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Abstract. This paper proposes a self-organizing fully decentralized so-
lution for the service assembly problem, whose goal is to guarantee a
good overall quality for the delivered services, ensuring at the same time
fairness among the participating peers. The main features of our solution
are: (i) the use of a gossip protocol to support decentralized information
dissemination and decision making, and (ii) the use of a reinforcement
learning approach to make each peer able to learn from its experience the
service selection rule to be followed, thus overcoming the lack of global
knowledge. Besides, we explicitly take into account load-dependent qual-
ity attributes, which lead to the definition of a service selection rule that
drives the system away from overloading conditions that could adversely
affect quality and fairness. Simulation experiments show that our solu-
tion self-adapts to occurring variations by quickly converging to viable
assemblies maintaining the specified quality and fairness objectives.

1 Introduction

We consider a distributed peer-to-peer scenario, where a large set of peers co-
operatively work to accomplish specific tasks. In general, each peer possesses
the know-how to perform some tasks (offered services), but could require ser-
vices offered by other peers to carry out these tasks. Scenarios of this type can
be typically encountered in pervasive computing application domains like am-
bient intelligence or smart transportation systems, where several (from tens to
thousands) services cooperate to achieve some common objectives [13].

A basic functional requirement for this scenario is to match required and
provided services, so that the resulting assembly makes each peer able to cor-
rectly deliver its service(s). Besides this functional requirement, we also assume
the existence of non functional requirements concerning the quality of the deliv-
ered service, expressed in terms of several quality attributes referring to different
quality domains (e.g., performance, dependability, cost).

Our goal is to devise a self-assembly procedure among the peers, aimed at
fulfilling both functional and non functional requirements. For the latter, we aim
in particular to maximize some notion of global utility expressed in terms of the
quality attributes of the services delivered by peers in the system, ensuring at the
same time fairness (i.e., no peer should be excessively favored or penalized with



respect to others). Challenges to be tackled to achieve this goal include: (1) the
presence of several functionally equivalent services, with different values of their
quality attributes, which makes non trivial determining the “best” selection of
offered services to be bound to required services; (2) the intrinsic dynamism of
a large distributed system, with peers entering/exiting the system, or changing
the value of their quality attributes, which require to dynamically adapt the
assembly to the changing system configuration; (3) the lack of global knowledge,
which is difficult to achieve and maintain in a large distributed system with
autonomous peers; this makes centralized service assembly policies hardly usable;
(4) the need of devising a service selection and assembly procedure that scales
with increasing system size (up to hundreds or thousands of services/peers); (5)
the possibly load-dependent nature of service quality attributes. This obviously
holds for attributes in the performance domain (e.g., response time), where load
has a negative impact on their value; it may also hold for other domains like
the dependability domain, where increasing load could increase the likelihood
of failures [8], or the cost domain, for example in case of cost schemes based
on congestion pricing [11]. Load-dependent quality attributes rule out simple
greedy service selection policies, as they could easily lead to service overloading,
and consequent worsening of the overall delivered quality.

To cope with these challenges we propose in this paper a self-adaptive fully
decentralized solution for the service assembly problem, whose main features
are: (i) the adoption of an unstructured peer-to-peer approach for dynamic ser-
vice discovery, based on the use of a gossip protocol that guarantees resilience
through self-adaptation to dynamic changes occurring in the system, and scal-
ability with respect to the system size, thanks to the bounded amount of infor-
mation maintained and exchanged among peers; (ii) the use of a reinforcement
learning approach to make each peer able to dynamically learn from its experi-
ence the service selection rule to be followed, thus overcoming the lack of global
knowledge; (iii) the explicit consideration of load-dependent quality attributes,
which leads to the definition of a service selection rule that drives the system
away from service overloading conditions.

The paper is organized as follows. In Section 2 we give an overview of the
main features of the adopted approach. In Section 3 we define the system model
and state the problem we intend to solve. In Section 4 we detail the core elements
of our approach. In Section 5 we present experimental results obtained through
simulation. In Section 6 we survey related work, while in Section 7 we present
conclusions and hints for future work.

2 Adopted Approach Overview

Self-adaptive systems have been proposed to cope with the dynamic environment
where large software-intensive systems typically operate, for example because of
changes in the availability or quality of the resources they rely on [2].

A self-adaptive system typically consists of a managed system that imple-
ments the system business logic, and a feedback loop that implements the adap-



tation logic for the managed system. General architecture for the feedback loop
is the MAPE-K model, with Monitor (M), Analyze (A), Plan (P ) and Execute
(E) activities, plus a Knowledge (K) that maintains relevant information for the
other components (e.g., system state, adaptation rules) [17].

In our setting, Monitor aims at collecting information about candidate ser-
vices and their quality attributes, whereas Analyze and Plan aim at selecting,
among the set of known candidates, those services that best serve to resolve
existing dependencies and fulfill non functional requirements. Finally, Execute
actually implements the bindings with the selected services, so leading to the
construction (and maintenance) of the required assembly. However, how the
MAPE-K activities are actually architected and implemented must take into
account the specific characteristics of the managed system and its operating
environment. In the rest of this section, we outline the main characteristics of
the approach we have adopted to this end, highlighting how it deals with the
challenges described in the Introduction.

MAPE-K information sharing architectural pattern – In large distributed
settings a single MAPE-K loop is hardly adequate to manage the whole system,
and monitor, analyze, plan, and execute are implemented by multiple MAPE-K
loops that coordinate with one another. According to the information sharing
pattern [17], each peer self-adapts locally by implementing its own MAPE-K
loop, but requires state information from other peers in the system. Apart from
information sharing, peers do not coordinate other activities. Hence, this pattern
supports autonomous adaptation decisions at each node, and enables scalability
thanks to the loose coordination required, limited to state information exchange.

Gossip based monitoring – According to the information sharing pattern,
information collected by the monitor at each peer is shared with other peers in
the system. In the scenario we are considering, this information mainly concerns
offered services the peer is aware of, and their functional and non-functional
properties. To cope with some of the challenges we have outlined in the intro-
duction, this coordinated monitoring activity should scale with increasing system
size, and be able to quickly react to changes occurring in the system (e.g., new
offered services, variations of their quality). To this end, we adopt a gossip-based
approach [1], which exploits epidemic protocols to achieve reliable information
exchange among large sets of interconnected peers, also in presence of network
volatility (e.g., peers join/leave the system suddenly). Specifically, in a gossip
communication model, each peer in the system periodically exchanges infor-
mation with a dynamically built peer set, and spreads information epidemically,
similar to a virus in biological communities. This guarantees quick, decentralized
and scalable information dissemination, and makes gossip-based communication
well suited for our purposes. We detail the applied algorithm in Section 4.1.

TD-learning based analysis and planning – Analyze and Plan are local
at each peer, and do not require any explicit coordination with other peers. In
our setting, these activities aim at selecting, within the set of candidates built
by the monitoring activity, the offered services to resolve the dependencies of
local services, trying at the same time to maximize the system quality and en-



sure fairness (see Section 3). In the dynamic scenario we are considering, fixed
selection rules are hardly able to achieve satisfactory results. Indeed, we make
peers learn on their own the selection rule to be applied, using a reinforcement
learning approach where the learner is not told which actions to take, as in most
forms of machine learning, but instead must discover which actions yield the
most reward by trying them [15]. These features fit well with the considered
scenario, where peers do not know each other (and the services they offer) in ad-
vance, but discover themselves dynamically. Moreover, services can have multiple
dependencies to be resolved, and are characterized by multiple load-dependent
quality attributes. To this end, we focus on temporal-difference (TD) learning
methods [15], which can learn directly from raw experience without a model
of the environment’s dynamics and are implemented in an on-line, fully incre-
mental fashion. In particular, we base the learning on two kinds of knowledge
that are incrementally acquired by each peer: information about the existence of
offered services and their advertised quality, achieved through the gossip-based
monitoring activity, and the direct experience of the services’ quality, acquired
by each peer after actually binding to the selected services. We use the second
kind of knowledge to balance through a trust model the advertised quality with
the actually experienced quality, building to this end a two-layer TD-learning
model. We detail this model in Section 4.2.

3 System Model

In this section we define the model of the system we are considering and introduce
the terminology and notation used in the rest of the paper.

We consider a set of N distributed services S = {S1, . . . , SN} hosted by
peer nodes communicating each other through a network. A service S is a tuple
〈Type,Deps, Int ,Outt ,u,Ut〉, where:

– S.Type ∈ T denotes the type of the provided interface (we say that S.Type
is the type of S). We assume w ≥ 1 different service types T = {T1, . . . , Tw}.

– S.Deps ⊆ T is the set of required dependencies for S: for each d ∈ S.Deps, S
must be bound to a service S′ such that d = S′.Type, in order to be executed.
If S.Deps = ∅, then S has no dependencies. We assume that S.Deps is fixed
for each service and known in advance.

– S.Int ⊆ S is the set of services S is bound to at time t, to resolve its
dependencies.

– S.Out t ⊆ S is the set of other services that are bound to S at time t, to
resolve one of their dependencies.

– u ⊆ R
m is a vector of m “local quality” attributes (e.g., reliability, cost,

response time), which express the quality of the service S, depending only
on internal characteristics of S and of the node hosting it. If S has a non
empty set of dependencies, then u gives only a partial view of the overall
quality of S, which also depends on the quality of the services used to resolve
them. For example, in case of a completion time attribute, the corresponding
u entry could represent the execution time in isolation of S internal code



on the hosting node, without considering the completion time of the called
services.

– Ut ⊆ R
m is a vector of m “overall quality” attributes, which express the

quality of the service S at time t, depending on both local quality of S and
the quality of the services it is bound to to resolve its dependencies. We show
below (see equation 1) how Ut is expressed in terms of both these factors.

At each time point t ∈ N a service is either fully resolved or partially resolved.
A service S is fully resolved if either: (i) S has no dependencies (S.Deps = ∅);

or (ii) for all d ∈ S.Deps there exists a fully resolved service S′ ∈ S.Int such
that d = S′.Type. On the other hand, a partially resolved service S has a non
empty list of dependencies, and at least one dependency is either not matched,
or is matched by a partially resolved service.

Given these definitions, the overall quality for a service S is defined as follows:

Ut(S) =


L(u(S), S.Out t), if S.Deps = ∅
⊥ if S is partially resolved

C (L(u(S), S.Out t),Ut(S1), . . . ,Ut(Sk))

if S fully resolved, with S.Int = {S1, . . . , Sk}

(1)

In equation (1) if S has no dependencies (S.Deps = ∅), then S is by definition
fully resolved, and Ut(S) is calculated by means of a suitable function L : Rm×
2S → R

m, which, given the local quality u(S) and the set S.Out t of services
currently bound to S, returns the actual load-dependent Ut(S) at time t. In
order to keep the model as general as possible, we use the set S.Out t to define
the load-dependent nature of L, without explicitly specifying information such
as request rate and job size [12], which is application specific. However, L can
be easily extended and instantiated to account for further specific information,
without affecting our notion of overall quality. Instead, if S has a nonempty
set of dependencies (S.Deps 6= ∅) and is not fully resolved, Ut(S) is set to ⊥,
i.e., the special value that is guaranteed to be “worse” than the quality of any
fully resolved instance of S. Finally, if S has a nonempty set of dependencies
and is fully resolved, Ut(S) is computed using a function C : R(1+|S.Int|)m →
R
m, which combines the local load-dependent quality L(u(S), S.Out t) with the

overall quality of all S dependencies. The general equation (1) can be instantiated
for specific quality attributes as described, for example, in [1].

Problem formalization – Our goal is to maximize the quality globally deliv-
ered by the services hosted in the system, ensuring at the same time fairness
among services. To this end, we must define our notion of global quality and
fairness. For the former, the vector Ut(S) details the overall quality delivered by
a specific service S in terms of a set of distinct quality attributes. To facilitate
dealing with multiple and possibly conflicting quality attributes, we transform
Ut(S) into a single scalar value, using the Simple Additive Weighting (SAW)
technique [18]. According to SAW, we redefine the service quality of S as a
weighted sum of its normalized quality attributes, as follows:

GUt(S) =

m∑
i=1

wi
V max
i − Ui,t(S)

Ui,t(S)− V min
i

(2)



where Ui,t(S) denotes the i-th entry of Ut(S), V maxi and V mini denote, respec-
tively, the maximum and minimum value of Ui,t, and wi ≥ 0,

∑m
i=1 wi = 1, are

weights for the different quality attributes expressing their relative importance.

ξt =
1

|Sfullt |

∑
S∈Sfull

t

GUt(S) (3) ζt =

(
∑

S∈Sfull
t

GUt(S))2

|Sfullt |
∑

S∈Sfull
t

GUt(S)2
(4)

Now, let Sfullt ⊆ S be the set of fully resolved services at time t. Equation 3
defines the global system quality as the average quality offered by services in
Sfullt . Furthermore, in order to measure the uniformity of quality delivered in
the system, we make use of the Jain’s fairness index [6], defined as in Equation 4.

In our load-dependent setting, the more uniform is the quality, the more uniform
the load distribution tends to be. Hence, our goal can be stated as the definition
of a self-adaptive assembly procedure that: (i) maximizes ξt, thus optimizing
quality, and (ii) maximizes ζt, thus optimizing fairness.

To this end, next section describes the system operations for service discovery
and selection that drive the system towards the achievement of this goal.

4 System operations

This section describes the implementation of the MAPE-K information sharing
pattern that drives the self-adaptive assembly process, focusing in particular on
the monitoring (§4.1), and analyzing and planning (§4.2) activities.

4.1 Gossip based monitoring

Algorithm 1 describes the general gossip-based scheme [7] that implements the
monitoring activity (M). It includes two concurrent threads: an active thread
that starts an interaction by sending a message to a random set of peers4, and
a passive thread that reacts to messages received from other peers.

Every ∆t time units, the active thread reads monitored information IK from
the knowledge base (K) (line 4), and sends a message m containing IK to the
current peer set (line 6). Specifically, IK = Hosted∪Known contains information
about the set of services hosted locally and monitored by M , and the set of other
known services discovered by means of message gossiping, respectively.

On the other hand, the passive thread listens for messages gossiped by other
peers and, upon receiving a new message m, it invokes the function UpdateK()
for each Si contained in m. The function UpdateK() is in charge of updating the
knowledge K with the received information. Indeed, referring to Algorithm 1,
UpdateK() updates the set Known (stored in K) that collects the currently
known NK (or less) “best” services solving at least one dependency for the

4 Provided by an underlying peer sampling protocol, e.g. NEWSCAST [16].



Algorithm 1 Gossip based information sharing

1: procedure ActiveThread
2: loop
3: Wait ∆t
4: IK ← ReadK()
5: for all Si ∈ GetPeers() do
6: Send 〈IK〉 to Si

7: procedure PassiveThread
8: loop
9: Wait for message 〈m〉
10: for all Si ∈ m do
11: UpdateK(Si)

12: function UpdateK(in S ∈ S)

13: if ∃S ∈ Hosted|S.Type ∈ S.Deps then
14: if |Known| < NK then
15: Known← Known ∪ {S}
16: else
17: m← minj{GUt(Sj) | Sj ∈ Known ∧ Sj .Type = S.Type}
18: Known← Known \ {Sm} ∪ {S}

hosted services5. In particular, if the size of Known is exceeded, the Sj with the
smallest GUt(S) (i.e., Sm) is replaced by the newly discovered Si ∈m.

As a consequence, the total amount of exchanged information between a pair
of peer nodes is upper bounded by O(NK · |GetPeers()|). This makes scalable
the information sharing procedure, as its complexity at each round grows at most
linearly with the number of nodes in the system, assuming that GetPeers()
returns a set of peers whose cardinality is independent of the system size.

4.2 TD-learning based analysis and planning

As introduced in Section 2, the analysis and planning activities are locally imple-
mented at each peer. The goal of these activities is to (i) analyze the information
kept by the knowledge K (i.e., the set of service candidates Known), and (ii)
select the services of interest that resolve the dependencies of local services (i.e.,
Hosted), trying to maximize the global system quality ξt and the fairness ζt.

Algorithm 2 outlines the analysis implementation. It consists of a thread that
actively checks, every ∆t time units, the knowledge K. Whenever the analysis
performed by CheckK() notices a variation in K, then a new plan is required
by calling SelectK() that implements the P activity.6 SelectK() implements
a selection rule that, among the set of service candidates contained in K, prop-
erly chooses the set of services of interest that best achieve the goal stated in
Section 3, as explained below.

The service selection rules are defined by means of a TD-learning method [15]
that calculates, based on historical data, a value function that expresses how
good a particular action is in a given situation. Indeed, value functions are used
to properly select the action that provides the best possible reward, in a given

5 The upper bound NK is a system parameter.
6 For the sake of simplicity, we omit the details of CheckK(), which strictly depends

on the specific implementation of K.



Algorithm 2 TD-learning based analysis and planning

1: procedure ActiveThread
2: loop
3: Wait ∆t
4: b← CheckK()
5: if b = true then
6: for all Si ∈ Hosted do
7: SelectK(Si)

8: function SelectK(inout S ∈ S)
9: for all d ∈ S.Deps do
10: m← argmaxj{Ht(Sj) | Sj ∈ Known ∧ Sj .Type = d}
11: if (∃Sk ∈ S.Int — Sk.Type = d) then
12: if Ht(Sk) < Ht(Sm) then
13: S.Int ← S.Int \ {Sk} ∪ {Sm}
14: else
15: S.Int ← S.Int ∪ {Sm}

situation. The general formulation of a TD method is:

Et ← Et−1 + α[Rt − Et−1] (5)

where Et is the estimated value function at step t, α ∈ (0, 1] is the learning-
rate parameter, Rt is the reward obtained by taking the action, and Et−1 is
the value function calculated at the previous step – i.e., the historical data. In
simple incremental averaging estimation methods [15], the learning-rate param-
eter α changes at every step and is calculated as 1/k, where k is the number of
accumulated rewards at step t.

Its rationale is to increasingly give more weight to the accumulated experi-
ence. TD methods are well suited in our context, since they can learn from raw
experience, without relying on any predefined model of the environment. In-
deed, the variability is faced on-line, in a fully incremental fashion. Specifically,
we adopt a service selection rule implementing a Two-layer Hierarchical Rein-
forcement Learning (2HRL) [3] technique, which considers both data monitored
locally, and data shared by the monitoring activities (M) of other peers.

Learning from local data – First layer aims at learning the behaviour of
service candidates inKnown by relying on direct experience, without considering
the information shared by other peers.

Let GURt (Sj) be the quality obtained while interacting with a given Sj at
time t. This value is used to predict the quality GUEt+1(Sj) expected from the
same Sj at the next time step (i.e., at time t+ 1). Specifically, at any given time
t, the planning activity P calculates for all Sj ∈ Known, the expected quality
GUEt (Sj) by instantiating Equation 5:

GUEt (Sj) = GUEt−1(Sj) + αj [GU
R
t (Sj)−GUEt−1(Sj)] (6)

whereGUEt (Sj) is the estimated quality (i.e., value function) at time t, αj ∈ (0, 1]
is the learning-rate, GURt (Sj) is the quality (i.e., the reward) obtained by directly
interacting with Sj at time t, and GUEt−1(Sj) is the quality estimated at the
previous step – i.e., the historical data.



As in Equation 5, the learning-rate parameter αj could be calculated as
αj ← 1/SR(Sj), where SR(Sj) is the number of times that Sj has been in-
voked. However, while this averaging method is appropriate for stationary en-
vironments, it is not well suited for dealing with highly dynamic environments
such as the one considered here. In fact, it would make the method not able to
promptly react to sudden changes. In these cases, literature suggests to use a
constant step-size parameter α to be defined at design-time [15].

We introduce instead the notion of learning-window, i.e., a fixed time-window
of size z, in which we apply TD technique. The idea is to subdivide the non-
stationary problem into a set of smaller stationary problems, which can be solved
by applying the averaging method. Indeed, calculating αj as αj ← 1/[SR(Sj)
mod z] provides us with the flexibility of averaging methods while preventing
long-past rewards to be overweighted.

Learning from shared data – Second layer aims at integrating into the learn-
ing process of each peer the information remotely monitored and shared by other
peers. As described in Section 4.1, each M activity continuously monitors the
local set of hosted services Hosted and for each S ∈ Hosted, gossips every
∆t information about it, e.g., S.Int, S.Out t, and GUt(S). However, since the
gossip-based communication is epidemic, the data sent by a given peer pi might
be outdated when received by the other peers in the system. Indeed, monitored
data is strongly time- and load-dependent (see Section 3), and might quickly
change over time, due to highly dynamic changes occurring in the system. In
this scenario, understanding how much the P activity of a peer can trust the
received data is crucial for selecting the services Sj ∈ Known that best fit the
goal of maximizing ξt and ζt (see Section 3).

To this end, let mt be a message received by activity P at time t < t, and
let GUt(Sj) be the quality advertised for each Sj ∈mt, i.e., GUt(Sj) is the last
quality value known for Sj . We estimate the level of trust τt(Sj) of the quality
advertised by Sj by instantiating Equation 5:

τt(Sj) = τt−1(Sj) + αj [Ft(Sj)− τt−1(Sj)] (7)

where τt(Sj) is the estimated level of trust (i.e., value function) at time t,
αj ∈ (0, 1] is the learning-rate calculated within the learning-window, and Ft(Sj)
(i.e., reward) measures how much accurate is the data received about Sj . Specif-
ically, the accuracy is calculated as 1 minus the relative error between the value

GU
R

t (Sj) at time t and the value GUt(Sj) advertised at time t:

Ft(Sj) = 1− |GU
R

t (Sj)−GUt(Sj)|
|GUt(Sj)|

(8)

where GU
R

t (Sj) = min(GURt (Sj), GUt(Sj)) is the normalized value of GURt (Sj),
which forces Ft(Sj) ∈ [0, 1].

Finally, the two TD-learning layers are combined in a new function H that,
given a service Sj ∈ Known, computes its expected quality at time t:

Ht(Sj) = τt(Sj) ·GUt(Sj) + (1− τt(Sj)) ·GUEt (Sj) (9)



Informally, if trust is high (i.e., τt(Sj) u 1) then shared data GUt(Sj) is con-
sidered highly relevant in the evaluation of Sj . Viceversa, whenever the trust in
shared data is low (i.e., τt(Sj) u 0), then local experience GUEt (Sj) is considered
more relevant than shared data for evaluating Sj .

Function SelectK in Algorithm 2 shows how the 2HRL technique is used
to build, for a given S ∈ Hosted, the set of bindings S.Int that achieves the
global goal: maximizing ξt and ζt. The algorithm checks, for all dependences
d ∈ S.Deps, what is the service Sm ∈ Known that matches the dependency d
and evaluates the maximum value of Ht (line 10). If a service Sk matching d is
already in S.Int, then Sm replaces Sk only if the former provides a better Ht

than the latter (line 13). On the other hand, if S.Int does not contain any service
matching d, then Sm is added to S.Int (line 15).

5 Experimental Evaluation

In this section we present a set of simulation experiments to assess the effec-
tiveness of our approach. To this end, we implemented a large-scale simulation
model for the PeerSim simulator [9]. PeerSim is a free Java package designed to
efficiently simulate peer-to-peer protocols, which provides a cycle-based engine
implementing a time-stepped simulation model. The cycle-based engine is well
suited to evaluate peer-to-peer protocols, where the most important metric is
the convergence speed measured as the number of rounds (message exchanges)
that are needed to reach a desired configuration. Such a performance metric
(number of interactions) has the advantage of being independent of the details
of the underlying hardware and network infrastructure.
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Model Parameters – We consider a sys-
tem with N services and w different in-
terface types T = {T1, . . . , Tw}. For the
sake of simplicity, we assume that each
network node hosts a single service; hence
the number of nodes inside the network
is equal to the number of services, i.e.,
N . We create bN/wc services of each type
and, for each service S we randomly set
the number of its dependencies. Specif-
ically, to avoid loops in the dependency
graph, we allow a service S to only depend on services of type strictly greater
than S.Type. Therefore, for each service S we initialize the dependency set
S.Deps as a random subset of {S.Type + 1, S.Type + 2, ..., w}. Note that, accord-
ing to this rule, services of type Tw have no dependencies. Finally, we assume
that the load-dependent quality function L() (see Sec. 3) of each service S is
defined by the solid line in Figure 1, and the global quality GUt(S) is defined
such that it returns values in the range (0, 1]. Furthermore, other parameters of
our HRL approach are set as follows: (i) the learning-window parameter z is set
to 5, and (ii) for all Si ∈ S the initial trust τ0(Si) is set to 0.95.
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Fig. 2: Static scenario

Performance Measures – As stated in Section 3 we evaluate the performance
of our approach by means of the global system quality ξt, and the fairness ζt. In
particular, ξt is computed as the average quality of all fully resolved services at
step t, and ζt is computed as Jain’s fairness index. Both ξt and ζt are higher-is-
better metrics whose upper-bound is 1. All experiments are run by considering
N = 1000 services, w = 10 interface types, and 2000 simulation steps. All results
are computed by taking the average of 50 independent simulation runs.

5.1 Simulation Results

Hereafter we report the simulation results obtained in different scenarios. To
show the effectiveness of the proposed approach, we compare the results ob-
tained by our approach with a set of state-of-the-art techniques based on differ-
ent selection rules. Specifically, we experimented the following alternative selec-
tion rules: (i) a Random algorithm, which does not consider quality values but
randomly selects, among the available services, those services that satisfy the
required functional dependencies; (ii) a Greedy algorithm, which selects among
the available services, those services with maximum quality; and (iii) a single-
layer reinforcement learning (SRL) algorithm, which exploits past experience to
predict the behavior of known services [12]. All the experiments show that our
solution outperforms the results provided by these alternative selection rules.

Static scenario – This experiment considers a static scenario involving N =
1000 services of w = 10 different types. Figure 2 shows how ξt and ζt, calculated
on the fully resolved assembly resulting from the application of different selection
rules, vary in function of time t. In particular, it shows how our 2HRL approach
outperforms other selection rules by building a fully-resolved assembly whose ξt
and ζt tend to upper-bound (see Figures 2a and 2b). Next experiments aim at
assessing the ability of 2HRL to self-adapt to changes that might happen in the
networking environment. Indeed, open-end collections of distributed peer-to-peer
nodes are necessarily prone to failures since autonomous nodes might suddenly
leave/join the network at any time, as well as change their local quality.
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Fig. 4: Peers join the network

Peers leave the network – This experiment considers a dynamic scenario
where a number of nodes unexpectedly leave the networking environment. In
particular, starting from the previous experimental setting – i.e., N = 1000
services of w = 10 different interface types – we randomly remove 500 nodes
after t = 1000 simulation steps. Figure 3 reports how the different selection
rules react to the environmental change. In particular, it shows how the 2HRL
selection rule allows services to promptly react and to self-organize into fully-
resolved assemblies that improve the global system quality. In fact, drastically
removing half of the services (i.e., from 1000 to 500) from the network reduces the
total load in the network and makes the 2HRL converging towards an optimal
configuration evaluating ξt ≈ 1 (see Figure 3a) and ζt ≈ 1 (see Figure 3b).

Peers join the network – On the other hand, this experiment considers a
dynamic scenario where a number of new nodes join the networking environment.
In particular, starting from the initial experimental setting – i.e., N = 1000
services of w = 10 different interface types – we randomly add 500 new nodes
at simulation step t = 1000. Figure 4 reports how the different selection rules
react to the new environmental change. In this case, after an initial drop of ξt
at time step t = 1000 the 2HRL selection rule allows services to learn from the
new environment setting and to self-organize into fully-resolved assemblies that
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Fig. 5: Peers change the local quality function

gradually re-establish a good level of global quality (see Figure 4a) and fairness
(see Figure 4b). The initial drop of ξt at time step t = 1000 is mainly caused by
the fact that the trust value τ0(S) = 0.95 makes the algorithm to select newly
added services, which are evaluated better than the older ones. However, the
2HRL selection rule quickly learns from the new setting and converges towards
a new optimal configuration within a few steps. Setting the initial trust τ0(S)
to a lower value – e.g., τ0(S) = 0.5 – would mitigate such an issue by allowing
2HRL to behave more conservatively while evaluating new discovered services.

Peers change the local quality function – Finally, this experiment considers
a dynamic scenario where 500 randomly chosen services change at time step
t = 1000 their quality function L(u(S), S.Out t), as depicted by the dashed line
in Figure 1. Figure 5 reports how the different selection rules react to the new
setting. Also in this case, we can notice that after an initial drop of ξt at time
step t = 1000 the 2HRL selection rule allows services to quickly self-organize
into fully-resolved assemblies that re-establish good level of global quality (see
Figure 5a) and fairness (see Figure 5b).

6 Related Work

In this section we focus exclusively on approaches based on reinforcement learn-
ing. This methodology has been already used in literature to tackle service se-
lection and load balancing problems [4,5,14,19]. Some of them (e.g., [5,14]) are
based on the approach previously presented in [12]. All these papers consider
scenarios with a single type of dependency, and where the agents already know
the full set of available resources. On the contrary, we assume that each peer does
not know in advance the other peers (and the services they offer) in the environ-
ment, but discover them dynamically. Moreover, our services can have multiple
dependencies, and we consider multiple load-dependent quality attributes.

Shaerf et al. [12] studied the process of multi-agent reinforcement learning in
the context of load balancing in a distributed system, without use of either cen-
tral coordination or explicit communication. They studied a system consisting of



a certain number of agents using a finite set of resources, each having a time de-
pendent capacity. The considered resource selection rules were purely local and
the same for all agents. The presented experimental study considered a relatively
small system of 100 agents. A notable outcome of the experiments was that mak-
ing agents communicate each other to share information about the performance
of resources was detrimental to the overall system performance. Galstyan et
al. [4] presented a reinforcement learning model for adaptive resource allocation
in a multi-agent system. The learning scheme is based on minority games on net-
works. Each agent learns over time the best performing strategies and use them
to select the resource to be used. Zhang et al. [19] propose a multi-agent learning
algorithm and apply it for optimizing online resource allocation in cluster net-
works. The learning is distributed to each cluster, using local information only
and without access to the global system reward. Sugawara et al. [14] investigate
multi-agent systems where agents can’t identify the states of all other agents to
assign tasks. The selection is done according to local information about the other
known agents; however this information is limited and may contain uncertainty.
Parent et al. [10] apply reinforcement learning for the dynamic load balancing of
parallel data-intensive applications. Viewing a parallel application as a one-state
coordination game in the framework of multi-agent reinforcement learning they
are able to improve the classic job farming approach.

7 Conclusion

In this paper we have presented a self-organizing fully decentralized approach
for the dynamic assembly of services in distributed peer-to-peer scenarios, whose
goal is to guarantee a good overall quality for the delivered services, ensuring
at the same time fairness among the participating peers. The core element of
the proposed solution is the combined use of gossip protocols and reinforcement
learning techniques. Gossip supports the decentralized information dissemina-
tion and decision making, whereas reinforcement learning enables each peer to
dynamically learn from its experience the service selection rule to be followed,
thus overcoming the lack of global knowledge. Besides, we explicitly take into
account load-dependent quality attributes, which leads to the definition of a
service selection rule that drives the system away from overloading conditions
that could adversely affect quality and fairness. Thanks to these features, the
system is able to build and maintain in a fully decentralised way an assembly of
services that, besides functional requirements, fulfils global QoS requirements.
Moreover, a set of simulation experiments shows how our solution self-adapts to
occurring variations and quickly converges to feasible assemblies, which main-
tains the specified quality and fairness objectives.

Future work encompasses the extension of the experimental part with the
inclusion of different real-world scenarios and other possible definitions of fair-
ness. We also intend to extend 2HRL to cyber-physical systems, where a new
set of challenging quality concerns have to be managed under severe resource
constraints, e.g., energy consumption, real-time responsiveness.
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