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Interplay of virtual machine selection and virtual
machine placement

Zoltdan Adam Mann

paluno — The Ruhr Institute for Software Technology
University of Duisburg-Essen, Essen, Germany

Abstract. Previous work on optimizing resource provisioning in vir-
tualized environments focused either on mapping virtual machines to
physical machines (i.e., virtual machine placement) or mapping compu-
tational tasks to virtual machines (i.e., virtual machine selection). In
this paper, we investigate how these two optimization problems influ-
ence each other. Our study shows that exploiting knowledge about the
physical machines and about the virtual machine placement algorithm
in the course of virtual machine selection leads to better overall results
than considering the two problems in isolation.

1 Introduction

As cloud data centers are serving an ever growing demand for computation, stor-
age, and networking, their efficient operation has become a high priority. On one
hand, the operation of data centers incurs huge costs and environmental impact.
According to a recent study, data center electricity consumption in the USA
alone will increase to 140 billion kWh per year by 2020, costing US businesses
13 billion USD annually in electricity bills and emitting nearly 100 million tons
of CO4 per year [25]. On the other hand, servers often run with low utilization
— in fact, a significant percentage of running servers do not do any useful work
[1].

Virtualization has been widely adopted in data centers to consolidate work-
load on the necessary number of physical machines (PMs), with the aim of
achieving high utilization and switching off unused PMs to save energy. For this
purpose, virtual machines (VMs) are used as the virtual infrastructure for run-
ning the workload. Live migration technology makes it possible to migrate a run-
ning VM from one PM to another one without noticeable downtime. This way,
data center operators can react to changes in the workload and always use the
appropriate number of turned-on PMs to accommodate the active VMs, taking
into account their current resource needs. However, too aggressive consolidation
must be avoided because overloading physical resources leads to performance
degradation. Furthermore, live migration of VMs incurs increased resource con-
sumption, so that the number of migrations must be limited.

Optimization relating to the management of VMs has received considerable
attention in the last couple of years because of its impact on costs, application



performance and carbon emission [29]. As shown in our recent survey [21], most
previous research efforts fall into one of two categories: VM placement and VM
selection. The goal of VM placement is to determine a mapping of VMs to PMs
with the objective of minimizing energy consumption while obeying performance
constraints and keeping the number of VM migrations low [23]. On the other
hand, VM selection is concerned with assigning computational tasks to VMs.
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Fig. 1. Overview of VM selection and VM placement

The separation between the VM placement problem and the VM selection
problem (see Fig. 1) is rooted in the fact that the two kinds of optimization are
performed by different actors: VM placement is carried out by cloud providers,
whereas VM selection is done by cloud users. Moreover, the two problems are
quite different: VM placement is about physical resources, power consumption,
and live migration, whereas VM selection is typically concerned with lease costs
and application-level performance metrics. The central notion that connects the
two perspectives is the VM.

Although VMs play an important role, we argue that VMs are just a tool
for mapping users’ tasks to PMs in a safe and manageable fashion. Users’ main
objective is to find hosts for their tasks, providers’ objective is to utilize their
infrastructure by accommodating workload that is valuable for users. VMs can
be seen as wrappers around tasks that make all this possible, at the price of
some overhead. In this respect, VM placement and VM selection are just two
sides of the same coin. Most importantly, the two problems influence each other.

A simplified example is shown in Fig. 2. Here, we consider PMs of capacity
1 (for this conceptual example, the exact metric is unimportant) and six tasks
with resource need 0.3 each. Further, we assume that a VM adds an overhead
of 0.05 to the size of the contained task(s) in terms of resource consumption.
The three subfigures show the effect of different VM selection algorithms on VM
placement. In Fig. 2(a), the VM selection algorithm selects a dedicated VM for
each task, resulting in 6 VMs of size 0.35 each, the placement of which requires
at least 3 PMs. In Fig. 2(b), tasks are grouped pairwise into VMs, resulting
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Fig. 2. Examples of the impact of VM selection decisions on the possibilities of VM
placement

in 3 VMs of size 0.65 each, the placement of which again requires 3 PMs. In
Fig. 2(c), groups of 3 tasks are mapped to VMs, resulting in 2 VMs of size 0.95
each, and these can be hosted by 2 PMs. Therefore, this third scenario leads to
approximately 33% energy savings. However, if we continue this line of thought
and map 4 tasks into a single VM, this would result in a VM of size 1.25, which
cannot be accommodated by the available PMs (or, if we map such a VM to one
of the available PMs, this will lead to severe resource overload).

As demonstrated by this example, VM selection influences VM placement in a
non-trivial way. Therefore we argue that, at least in a private cloud setting, where
VM selection and VM placement are in the hand of the same organization, the
two kinds of optimization should be carried out in a closely coupled way. Even in
a public cloud setting, it is important to understand the inter-dependence of the
two optimization problems, so that the provider can motivate users (by means
of appropriate pricing mechanisms) to use VM sizes that allow good placement.
So, the main question that this paper addresses can be summarized as follows:
how to perform VM selection in such a way that the resulting VMs allow an
advantageous VM placement?

In particular, we show that incorporating knowledge about the capacity of the
PMs into the VM selection algorithm already leads to substantial improvement
compared to PM-oblivious VM selection. Further improvement is possible if the
VM selection algorithm also exploits knowledge about the current placement of
VMs on PMs as well as about the VM placement optimization algorithm.

2 Previous work

As shown in our recent survey [21], most previous research efforts on VM map-
ping problems fall into one of two categories: VM placement is concerned with
mapping VMs to PMs in a data center, while VM selection considers the problem
of mapping tasks to VMs.



2.1 VM placement

Several algorithms have been suggested for VM placement. Some focus only on
the computational capacity of PMs and computational load of VMs [2,4, 7, 14,
34, 22|, whereas others also include other resources like memory, I/0, storage,
or network bandwidth [5,11, 24, 31].

One of the cost factors considered by most works is the number of active
PMs because it largely determines the total energy consumption [3,7,13,34].
Some also take into account the load-dependent dynamic power consumption of
PMs [4,14,11,30]. A further objective of some works is to minimize the number
of overloaded PMs because of the performance degradation that results from
overloads [4, 7,31, 34]. Some works also considered the cost of VM migrations [4,
7,13, 30].

The special case of the VM placement problem in which a single resource
type is considered and the only objective is to minimize the number of used
PMs is equivalent to the well-known bin-packing problem. On the one hand,
this means that the VM placement problem is strongly NP-hard so that the
existence of an efficient exact algorithm is very unlikely. On the other hand,
simple packing heuristics like First-Fit (FF), Best-Fit (BF), Worst-Fit (WF)
and First-Fit-Decreasing (FFD) are known to perform very well on bin-packing.
Hence, several authors proposed to adopt such heuristics to the VM placement
problem [4,19, 31,34, 3,2, 14].

2.2 VM selection

Concerning VM selection, also many different problem models have been sug-
gested. Similarly to the VM placement problem, most works focus on compu-
tational power [8,20,27,35] but some consider also other resource types like
memory [18,26]. The main optimization objective is to find the best trade-off
between performance and VM lease costs, which typically means that either the
minimum required performance is given and costs must be minimized or the
acceptable costs are constrained and performance must be maximized.

Several different models have been investigated also in terms of VM lease
costs. Most works consider costs proportional to VM usage time [6, 20, 32, 33,
35,15], but some also add fees depending on consumed resource usage [18, 26] or
discounts for long-term VM rental [12,18].

Existing VM selection algorithms assume that VMs have fixed rental fees and
fixed capacities. However, in a private cloud, VM capacities can be arbitrarily
chosen and also changed, and instead of rental fees, real operations costs have
to be minimized, which are incurred at the level of PMs.

2.3 Inter-dependence of VM placement and VM selection

In contrast to the works cited above, we do not handle VM placement or VM
selection in isolation, but are interested in their interplay. We are aware of two
papers that have a somewhat similar aim. The recent work of Piraghaj et al. [2§]



focuses on selecting optimal VM sizes based on the characteristics of the tasks
to be allocated. The objective is to reduce energy consumption by minimizing
resource wastage. Each VM is assumed to have a fixed size irrespective of its
workload, and the difference between the VM’s size and the total size of its
workload is wasted.

In contrast, we assume that a VM’s real size (what is taken into account by
the provider in VM placement decisions) follows the resource requirements of its
workload. The rationale is that resource usage is most of the time significantly
below the peak, yielding a great opportunity for consolidating VMs based on
their current load and continuously adapting the placement accordingly, always
using just the necessary number of active PMs [34, 30]. Another important dif-
ference is that the work of Piraghaj et al. did not consider migrations, whereas
we do. Through these differences we arrive at a more realistic model, in which
the sought trade-offs and the objectives are also different (consolidation through
migration versus minimization of wastage through sizing).

Ganesan et al. [10] consider a Software-as-a-Service provider that wants to
allocate the components of its applications to VMs. The focus of the work is on
VM sizing, namely, determining the dedicated and shared capacity for the VMs,
based on past observations of the applications’ workload. Their algorithm also
outputs recommendations for VM placement, like which VMs can be placed stat-
ically and which ones need dynamic placement. However, the actual allocation
of VMs to PMs is not carried out; they assume that it is done by some external
algorithm. In contrast, we are interested in the impact of sizing on placement; it
is unfortunately not possible to tell how good that approach is in this respect.
Another limitation of that paper is the assumption that each application com-
ponent is mapped to a separate VM, whereas we also allow to co-locate multiple
tasks in the same VM.

3 Problem model

VM selection and VM placement are difficult problems on their own, so com-
bining them results in a very complex problem. In this paper, we focus on the
following aspects, related to performance and costs (and leave further aspects,
such as security and fault tolerance, for future research):

— Energy consumption of the PMs, which depends on the number and load of
turned-on PMs

— Overhead (extra resource consumption) of virtualization

— Overhead (extra time) associated with launching new VMs

Overhead (extra resource consumption) of VM migrations

— Performance degradation resulting from PM overloads

It is important to note that the impact of these aspects are conflicting: e.g.,
because of the overheads of virtualization, it would be advantageous to combine
into a single VM as many tasks as possible; on the other hand, too big VMs



limit the consolidation possibilities, thus potentially leading to higher energy
consumption and/or more PM overloads.

We consider d resource types; for example, if CPU and memory are con-
sidered, then d = 2. Each task j has a size s(j) € Ri describing its resource
need according to the considered resource types. Similarly, the size of a VM v is
s(v) € ]Ri, the vector of its resource needs. Each task must be mapped to exactly
one VM; a VM may accommodate multiple tasks. For a task j, v(j) denotes its
hosting VM; for a VM v, T'(v) denotes the set of tasks that it hosts. The size of
a VM is determined by the size of the tasks it hosts:

s()=so+ Y (), (1)

where sg € Ri is the size of an empty VM, representing the overhead of virtu-
alization, in terms of extra resource consumption. This overhead stems from the
(load-independent) resource needs of the guest operating system, hence a con-
stant overhead is a good approximation, although for some resource types more
sophisticated models of the virtualization overhead might be more realistic.
Each PM p has a capacity c¢(p) € RZ. Each VM v must be hosted by exactly
one PM p(v); a PM p may host multiple VMs and their set is denoted by V (p).
To guarantee the required level of performance, the following capacity constraint

must hold:
s = 3 s(v) < clp). (2)
veV (p)

Note that here “<” means that in each dimension the left-hand side must be less
than or equal to the right-hand side.

The power consumption of a PM is a function of its CPU load. As in sev-
eral previous works [2,17,11, 30], we use a linear approximation, i.e., the power
consumption of a PM with CPU capacity ¢ and CPU load « is given by

W(Q]‘) - szn + (Wmam - szn) : l‘/C, (3)

where Wi, and W, are the minimum and maximum power consumption of
the PM, respectively.

To simplify the presentation, we assume that each PM has the same capacity
and the same power consumption characteristics.

The following decision points — and hence optimization opportunities — exist:

— VM selection:

e If a new task arrives, it must be mapped to a VM. For this purpose,
either one of the existing VMs must be selected or a new VM must be
created.

e If a VM becomes empty, it can be destroyed or kept for later reuse.

— VM placement:

o If a new VM is created, it must be mapped to a PM. For this purpose,
either one of the turned-on PMs must be chosen or a new PM must be
turned on.



e A VM can be migrated from its old PM to a new one.
e If a PM becomes empty, it can be switched off.

Note that the VM placement can be re-optimized again and again with live
migrations; in contrast, a task is mapped to one VM for its entire life!.

The aim is to make these decisions in such a way that the performance of the
system is as high as possible (requiring the number of migrations, the number
of PM overloads and the number of VM launches to be minimized) and its cost
is as low as possible (requiring the number of turned-on PMs and their energy
consumption to be minimized).

4 VM selection and VM placement algorithms to assess

Our aim is to investigate the interplay between VM selection and VM placement.
For both subproblems, several algorithms are conceivable, leading to a huge num-
ber of possible combinations. To keep the number of experiments manageable,
we chose to fix an algorithm for VM placement and consider a series of algo-
rithms for VM selection that differ in how much knowledge they exploit about
the underlying VM placement.

Specifically, we use the algorithm of Beloglazov et al. for VM placement as a
representative example of previously proposed VM placement algorithms, which
was shown to achieve a good trade-off between energy consumption, number of
migrations, and number of PM overloads [2]. Whenever a new VM is requested,
the first PM that has sufficient free capacity is chosen to host it or a new PM
is turned on if no such PM could be found. Moreover, the VM placement is
re-optimized at regular time intervals, consisting of the following steps:

1. From each overloaded PM, a minimal set of VMs is removed so that the
PM is not overloaded anymore. (A PM is overloaded if its load exceeds its
capacity in at least one dimension.)

2. From each underloaded PM, all its VMs are removed. (A PM p is underloaded
if s(p) < A-¢(p), i.e., its load is below A times its capacity in each dimension,
where 0 < A < 1 is a given constant.)

. The list of removed VMs is sorted in decreasing order of CPU load.

. For each removed VM, the first PM with sufficient free capacity is chosen.

5. Emptied PMs are switched off.

= W

Next, the considered VM selection algorithms are presented. We start with
the ones that are completely oblivious of the underlying PMs and the VM place-
ment algorithm, and then gradually increase the exploited knowledge:

— Simple. This approach creates a new VM for each task, like in [10].

! Although some applications may support the migration of individual tasks, but this
cannot be assumed in general.



— Multiple(k). Tasks are assigned to VMs in groups of k, where k € Z, is
a given constant. In the order as tasks arrive, a VM is created for task 1,
which is then used for tasks 2,...,k as well. For task k + 1, a new VM is
created, which is used for tasks k 4+ 2,...,2k as well, and so on.

— Maxsize(u). In contrast to the previous algorithms, this one exploits some
knowledge about the PMs. The idea here is to ensure that the size of each
VM is at most p - c, where 0 < p < 1 is a given constant and c is the
capacity vector of the PMs. When a new task arrives, it is checked which
of the existing VMs could host it without exceeding the u - ¢ threshold. If
no such VM exists, a new one is created. If multiple appropriate VMs exist,
one of them is selected according to a selection policy, which can be one of
FF, BF, WF. Since these policies work in a single dimension whereas VM
and task sizes are multi-dimensional, a selection metric is used to convert
a d-dimensional vector to a number. Possible metrics are the sum, product,
maximum, or minimum of the coordinates, the length of the vector, or the
imbalance of the vector, defined as the difference between the maximum and
minimum coordinate.

— Consolidation-friendly. This algorithm exploits not only knowledge about
the PMs but also about the current VM placement and the VM placement
algorithm. When a new task arrives, it is first checked whether there is a
PM that is not underloaded and has enough free capacity to accommodate
the new task. Such PMs are preferred because in this case, no overhead nor
a PM overload is generated, and also no consolidation opportunity is ob-
structed. When there are multiple such PMs, one of them is selected using
an appropriate PM selection heuristic and metric, similarly as in the Max-
size algorithm. When no such PM exists, then one of the underloaded PMs
is selected with the same policy and metric. In this case, a consolidation op-
portunity is obstructed, but still no overhead is generated. In any case, after
a PM has been chosen, one of its VMs has to be selected using a selection
policy and metric, and the new task is mapped to this VM. Finally, if no
appropriate PM could be found, then a new VM is created to accommodate
the new task.

The Simple, Multiple, and Maxsize algorithms are used as representatives of
the class of previously proposed VM selection algorithms. However, the Maxsize
algorithm is already more advanced than the existing algorithms because exist-
ing algorithms just assume some given VM size limit without considering how
this size limit should relate to the PMs’ capacity. The Consolidation-friendly
algorithm was designed by us specifically to show how detailed knowledge about
the underlying VM placement algorithm can be exploited during VM selection.

5 Empirical results

All the proposed algorithms were implemented in a simulation framework in
C++, which is freely available from https://sourceforge.net/p/vm-alloc/
task_vm_pm/. To obtain practically relevant results, we used real-world test



data. For the tasks, we used a real workload trace from the Grid Workloads
Archive, namely the AuverGrid trace, available from http://gwa.ewi.tudelft.
nl/datasets/gwa-t-4-auvergrid. From the trace, we used the first 10,000
tasks that had valid CPU and memory usage data. The simulated time (i.e., the
time between the start of the first task and the end of the last one) is a bit over
29 days, thus giving sufficient exposure to practical workload patterns.

As PMs, we simulated HP ProLiant DL380 G7 servers with Intel Xeon E5640
quad-core CPU and 16 GB RAM. Their power consumption varies from 280W
(zero load) to 540W (full load) [16]. Throughout the experiments, we focus on
two resource types: CPU and memory, i.e., d = 2. For memory sizes, absolute
values are used in MB. For CPU capacities and loads, relative values are used,
where 100% is the capacity of one physical CPU core. Concerning virtualization
overhead, previous work reported 5-15% for the CPU [36] and 107-566 MB for
memory [9]. In our experiments, we use 10% CPU overhead and 200 MB memory
overhead. The parameter of the VM placement algorithm, A, is set to 0.4 as in
[2]. The VM placement is re-optimized every 5 minutes.

For each evaluated algorithm, the following quality metrics were measured:

Total energy consumption

Average number of turned-on PMs

— Maximum number of turned-on PMs

— Maximum number of concurrently used VMs (as indication of the necessary
number of VM launches)

Number of migrations

— Number of PM overloads

For each quality metric, smaller numbers are better.

First, the Simple and Multiple(k) algorithms are evaluated. Note that Mul-
tiple(1) is exactly the Simple algorithm.

The results are shown in Fig. 3. As can be seen, the total energy consumption
and the average and maximum number of turned-on PMs all show a similar
pattern with an increase at the beginning, maximum at & = 2, and decrease
afterwards. This can be attributed to two conflicting effects. With increasing k,
the average VM size grows and the number of VMs decreases, which leads on
the one hand to less consolidation opportunities, on the other hand to a decrease
of the resource consumption overhead.

Based on these metrics, higher values of k seem preferable. However, from
Fig. 3(e) and 3(f) it can be seen that the number of PM overloads skyrockets
at k = 17 and the number of migrations is exorbitantly large already for k& > 4.
Although there is a slow decrease of the number of migrations afterwards (thanks
to the decreasing number of consolidation opportunities), but an acceptable level
is reached only for very high values of k, where the number of overloads is already
prohibitively large. Thus, the best compromise seems to be the case k = 3.

The biggest problem with the Multiple(k) algorithm is that the value of k at
which the sudden explosion of the number of migrations and number of overloads
takes place cannot be predicted nor controlled. This depends on several factors,
like the capacity of the PMs and the workload’s characteristics. Therefore, this



10000

8000

A

.
R S
o

6000

R o S

4000

Total energy [kWh]

2000

[¢]
0 5 10

k
(a) Total energy consumption

15 20
120
100 A
80
60

40

Maximum PM number

7""""”*74,,

20

e

15 20

(c) Maximum number of turned-on PMs
50000

40000

igrations

30000 {
|

—e—
e

20000 |

Number of m

10000 [

10
k

(e) Number of migrations

15 20

Fig. 3. Results of the Multiple(k)

N N w
o o o

Average PM number
= =
o w

-

L
T
oo o

w

0 5 10

k
(b) Average number of turned-on PMs

15 20

300

250 .

= ~
G =]
o )

_—

Maximum VM number
=
o
S]

e

[0
o

-,
o o _
D D S

0 5 10 15 20

k
(d) Maximum number of concurrent VMs
50000

40000
/‘*/

/

30000 ¢

20000

Number of PM overloads

10000

0 |
0 5 10 15
k

(f) Number of PM overloads

20

algorithm for different values of k

algorithm is dangerous. Small values of k are safer but lead to higher costs (higher
energy consumption) and lower performance (more VMs need to be launched).

Next, we evaluated the Maxsize(u) algorithm. More precisely, this is a family
of algorithms, characterized by the value of u, the used selection policy, and
selection metric. We tested 6 different values for p (0.25, 0.3, 0.5, 0.6, 0.9, 1.0),
3 selection policies (FF, BF, WF), and 6 selection metrics (sum, product, max-
imum, minimum, imbalance, length). The effect of p on the different quality
metrics is shown in Fig. 4 (each data point corresponds to one value of x and
the average according to the two other parameters).
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In contrast to the previous experience with the Multiple(k) algorithm, these
figures show no sudden large increases in any quality metric. This is a big advan-
tage: apparently, the knowledge of the PMs’ capacity allows the algorithm much
better control of the PMs’ utilization, leading to safer operation. Only the num-
ber of migrations (Fig. 4(e)) and the number of PM overloads (Fig. 4(f)) show
some seemingly significant oscillations; however, when compared with the corre-
sponding results of the Multiple(k) algorithm, we can see that these oscillations

span actually a quite small range.

Looking at the details, it can be observed that p = 0.6 leads to significantly
worse performance than p = 0.5 according to most quality metrics. This is



logical, since VMs of size at most 0.5 - ¢ can be pairwise consolidated to a PM,
but if their size can go somewhat beyond this limit, then the opportunities
for consolidation decrease. This shows once again the importance of PM-level
knowledge in VM selection. According to most quality metrics, p = 1 is the best
choice.

The effect of the selection policy and selection metric on the considered qual-
ity metrics is much smaller than the effect of u. Therefore, to save space, these
results are not shown (but they can also be found in our online repository men-
tioned above). The FF policy and the minimum metric were chosen as best,
although their advantage over the others is small.

For evaluating the Consolidation-friendly algorithm, several parameters need
to be tuned: 3 possibilities for the PM selection policy (FF, BF, WF), 6 possibili-
ties for the PM selection metric (sum, product, maximum, minimum, imbalance,
length), 2 VM selection policies (maximize, minimize), and 6 VM selection met-
rics (the same as for PMs), resulting in 216 possible configurations. Similarly as
in the case of the Maxsize(u) algorithm, none of the selection policies and se-
lection metrics had a profound impact on the investigated quality metrics. This
means that the algorithm is robust in the sense that changes in the parameters
do not lead to abrupt changes in its behavior (in contrast to the Multiple(k) al-
gorithm). The details of fine-tuning the algorithm are skipped because of space
constraints. The chosen best configuration uses FF and the minimum metric for
PM selection (similarly to the Maxsize(y) algorithm) and the maximize policy
and product metric for VM selection.

Table 1. Comparison of the algorithms’ results

Algorithm Energy Avg #PM Max #PM Max #VM Migrations Overloads
Multiple(3) 7766.14  23.28 82 103 3062 0
Maxsize(1) 7282.90 21.07 68 68 1209 0
Consolidation-friendly 7257.91  20.91 68 70 826 0

Finally, the results of the chosen best configuration of each algorithm are
compared to each other in Table 1. As can be seen, the Multiple(k) algorithm
is significantly outperformed by the two others according to each quality met-
ric. Moreover, the Consolidation-friendly algorithm offers considerable advantage
over the Maxsize(u) algorithm in terms of the number of migrations, and also
some improvement in energy consumption and the average number of turned-on
PMs, at the price of a marginal increase of the maximum number of concurrently
active VMs.

6 Conclusions

In this paper, we analyzed the interplay of VM selection and VM placement
algorithms. By fixing the VM placement algorithm and considering a series of



VM selection algorithms that exploit an increasing amount of knowledge about
the underlying PMs and the VM placement, we showed the importance of such
information. Specifically, already the knowledge of the PMs’ capacity makes
VM selection more efficient in terms of cost and also much more resilient to
the negative impact of inappropriate parameter choices. Adding more knowledge
about the details of the VM placement algorithm leads to a further improvement,
especially in terms of the number of migrations.

This insight can be used especially in a private cloud setting, where all details
of the PMs and the VM placement are available. In this case, exploiting this
knowledge in the sizing of VMs and the mapping of tasks to VMs leads to
considerable improvements. In a public cloud setting, the provider who has the
knowledge about the PMs and the VM placement should shape usage-based
pricing schemes in such a way that it corresponds to the real costs, so that users
are incentivized to use actual VM sizes that lead to good consolidation.

Directions for future research include the investigation of further aspects
that make the interplay of VM selection and VM placement even more complex,
such as data transfer among the tasks or security and reliability considerations.
Moreover, a software engineering challenge is how to design the interface between
VM selection and VM placement tools so that they can exchange the necessary
pieces of information.
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