
HAL Id: hal-01638596
https://inria.hal.science/hal-01638596

Submitted on 20 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

vmBBThrPred: A Black-Box Throughput Predictor for
Virtual Machines in Cloud Environments

Javid Taheri, Albert Y. Zomaya, Andreas Kassler

To cite this version:
Javid Taheri, Albert Y. Zomaya, Andreas Kassler. vmBBThrPred: A Black-Box Throughput Predic-
tor for Virtual Machines in Cloud Environments. 5th European Conference on Service-Oriented and
Cloud Computing (ESOCC), Sep 2016, Vienna, Austria. pp.18-33, �10.1007/978-3-319-44482-6_2�.
�hal-01638596�

https://inria.hal.science/hal-01638596
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


vmBBThrPred: A Black-Box Throughput
Predictor for Virtual Machines in Cloud

Environments

Javid Taheri1, Albert Y. Zomaya2, and Andreas Kassler1

1 Department of Computer Science, Karlstad University, Sweden
2 School of Information Technologies, University of Sydney, Australia

javid.taheri@kau.se, albert.zomaya@sydney.edu.au, andreas.kassler@kau.se

Abstract. In today’s ever computerized society, Cloud Data Centers
are packed with numerous online services to promptly respond to users
and provide services on demand. In such complex environments, guar-
anteeing throughput of Virtual Machines (VMs) is crucial to minimize
performance degradation for all applications. vmBBThrPred, our novel
approach in this work, is an application-oblivious approach to predict
performance of virtualized applications based on only basic Hypervisor
level metrics. vmBBThrPred is different from other approaches in the lit-
erature that usually either inject monitoring codes to VMs or use periph-
eral devices to directly report their actual throughput. vmBBThrPred,
instead, uses sensitivity values of VMs to cloud resources (CPU, Mem,
and Disk) to predict their throughput under various working scenarios
(free or under contention); sensitivity values are calculated by vmBBPro-
filer that also uses only Hypervisor level metrics. We used a variety of
resource intensive benchmarks to gauge efficiency of our approach in our
VMware-vSphere based private cloud. Results proved accuracy of 95%
(on average) for predicting throughput of 12 benchmarks over 1200 hours
of operation.

Keywords: Performance Prediction and Modeling, Throughput Degra-
dation, Cloud Infrastructure

1 Introduction

The demand for cloud computing has been constantly increasing during recent
years. Nowadays, Virtualized Data Centers (vDCs) accommodate thousands of
Physical Machines (PMs) to host millions of Virtual Machines (VMs) and fulfill
today’s large-scale web applications and cloud services. Many organizations even
deploy their own private clouds to better manage their computing infrastructure
[7]. In fact, it is shown that more than 75% of current enterprise workloads
are currently running on virtualized environments [11]. Despite massive capital
investments (tens to hundreds of millions of dollars) however, their resource
utilization rarely exceeds 20% of their full capacity [11, 14]. This is because,
alongside its many benefits, sharing PMs also leads to performance degradation



2 J. Taheri, A.Y. Zomaya, and A. Kassler
  Relative Performance
aio‐stress 0.4
apache 0.95
build‐apache 0.95
build‐php 0.95
compress‐gzip 0.6
dcraw 0.93
unpack‐linux 0.6
bork 0.99

ai
o‐
st
re
ss

ap
ac
he

bu
ild

‐a
pa
ch
e

bu
ild

‐p
hp

co
m
pr
es
s‐
gz
ip

dc
ra
w

un
pa
ck
‐li
nu

x

bo
rk

0

0.2

0.4

0.6

0.8

1

Relative Performance

Acceptable Level

Fig. 1: Relative performance of eight applications when co-located with a
Mem+Disk (unzipping large files) intensive application

of sensitive co-located VMs and could undesirably reduce their quality of service
(QoS) [13]. Figure 1 shows relative throughput (with regard to their isolated
run) of eight high resource demanding VMs when co-located with a background
VM running a high Memory+Disk intensive application (unzipping large files).
All VMs had 2vCPU, 2GB of RAM, and 20GB of Disk. For each test, VMs
were pinned on the same set of CPUs/Cores and placed on the same disk to
compete for CPU cycles, conflict on L1/L2/L3 memory caches, and interfere with
each others’ disk access. As it can be inferred Figure 1, despite being classified
as resource demanding, five of these applications (eg, apache) could be safely
co-located with the background resource intensive application (Mem+Disk) –
assuming that performance degradation of up to 10% is allowed. Nevertheless, a
conservative view would separate/isolate all VMs to allocate them on separate
PMs. This simple example shows/motivates that understanding, measuring, and
predicting performance degradation is essential to identify VMs that can be
safely co-located with minimum interference to each other. It also motivates the
importance of designing effective affinity rules to guarantee optimal placement
of VMs, and consequently maximize the overall performance of vDCs.

This work is a major step to predict throughput, and consequently per-
formance degradation of general purpose applications/VMs through profiling a
variety of benchmarks under different working scenarios and resource limita-
tions. Such profiles are then used to predict throughput of a VM only based on
the amount of resources (CPU, Mem, and Disk) it is consuming as seen by the
Hypervisor. We used 12 well-known benchmarks with different resource usage
signatures (CPU/Mem/Disk intensive and various combinations of them) to run
on three different PMs. Results were collected and used to model throughput,
and consequently performance degradation. We finally aligned our results with
actual throughput of these benchmarks to show the accuracy of our approach:
VM Black-Box Throughput Predictor (vmBBThrPred).

Our contribution in this work can be highlighted as: unlike all available simi-
lar approaches, (1) vmBBThrPred uses only Hypervisor level metrics to predict
throughput and performance degradation of a VM. No code/agent is required
to be developed, installed, and/or executed inside VMs; (2) vmBBThrPred pro-
vides a systematic approach to formulate throughput of VMs; (3) vmBBThrPred
uses a wider range of benchmarks (from pure CPU/Mem/Disk intensive bench-
marks to various combination of CPU+Mem+Disk intensive ones) to produce



vmBBThrPred 3

such formulas; and (4) vmBBThrPred produces a polynomial formula for each
application/VM so that its throughput can be directly and dynamically (online)
calculated according to its current CPU, Mem, and Disk utilization.

The remainder of this paper is structured as follows. Section 2 reviews the
related work. Section 3 explains the architecture of vmBBThrPred and elabo-
rates on its components. Section 4 demonstrates vmBBThrPred’s step-by-step
procedures. Section 5 lays out our experimental setup. Results are discussed and
analyzed in Section 6, followed by Conclusion in Section 7.

2 Related Work

The ever increasing popularity of virtualization [12] in vDCs is probably one of
the most significant paradigm shifts in the IT industry. Through virtualization,
PM resources are partitioned for VMs to run services. Running a highly efficient
vDC is however not a trivial task. Firstly, vDCs are envisaged to run several VMs
on each PM assuming proper partitioning of its resources. Although resources
like CPU and Network seem to be fairly partition-able, Mem and Disk are proven
to be much more cumbersome. Secondly, vDCs need to provide accurate/online
operational information to both administrators and users so that functionality
of deployed services can be monitored, controlled, and ensured at all times. This
requires identifying under-performing VMs –those who suffer the most because
of co-location– immediately, effectively, and dynamically. This also demands the
ability of vDC management systems to accurately –at least within acceptable
margins– predict the performance of different VMs in various working scenarios;
ie, isolated or co-located as well as under or free of resource contentions. This
concern, in particular, seems to be more important than the other two because
it could directly lead to further optimizations of the whole system as well as
significant increase of the productivity of vDCs.

To date, many approaches are proposed to measure throughput, and conse-
quently performance degradation of VMs in vDCs; they can be categorized into
the following two main themes.

High-level (SLA) based measurements: Approaches in this group use
high-level metrics to measure actual throughout of an application/VM (eg, the
number of transactions a SQL server responds to per second) in its current
situation. They all rely on developing tailor-made foreign agents/codes for each
application, installing them in VMs, and giving them enough system privileges
to collect and send out performance data.

Xu et al [19] proposed two Fuzzy based systems (global and local) to moni-
tor resource utilization of workloads in VMs. The local system is an SLA sensor
that is injected into a VM to directly compare its performance with the de-
sired SLA, and request or relinquish resources (eg, CPU share) if required. The
global controller receives all local requests and decides what VM should get more
resources in cases of contention. Tested for CPU-intensive workloads, their self-
learning fuzzy systems could efficiently tune itself to demand for “just right”



4 J. Taheri, A.Y. Zomaya, and A. Kassler

amount of resources. Their approach however assumed that high-level SLAs (eg,
http requests per second) can be accurately defined and measured per appli-
cation/VM. Rao et al [16] proposed VCONF, an auto-configuration RL-based
agent, to automatically adjust CPU and Memory shares of VMs to avoid perfor-
mance degradation. They, too, used direct application measurements to generate
efficient polices for their Xen based environment. Watson et al [18] used prob-
abilistic performance modeling to control system utilization and response time
of 3-tier applications such as RUBiS. They showed that CPU allocation of VMs
are enough to control high level SLAs such as response time of applications.
Caglar et al [9] proposed hALT, an online algorithm that uses Artificial Neural
Networks (ANNs) to link CPU and Memory utilization of CPU intensive appli-
cations/tasks in Google trace data to performance degradation of VMs. They
used another ANN to recommend migration of VMs to assure QoS for Google
services. For real deployments, they still need an agent to report “performance”
of an application/VM to feed and train their ANNs. Bartolini et al [8] proposed
AutoPro to take a user-defined metric and adjust VMs’ resources to close the
gap between their desired performances and their current ones. AutoPro uses
a PI controller to asymptotically close this gap and can work with any metric
–such as frame/s, MB/s, etc.– as long as developers can provide it.

Approaches in this group are generally more accurate than others because
they use direct measurements/feedback from applications inside VMs. Their us-
age however could be very limited, because (1) they all rely on an inside tailor-
made agent to report the exact throughput of an application/VM, and (2) their
focus is mostly to improve performance of VMs rather than modeling through-
put of applications/VMs according to their resource utilization.

Low-level (resource) measurements: Approaches in this group use low-
level metrics (eg, CPU utilization) to predict throughput (eg, the response time
of a web-server) of an application/VM in its current situation. They too rely on
developing tailor-made foreign agents/codes for each application/VM, installing
them in the VM, and giving them enough system privileges to collect and send
out performance data.

Q-cloud [15] uses a feedback-agent inside each VM to report its CPU utiliza-
tion. They used five CPU intensive application from SPECjbb [1] and showed
that there are direct relations between the amount of CPU a VM uses with its
actual throughput. Using a MIMO linear model, authors then model interfer-
ence of CPU intensive applications and feedback “root” in Hyper-V to adjust
CPU allocations of VMs to improve their performances. Du et al [10] proposed
two profiling agents to collect guest-wide and system-wide performance met-
rics for developers so that they can accurately collect information about their
products in KVM-based virtualized environments. They did not use any specific
benchmark, but simple programs to engage different parts of a system.

Approaches in this group generally predict throughput of an application/VM
in relation to its resource utilization, although mostly to avoid performance
degradations rather than modeling and predicting throughput. Also, although



vmBBThrPred 5

these approaches can be easily modified to use Hypervisor level metrics –instead
of reports from their inside agents– to predict applications’ throughout, their
focus on only CPU or Disk intensive applications makes them non-generalizable.

After close examination of many techniques presented to date, we have no-
ticed the following shortcomings. Firstly, many techniques require an agent/code
to be injected to a VM to report either its throughput or its performance data.
The need to have access to VMs and permission to run tailor-made foreign codes
is neither acceptable not practical in most general cases. Secondly, many tech-
niques aim to predict throughput of an application only to avoid contention
by using/controlling one resource type (CPU, Mem, or Disk). Finally, most ap-
proaches target known applications that do not have multidimensional resource
demands: they are pure CPU, Mem, or Disk intensive.

To address these shortcomings, we designed vmBBThrPred to directly model
and formulate throughput of an unknown application/VM according to its re-
source usages. vmBBThrPred is an application-agnostic non-intrusive approach
that does not require access to the VM to run foreign agents/codes: it only uses
Hypervisor level metrics to systematically relate multidimensional resource us-
age of a VM to its actual throughput, and consequently performance degradation
for various working scenarios (free or under resource contention).

3 Architecture of vmBBThrPred

The key idea of vmBBThrPred is to use the sensitivity values of an applica-
tion to model/formulate its throughout. vmBBProfiler, our systematic sensitiv-
ity analysis approach in [17], was designed to pressure an unknown VM to work
under different working scenarios and reveal its sensitivity to each resource type.
vmBBProfiler calculates three sensitivity values (∈ [0, 1]) upon profiling a VM:
Senc, Senm, and Send to respectively reflect sensitivity of a VM to its CPU,
Mem, and Disk. For example, Senc=1 implies that the profiled VM significantly
changes its behavior, and consequently its throughput when it suffers to access
CPU. Senc=0 implies that throughput of the profiled VM is insensitive to its
CPU share; eg, when the VM is running a Disk intensive application. Other val-
ues of Secc/m/d reflect other levels of sensitivity: the larger the Secc/m/d the more
sensitivity to a resource type. vmBBProfiler is also application-oblivious and uses
no internal information about the nature of the applications running inside the
VM when profiling it; Figure 2 shows the architecture of both vmBBProfiler
and vmBBThrPred and how they are related to each other. All components
of vmBBProfiler and vmBBThrPred are totally separate and performing non-
redundant procedures; both are run outside the VM and are currently imple-
mented using PowerShell [2] and PowerCLI [4] scripts for Windows-7 and above.

vmBBProfiler: The key idea in vmBBProfiler is to identify how a VM
behaves under resource contention. Its architecture relies on two components
(Figure 2): vmProfiler and vmDataAnalyser. The vmProfiler, in turn, consists



6 J. Taheri, A.Y. Zomaya, and A. Kassler

VMware vSphere 

VMware vCenter Server

Manage

VMware vSphere 

vmBBProfiler

vmProfiler vmDataAnalyzer

ܵ݁݊௖
ܵ݁݊௠
ܵ݁݊ௗ

ProfTablevmLimiter vmDataCollector

vmBBPredictor

vmModeler vmPredictor

ቊ݄ܶݎሺܦ,ܯ,ܥሻܲܦሺܦ,ܯ,ܥሻ

Fig. 2: Architecture of vmBBProfiler and vmBBThrPred

of two parts: vmLimiter and vmDataCollector to respectively command a Hy-
pervisor, through VMware-vCenter [5] in our case, to impose resource limits to
a VM, and collect/record its behavior under the imposed limits.

vmProfiler aims to emulate contention through limitation. That is, instead
of challenging a VM to compete with other co-located VMs to access/use re-
sources (CPU, Mem, and/or Disk), the vmLimiter limits resource usage of the
VM so that it reveals its behavior under hypothetical contentions. We showed in
[17] that although resource starvation under “contention” and “limitation” are
different, they always lead to very similar performance degradation (less than
5% different on average). cpu/mem/diskLimit ∈ [0, 1] sets the percentage of
CPU/Mem/Disk that the VM can use. For example, if a VM has two 2.4GHz
vCPUs, cpuLimit=0.25 would limit CPU usage of this VM to 0.25× 2× 2.4 =
1.2GHz. After imposing a set of limits to resources, vmDataCollector is then
launched to collect/record performance of the VM through polling several Hy-
pervisor level metrics; it only polls VM metrics (eg, CPU utilization) that are
already collected by the Hypervisor: it neither demands nor needs any specific
metric from the VM itself.

Table 1 shows a sample profiling table upon completion of vmBBProfiler;
this table will be refereed to as “ProfTable” for the rest of this article. In
this table, cpuLimit ∈ {c1, c2, . . . , cnc}, memLimit ∈ {m1,m2, . . . ,mnm}, and
diskLimit ∈ {d1, d2, . . . , dnd} produce a total number of nc × nm × nd pro-
filing scenarios. metricX is the average of the X-th Hypervisor metrics (eg,
disk.read.average(KBps)) during the imposed limitation scenario. It is worth
noting that each metric is a series of values during the profiling phase (eg. 15
values for 5 minutes of profiling in [17]), however because they showed to have
negligible standard deviation, their average values proved to be accurate enough
to be used in vmBBThrPred.

Upon profiling behavior of a VM under several limitation profiles, vmData-
Analyser is invoked to analyze the profiled data and calculate sensitivity of the
VM to its CPU, Memory, and Disk allowances; they are respectively named Senc,



vmBBThrPred 7

Table 1: vmBBProfiler output table (ProfTable) after profiling a VM
Scenario # cpuLimit memLimit diskLimit (metric1, metric2, . . . , metricK)

1 c1 m1 d1 · · ·
2 c1 m1 d2 · · ·
· · · · · · · · · · · · · · ·
nc× nm× nd cnc mnm dnd · · ·

Senm, and Send. For example, it would suggest that the application in the VM,
which is assumed responsible for its resource demands, would always stay more
sensitive to its CPU allocation than to its Memory bandwidth. As a result, it
speculates that performance of this VM, for example, would be degraded more
if its CPU-share –as opposed to its Memory share– is halved.

vmBBThrPred: After profiling a VM using vmBBProfiler, vmBBThrPred
is launched to use its sensitivity values and predict its throughput under any
working scenario, even those that have not been observed in Table 1. vmBBThrPred
consists of two parts: vmModeler and vmPredictor. vmModeler uses Senc/m/d

values (calculated and provided by vmBBProfiler) to produce a polynomial
model to relate resource utilization of a VM to its throughput; vmPredictor
connects directly to VMware-vCenter [5], dynamically (online) polls CPU, Mem,
and Disk utilization of a VM, and uses the produced formula to predict through-
out (Thr) and performance degradation (PD=1−Thr) of the VM at its current
working condition.

4 Procedures of vmBBThrPred

The first step before delving into the procedures of vmBBThrPred is to select
several Hypervisor metrics that can directly or indirectly relate to the actual
throughout of an application/VM. Here, because vmBBThrPred is designed
to be application-oblivious, we define the term “throughput” as a normalized
value (∈ [0, 1]) where Thr=1 always reflect the maximum performance of a VM.
Similarly, “performance degradation” (PD) is defined as (1−Thr) to reflect the
amount of degradation a VM encounters in its current working situation. For
the apache server (2vCPUs, 2GB of RAM, and 20GB) in our experimental setup
(Section 5) for example, we observed the maximum response rate of 10900 ‘re-
quests per second’, when the VM hosting the apache server was run in an isolated
environment. After migrating the VM to a contention environment, its respond
rate was reduced to 4045. In this case, the respond rate of 10900 and 4045 would
map to Thr=1.00 (PD=0.00) and Thr=4045/10900=0.37 (PD=0.63), respec-
tively.

4.1 Identify Relevant Hypervisor Metrics

We performed a series of engineered experiments to find Hypervisor metrics
that have significant correlations with the actual throughput of different appli-



8 J. Taheri, A.Y. Zomaya, and A. Kassler

Table 2: Characteristics of Used Physical Machines
PM Name CPU Family # Cores (Speed) Memory Cache (L1/L2/L3)

AMD AMD Opteron 6282 SE 64 (2.599GHz) 256GB (768KB/16MB/16MB)
DELL Intel i7-3770 8 (3.40Ghz) 16GB (256KB/1MB/8MB)
SGI Intel Xeon(R) E5420 8 (2.493GHz) 32GB (256KB/12MB/–)

cations. Note that the actual throughput of applications/VMs is not accessi-
ble/measurable for general purpose VMs –because of the need to install/inject
monitoring codes. However, we could have access to these values because the
Phoronix Test Suits [3] that we used in this article actually provides such de-
tailed values at the end of its runs. It is worth noting that we used such detailed
values only to identify (reverse-engineer) relative Hypervisor metrics; general use
cases of vmBBThrPred does not require actual throughput measurements.

To this end, we used four benchmarks (out of the total 12 for this article)
with different resource utilization behavior from the Phoronix Test Suite [3] to
identify correlated metrics. They were ‘apache’ to represent CPU intensive (H/–
/–), ‘blogbench’ to represent Memory intensive (–/H/L), ‘aio-stress’ to represent
Disk intensive (–/–/H), and ‘unpack-linux’ to represent CPU+Mem+Disk inten-
sive (L/L/L) applications/VMs. We tested each benchmark on three different
PMs (Table 2) for 64 different contention scenarios (Table 1). Actual throughput
values of these runs (provided by the Phoronix at the end of each run) are statis-
tically correlated with 134 metrics provided by our VMware-vSphere [6] private
cloud to identify the most significant/influential ones. Table 3 lists five metrics
with the highest correlation to the actual throughput for each benchmark.

As it can be seen, for one-resource-intensive benchmarks (Table 3a-c), through-
put of apache, blogbench, and aio-stress is highly correlated with CPU, Mem,
and Disk, respectively. For the unpack-linux with multi-resource-intensive na-
ture however, metrics for all three resource types are listed. To compile a list
of metrics to cover all cases, we averaged correlation values for all four bench-
marks and build Table 4. Based on this table, we chose the cpu.usage.average(%),
mem.usage.average(%), and disk.usage.average(KBps) as the three most corre-
lated metrics to actual throughput of general purpose/unknown applications/VMs.
In Section 3, we will show that throughout, and consequently performance degra-
dation of all sorts of applications with various utilization patterns can be accu-
rately (≈ 90-95%) predicted using these selected metrics.

4.2 Blind Prediction

After selecting three of the most correlated Hypervisor metrics to actual through-
put of applications/VMs, we performed another set of statistical analysis to dis-
cover the actual relation (formula) between the selected metrics and throughput
values. To this end, we observed that there is a significant alignment between
sensitivity values computed by vmBBProfiler and calculated correlation values.
Figure 3 aligns “Correlation to Throughput” with “Sensitivity” values calculated
by vmBBProfiler for all benchmarks in Table 5 on all PMs in Table 2. Comparing



vmBBThrPred 9

Table 3: Five most correlated Hypervisor metrics for the selected benchmarks
(a) apache

Metric Name Correlation

cpu.run.summation(millisecond) 0.99
cpu.usage.average(%) 0.99
cpu.ready.summation(millisecond) 0.99
cpu.demand.average(MHz) 0.99
cpu.overlap.summation(millisecond) 0.98

(b) blogbench

Metric Name Correlation

mem.active.average(KB) 0.69
mem.usage.average(%) 0.69
mem.granted.average(KB) 0.68
mem.activewrite.average(KB) 0.67
mem.entitlement.average(KB) 0.65

(c) aio-stress

Metric Name Correlation

virtualdisk.write.average(KBps) 0.99
datastore.write.average(KBps) 0.98
disk.usage.average(KBps) 0.98
virtualdisk.mediumseeks.latest(number) 0.98
disk.numberwrite.summation(number) 0.97

(d) unpack-linux

Metric Name Correlation

disk.usage.average(KBps) 0.94
virtualdisk.mediumseeks.latest(number) 0.90
cpu.used.summation(millisecond) 0.89
cpu.usage.average(%) 0.88
mem.usage.average(%) 0.79

Table 4: Six most correlated Hypervisor metrics for all benchmarks
Metric Name Correlation

disk.numberwrite.summation(number) 0.87
disk.usage.average(KBps) 0.85
cpu.usage.average(%) 0.77
cpu.used.summation(millisecond) 0.77
mem.usage.average(%) 0.61
mem.latency.average(%) 0.55

such alignments with the “ideal” line, which represent a perfect alignment, in
these sub-figures motivates us to believe/hypothesize that the actual throughput
of applications/VMs can be accurately predicted using their sensitivity values in-
stead of their correlation values. To mathematically formulate this, we designed
the following formula to predict “throughput” of a VM using only its current
normalized CPU, Mem, and Disk utilization values.

Thr(C,M,D)=C×Senc+M×Senm+D×Send

Senc+Senm+Send (1)

In this formula, C, M, and D are respectively the proportional of CPU, Mem,
and Disk utilization of a VM with respect to their counterpart values in an
isolated run. For example, assume a VM with sensitivity values of Senc=1.00,
Senm=0.05, and Send=0.03 uses 80% of its CPU, occupies 22% of its Mem,
performs 25KBps of Disk activity, and responds to 200 requests per second
when it is run in a contention free environment (isolated run). Also assume its
hosting VM is migrated to a PM where utilization of its resources are reduced to
45% of CPU, 10% of Mem, and 8KBps of Disk because of contention. According
to Eqn. 1, its throughout, in this case, is predicted to be 55% of its maximum
throughout (200) in the isolated run; ie:

Thr=

(
45%
80%

×1.00+ 10%
22%

×0.05+ 8KBps
25KBps×0.03

1.00+0.05+0.03

)
× 200 = 0.55× 200

The rationale behind this formula is based on our direct observations across
months of profiling. To explain it, assume CPU-usage of a CPU intensive ap-



10 J. Taheri, A.Y. Zomaya, and A. Kassler

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ax
is 
Ti
tle

Axis Title

Ideal AMD DELL SGI Linear (AMD) Linear (DELL) Linear (SGI)

0

0.5

1

0 0.5 1

Co
rr
(C
PU

,T
hr
)

Senᶜ

0

0.5

1

0 0.5 1

Co
rr
(M

em
,T
hr
)

Senᵐ

0

0.5

1

0 0.5 1

Co
rr
(D
isk

,T
hr
)

Senᵈ

Fig. 3: Point-by-point alignment of “Correlation to Throughout” with “Sensitiv-
ity” values

plication (such as an apache server) is 90% and it responds to 10000 requests
per seconds. Now assume that its CPU-usage is reduce to 30% because of con-
tention. The general sense, also confirmed by direct measurements, dictates that
the VM should respond to one-third of 10000; ie 30/90×10000=3333. For more
complicated cases where a VM is sensitive to more than one resource, assume a
Mem+Disk application (such as blogbench) is using 10% of CPU, 70% of Mem,
and perform 17000KBps on Disk to conduct 100’000 blog activities in a con-
tention free environment. Now assume this VM is migrated to another PM and
its resource usages are reduced to 9% of CPU, 63% of Mem, and 8500KBps
because of contention. In this case, although its Mem- and disk-usage are re-
spectively reduce by 10% and 50%, its final throughput will not reduce by
max(10%,50%)=50%. This is because a VM’s throughput is actually reduced
based on its nature and in proportion to how sensitive it is to each of its resources.
For blogbench in this example with Senc=0.00, Senm=0.75, and Send=0.20, we
observed (measured) the final throughput of 83’460 that is very close to 82’000
that Eqn 1 predicts as:

Thr=

(
9
10×0.00+ 63

70×0.75+ 8500
17000×0.20

0.00+0.75+0.20

)
× 100000 = 0.82× 100000

In Section 5 we will show that using sensitivity values to weight average usage
proportion of resources leads to accurate blind prediction of throughput for all
benchmarks we used in this work.

4.3 vmModeler Procedures

Algorithm 1 shows procedural steps of modeling, and consequently deriving a
formula to relate throughput of an application/VM to its CPU, Mem, and Disk
utilization. Modeling can be performed in two modes: Blind or Assisted. In the
Blind mode, it is assumed that vmBBThrPred has no knowledge of the ap-
plication inside a VM, and it purely relies on the sensitivity values reported
by vmBBProfiler (Senc/m/d) to predict throughput of the VM under differ-
ent working scenarios. In the Assisted mode, it is assumes that there exists



vmBBThrPred 11

a “known” measurement/metric that could directly or indirectly reflect the ac-
tual performance of a VM. For example, the amount of network traffic for an
apache server or the amount of IOPs (i/o operation per second) for an ftp server
can both indirectly reflect performance of these servers. The Assisted mode is
to address the current theme of using internal and/or external measurements
to predict throughput, and consequently performance degradation of a VM in
its current working condition. We included this mode only to show that not
only vmBBThrPred can be easily adopted/employed by current systems, but
also its bundling with vmBBProfiler yields more than 95% accuracy in pre-
dicting throughout of any application with any resource sensitivity. Similar to
vmBBProfiler [17], vmModeler also uses the normalized values of C, M, and D
to propose a polynomial function with prototype

Thr(C,M,D) = x1C + x2M + x3D + x4CM + x5CD + x6MD + x7CMD + x8 (2)

where C, M, and D are the current values of cpu.usage.average(%) divided by
100, mem.usage.average(%) divided by 100, and disk.usage.average(KBps) di-
vided by 50000 (the maximum read/write speed for our testing environment),
respectively.

To calculate x1 . . . x8, we use ProfTable (Table 1) generated during calcu-
lation of Senc/m/d by vmBBProfiler. In this table, for nc=nm=nd=4 (where
cx=mx=dx=x × 0.25, ProfTable would have 64 rows. Using these 64 runs, we
define:

A=


C1 M1 D1 (C1M1) (C1D1) (M1D1) (C1M1D1) 1

...
...

...
...

...
...

...
...

C64 M64 D64 (C64M64) (C64D64) (M64D64 (C64M64D64) 1

 (3)

X=

x1

...
x8

 Y1=


C1
C64

Senc+
M1
M64

Senm+
D1
D64

Send

Senc+Senm+Send

...
C64
C64

Senc+
M64
M64

Senm+
D64
D64

Send

Senc+Senm+Send

 Y2=


T1

T64

...
T64

T64

 (4)

In Eqn 3, normalized values of C, M, and D for the k-th run in ProfTable are
used to fill the k-th row of matrix A. In Eqn 4, each element/row of vector
Y1 is the weighted average of relative CPU, Mem, and Disk utilization of the
k-th run with respect to the 64-th run (the run with no limitation and maxi-
mum performance). Vector Y2, only for the assisted mode, records the relative
performance value of an indirect-metric that can be used to directly or indi-
rectly reflect the performance of a VM; it is assumed that T64 reflects the maxi-
mum throughput/performance. For example, we used disk.usage.average(KBps)
(T64=46000KBps) as the indirect-metric for aio-stress in our experimental setup
(more information in Section 5). Using linear regression, the optimal value of X
can be calculated as:

A64×8 ×X8×1 = Y64×1 =⇒ X = (ATA)−1ATY (5)



12 J. Taheri, A.Y. Zomaya, and A. Kassler

Algorithm 1 Algorithm for vmModeler in both modes

1: procedure vmModeler((Senc/m/d, ProfTable))
Input : Senc/m/d and ProfTable → calculated and provided by vmBBProfiler
Output: ThrA(C,M,D) and/or ThrB(C,M,D)

2: Use ProfTable to Initialize Matrix A . Eqn 3
3: Use ProfTable and Senc/m/d to Initialize Matrixes Y1,Y2 . Eqn 4
4: Calculate X for Y← Y1 and Build ThrB(C,M,D) . Eqns 5, 2
5: Calculate X for Y← Y2 and Build ThrA(C,M,D) . Eqns 5, 2

return ThrA and/or ThrB
6: end procedure

For Y←Y1, the X calculated using Eqn 5 yields ThrB (B for Blind) in Eqn 2;
Y←Y2 yields ThrA (A for assisted) in Eqn 2.

In Algorithm 1, operations 2-3 initialize three matrices; operation 4 calculates
and builds ThrB; operation 5 builds ThrA. Note that computing ThrB and
ThrA are independent of each other; therefore if no “indirect-metric” could be
identified to calculate ThrA, vmModeler can still build ThrB. In Section 5 we
will show that ThrA is, as expected, more accurate (≈96%) than ThrB (≈90%)
for all cases/benchmarks.

5 Experimental Results

To validate our proposed vmBBThrPred, we ran about 1200 hours (50 days) of
actual running and profiling benchmarks on our private cloud in the School of
Information Technologies at the University of Sydney. We used three different
PMs (Table 2) and profiled 12 different benchmarks (Table 5), varying from pure
CPU/Mem/Disk intensive to various combination of CPU+Mem+Disk ones.

Benchmark Selection: We used the Phoronix Test Suite [3] (one of the
most comprehensive testing and benchmarking platform) to evaluate perfor-
mance and accuracy of vmBBThrPred. Table 5 lists the 12 benchmarks (out
of 168 available ones in v5.2.1) we used for our experiments. We deliberately
picked benchmarks with different intensities of resource usage profile of CPU,
Mem, and Disk to cover realistic applications. In this table ‘H’, ‘L’, and ‘–’
respectively mean High, Low, and Negligible resource utilization. From the 12
benchmarks in Table 5, eight run CPU intensive, four run Memory intensive,
and five run Disk intensive processes.

Experimental Results: Table 5 shows experimental results of using our
approach (vmBBThrPred) to derive polynomial formulas for the selected 12
benchmarks. There are three rows for each benchmark: one row for each PM in
Table 2. As it was explained in Section 4, vmBBThrPred can work in two modes:
Blind and Assisted. ThrB is built purely based on Senc/m/d and the ProfTable
(Table 1); ThrA additionally uses the mentioned indirect-metric in Table 5.



vmBBThrPred 13

Table 5: Results for using vmBBThrPred on the selected benchmarks
Benchmark PM Senc / Senm / Send ThrB(C,M,D) ThrA(C,M,D)

formula acc. formula acc. indirect-metric

apache
(H/–/–)

AMD 0.95 / 0.00 / 0.00 (1.02)C 95% (1.03)C–0.05 98%
cpu.latency.
average(%)

DELL 0.97 / 0.00 / 0.00 (1.02)C 97% (0.94)C+0.06 98%
SGI 0.97 / 0.03 / 0.00 (0.99)C 96% (1.00)C+0.04 98%

john-the-
ripper

(H/–/–)

AMD 0.93 / 0.00 / 0.00 (1.18)C 95% (1.14)C+0.04 95%
cpu.latency.
average(%)

DELL 0.96 / 0.00 / 0.00 (1.09)C+0.01 95% (1.06)C+0.08 97%
SGI 0.96 / 0.00 / 0.00 (1.17)C 91% (1.11)C+0.13 95%

n-queens
(H/–/–)

AMD 0.95 / 0.00 / 0.00 (1.02)C 97% (1.07)C–0.05 99%
cpu.idle.sum
mation(msec)

DELL 0.97 / 0.00 / 0.00 (1.01)C 99% (1.02)C 100%
SGI 0.97 / 0.00 / 0.00 (1.02)C 99% (1.03)C 100%

build-apache
(H/–/–)

AMD 0.94 / 0.00 / 0.00 (1.13)C+0.01 97% (1.19)C–0.03 97%
cpu.latency.
average(%)

DELL 0.96 / 0.00 / 0.00 (1.05)C 99% (1.07)C–0.01 99%
SGI 0.96 / 0.04 / 0.00 (1.10)C+0.01 98% (1.16)C–0.01 99%

build-php
(H/–/–)

AMD 0.95 / 0.02 / 0.00 (1.01)C 98% (1.02)C–0.01 98%
cpu.latency.
average(%)

DELL 0.96 / 0.00 / 0.00 (1.04)C 98% (1.03)C+0.02 98%
SGI 0.97 / 0.07 / 0.00 (0.96)C+0.01 95% (1.00)C+0.03 98%

dcraw
(L/–/–)

AMD 0.54 / 0.00 / 0.00 (2.10)C 98% (2.38)C–0.11 99%
cpu.idle.sum
mation(msec)

DELL 0.55 / 0.00 / 0.00 (2.16)C+0.02 98% (2.26)C–0.02 98%
SGI 0.48 / 0.04 / 0.00 (2.01)C 94% (2.24)C–0.03 98%

x264
(L/–/–)

AMD 0.33 / 0.01 / 0.00 (1.28)C 96% (1.32)C–0.06 97%
cpu.latency.
average(%)

DELL 0.39 / 0.00 / 0.00 (1.27)C 95% (1.34)C–0.08 98%
SGI 0.41 / 0.02 / 0.00 (1.28)C 98% (1.30)C–0.02 98%

unpack-linux
(L/L/L)

AMD 0.19 / 0.10 / 0.40 (1.59)C+(1.61)D–(1.14)CD–0.07 95% (1.76)C+(4.91)D–(6.04)CD–0.53 98%
disk.numwrite.

summation
DELL 0.21 / 0.09 / 0.25 (1.36)D+0.01 95% (1.60)D–0.07 96%
SGI 0.18 / 0.09 / 0.35 (0.91)C+(1.09)D–(0.18)CD–0.01 94% –(0.58)C–(0.26)D+(5.04)CD+0.33 95%

blogbench
(–/H/L)

AMD 0.09 / 0.74 / 0.16 (0.93)M 77% (0.60)M+0.41 90%
mem.latency.
average(%)

DELL 0.00 / 0.75 / 0.20 (0.20)M+(0.64)D+(0.16)MD+0.37 76% –(0.89)M+(0.40)D+(0.34)MD+0.98 90%
SGI 0.11 / 0.81 / 0.18 (0.15)C+(0.93)M–(0.03)CM 84% (0.46)C+(0.20)M+(0.06)CM+0.28 91%

bork
(–/L/L)

AMD 0.00 / 0.47 / 0.18 (0.75)M+(0.26)D+(0.05)MD+0.02 84% –(0.03)M+(0.94)D+(0.11)MD 99%
mem.activewri
te.average(KB)

DELL 0.00 / 0.45 / 0.09 (0.80)M+(0.39)D–(0.10)MD 82% (0.03)M+(1.14)D–(0.03)MD+0.05 98%
SGI 0.00 / 0.53 / 0.20 (0.82)M+(0.43)D–(0.15)MD 83% (0.04)M+(1.24)D–(0.08)MD–0.01 97%

compress-gzip
(–/L/H)

AMD 0.00 / 0.00 / 0.55 (1.37)D+0.07 94% (0.85)D+0.40 97%
disk.numwrite.

summation
DELL 0.00 / 0.00 / 0.45 (0.48)M+(0.52)D+(0.22)MD+0.11 87% (0.16)M+(1.01)D+(0.42)MD 94%
SGI 0.00 / 0.00 / 0.47 (0.51)M+(0.48)D+(0.25)MD+0.09 83% (0.10)M+(1.08)D+(0.40)MD 95%

aio-stress
(–/–/H)

AMD 0.00 / 0.31 / 0.84 (0.60)M+(0.68)D–(0.02)MD 90% (1.10)D+(0.33)MD 99%
disk.maxtotal
latency.latest

DELL 0.00 / 0.32 / 0.91 (0.40)M+(0.95)D–(0.11)MD–0.01 96% (0.13)M+(1.22)D–(0.06)MD–0.05 98%
SGI 0.00 / 0.30 / 0.80 (1.00)M+(0.75)D–(0.19)MD–0.02 86% –(0.05)M+(2.01)D+(0.75)MD+0.02 99%

6 Discussion and Analysis

We highlight the most stimulating conclusions from Table 5 in this section.

6.1 Accuracy of vmBBThrPred

Table 5 shows different prediction accuracy for different benchmarks: ranging
from 76%-99% for the Blind (ThrB) and 94%-100% for the Assisted (ThrA)
mode. For CPU intensive applications (marked as (*/–/–)), the accuracy of
vmBBThrPred were significantly high (>94%). Accuracy of ThrA/B for disk
intensive applications ((–/L/L) and (–/*/H)) were also noticeably high with the
minimum accuracy of 82% and 94% for ThrB and ThrA, respectively. Memory
intensive applications (–/H/L) proved to be much more cumbersome than the
other two. In this case, vmBBThrPred accuracy dropped as low as 76% and 90%
for the Blind and Assisted modes, respectively. This is well aligned with other
experiments in the literature that identify Memory Caches (L1/L2/L3) as one
of the most influential components in virtualized environments. It is also well
aligned with Table 4 in which Memory bandwidth showed less correlation with
throughput as compared with CPU and Disk.



14 J. Taheri, A.Y. Zomaya, and A. Kassler

6.2 Transferability of Results

Table 5 shows a variety of formulas for different benchmarks on different PMs.
Nevertheless, in most cases the formula was almost identical across PMs. For
CPU intensive applications, (*/–/–), ThrA/B are almost identical across PMs.
Disk intensive applications, (–/L/L) and (–/*/H), have also led to similar formu-
las. Throughput of memory intensive applications however, (–/H/*) and (–/L/*),
could not be modeled using similar formulas; they also varied across PMs. This
could be related to the internal nature of CPU structure and the size of caches
in these PMs. As it can be observed in Table 2, these PMs have different cache
sizes. The AMD machine for example has the largest cache size; we believe this is
why it has the most straight forward formula for all cases. For example, ThrA/B
formulas for blogbench with the highest sensitivity to memory is calculated as a
function of ‘M’, while on the other two PMs they are related to ‘C’ and ‘D’ too.
This also confirms that the cache size/structure is very important for virtualized
environments.

6.3 Indirect Metrics

Table 5 also shows the indirect-metric we used for each benchmark to build its
ThrA formulas to achieve slightly better (5%-10% more) accuracy than ThrB.
This proves that having “known” metrics to directly or indirectly measure per-
formance of applications could in fact lead to more accurate results. Nevertheless,
we argue that selecting the right “indirect metric” could not be very easy some-
times because not only we need to know the nature of the application/VM, but
we also need to make sure that the chosen metric has a linear relation with
the actual throughput of the application/VM. In fact, selecting a wrong metric
could lead to meaningless formulas, such as selecting a disk related metric (eg,
disk.usage.average(KBps)) for a CPU-intensive applications (eg, apache).

7 Conclusion

In this work, we presented vmBBThrPred to predict throughput, and conse-
quently the performance degradation of general purpose applications/VMs based
on their CPU, Mem, and Disk utilization as seen by the Hypervisor, and the sen-
sitivity values calculated for them by vmBBProfiler. vmBBThrPred can work in
two modes: Blind and Assisted. In the Blind mode, it uses only the Hypervisor
level metrics to derive a polynomial formula in which normalized CPU, Mem,
and Disk utilization values of working VMs can be dynamically (online) plugged
in to predict the immediate throughput of each VM. For the Assisted mode,
an indirect-metric could be nominated by the user so that vmBBThrPred can
derive more accurate formulas. vmBBThrPred was implemented in our VMware-
vSphere based private cloud and proved its efficiency across 1200 hours of em-
pirical studies. Using 12 well known benchmarks to cover all sorts of possible
applications, it managed to successfully build accurate formulas (90% for Blind



vmBBThrPred 15

and 95% for Assisted on average) for a various range of applications with different
resource intensity usage profiles. vmBBThrPred is the first Black-Box through-
put predictor, to the best of our knowledge, that uses only basic Hypervisor level
metrics for its very systematic calculations.

References

1. Specjbb (https://www.spec.org/jbb2015/) (2016)
2. Microsoft powershell (msdn.microsoft.com/en-us/mt173057.aspx) (visited 2016)
3. Phoronix test suite (www.phoronix-test-suite.com/) (visited 2016)
4. Vmware-powercli (www.vmware.com/support/developer/powercli/) (visited 2016)
5. Vmware-vcenter (www.vmware.com/products/vcenter-server) (visited 2016)
6. Vmware-vsphere (www.vmware.com/products/vsphere/) (visited 2016)
7. Banga, G., Druschel, P., Mogul, J.C.: Resource containers: a new facility for re-

source management in server systems (1999)
8. BartoliniBartolini, D.B., Sironi, F., Sciuto, D., Santambrogio, M.D.: Automated

fine-grained cpu provisioning for virtual machines. ACM Transactions on Archi-
tecture and Code Optimization (TACO) 11(3), 27 (2014)

9. Caglar, F., Shekhar, S., Gokhale, A.: Towards a performance interference-aware
virtual machine placement strategy for supporting soft real-time applications in
the cloud (2011)

10. Du, J., Sehrawat, N., Zwaenepoel, W.: Performance profiling of virtual machines.
SIGPLAN Not. 46(7), 3–14 (Mar 2011)

11. Hui, C., Shinan, W., Weisong, S.: Where does the power go in a computer sys-
tem: Experimental analysis and implications. In: Green Computing Conference
and Workshops (IGCC), 2011 International. pp. 1–6 (2011)

12. Kundu, S., Rangaswami, R., Dutta, K., Ming, Z.: Application performance mod-
eling in a virtualized environment. In: High Performance Computer Architecture
(HPCA), 2010 IEEE 16th International Symposium on. pp. 1–10 (2010)

13. Lingjia, T., Mars, J., Vachharajani, N., Hundt, R., Soffa, M.L.: The impact of
memory subsystem resource sharing on datacenter applications. In: Computer Ar-
chitecture (ISCA), 2011 38th Annual International Symposium on. pp. 283–294
(2011)

14. Mars, J., Tang, L., Hundt, R., Skadron, K., Soffa, M.L.: Bubble-up: increasing
utilization in modern warehouse scale computers via sensible co-locations (2011)

15. Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-clouds: managing performance inter-
ference effects for qos-aware clouds (2010)

16. Rao, J., Bu, X., Xu, C.Z., Wang, L., Yin, G.: Vconf: a reinforcement learning
approach to virtual machines auto-configuration (2009)

17. Taheri, J., Zomaya, A.Y., Kassler, A.: vmbbprofiler: A black-box profiling approach
to quantify sensitivity of virtual machines to shared cloud resources. ACM Trans.
Model. Perform. Eval. Comput. Syst. (Submitted in March 2016)

18. Watson, B.J., Marwah, M., Gmach, D., Chen, Y., Arlitt, M., Wang, Z.: Probabilis-
tic performance modeling of virtualized resource allocation (2010)

19. Xu, J., Zhao, M., Fortes, J., Carpenter, R., Yousif, M.: Autonomic resource man-
agement in virtualized data centers using fuzzy logic-based approaches. Cluster
Computing 11(3), 213–227 (2008)


