011) 63–81

10. Ekelhart, A., Fenz, S., Neubauer, T.: Ontology-based decision support for in-
formation security risk management. In: Proceedings of ICONS 2009: the 4th
International Conference on Systems. (2009) 80–85

11. Fenz, S., Neubauer, T., Accorsi, R., Koslowski, T.: Forisk: Formalizing information
security risk and compliance management. In: Proceedings of DSN-W 2013: the
3d Conference on Dependable Systems and Networks Workshop 2013. (2013) 1–4

12. Ekelhart, S.F.A.: Formalizing information security knowledge. In: Proceedings
of CCS 2009: the 4th International Symposium on Information, Computer, and
Communications Security. (2009) 183–194

13. Fenz, S., Ekelhart, A., Neubauer, T.: Information security risk management: In
which security solutions is it worth investing? Communications of the Association
for Information Systems 28 (2011) 329–356

14. Dalton, G.C., Mills, R.F., Colombi, J.M., Raines, R.A.: Analyzing attack trees
using generalized stochastic petri nets. In: Proceedings of IAW 2006: the 4th
Information Assurance Workshop. (2006) 116–123

15. Dahl, O.M., Wolthusen, S.D.: Modeling and execution of complex attack scenarios
using interval timed colored petri nets. In: Proceedings of IWIA 2006: the 4th
International Workshop on Information Assurance. (2006) 157–168

16. Yao, L., Dong, P., Zheng, T., Zhang, H., Du, X., Guizani, M.: Network security
analyzing and modeling based on petri net and attack tree for sdn. In: Proceedings
of ICNC 2016: the 5th International Conference on Computing, Networking and
Communications. (2016) 1–5

17. Xie, P., Li, J.H., Ou, X., Liu, P., Levy, R.: Using bayesian networks for cyber
security analysis. In: Proceedings of DSN 2010: the 40th International Conference
on Dependable Systems and Networks. (2010) 211–220

18. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using
bayesian attack graphs. Dependable and Secure Computing, IEEE Transactions
on 9 (2012) 61–74

19. Steffan, J., Schumacher, M.: Collaborative attack modeling. In: Proceedings of
SAC 2002: the 17th ACM symposium on Applied computing. (2002) 253–259

20. Bassett, G.: System and method for cyber security analysis and human behavior
prediction (2016) Patent US 9292695.

