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Abstract. In this paper a new classification solution which joins C–
Fuzzy Decision Trees and Fuzzy Random Forest is proposed. Its assump-
tions are similar to the Fuzzy Random Forest, but instead of fuzzy trees it
consists of C–Fuzzy Decision Trees. To test the proposed classifier there
was performed a set of experiments. These experiments were performed
using four datasets: Ionosphere, Dermatology, Pima–Diabetes and Hep-
atitis. Created forest was compared to C4.5 rev. 8 Decision Tree and
single C–Fuzzy Decision Tree. The influence of randomness on the clas-
sification accuracy was also tested.
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1 Introduction

Authors propose a new kind of classifier which joins C–Fuzzy Decision Trees
and Fuzzy Random Forest. In this paper the construction of this ensemble clas-
sifier is presented. It is built similar to the Fuzzy Random Forest but instead
of Janikow Fuzzy Trees [7] it uses C–Fuzzy Decision Trees [9]. The first part of
this paper consists of all of the techniques connected with the proposed ensemble
classifier: Fuzzy Decision trees, C–Fuzzy Decision Trees and Ramdom Forests. In
the next part the details of Fuzzy Random Forest with C–Fuzzy Decision Trees
classifier are described. After that, the experiments are described their results
are presented. The quality of classification acquired using Fuzzy Random Forest
with C–Fuzzy Decision Trees is compared with C–Fuzzy Decision Trees working
singly. Also, the strength of randomness is tested by comparing results obtained
using random node selection with the results achieved without it.

2 Related work

The idea of Fuzzy Random Forest with C–Fuzzy Decision trees is based on the
Fuzzy Random Forest. Before presenting this issue it is worth to take a look at
two classifiers which are the fundaments of the mentioned forest. The first one
is the Fuzzy Tree, the second one is the Random Forest. Both of these issues are
described in following paragraphs.
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2.1 Fuzzy decision trees

Fuzzy trees are modification of traditional decision trees. The characteristic fea-
ture of this kind of trees is the fact of using fuzzy logic in their construction,
learning and decision making process. There are a lot of works which concern this
issue, for example [11] or [6]. One of the most popular articles about fuzzy trees
is C. Z. Janikow’s paper [7]. This article is described in following paragraphs.

C. Z. Janikow created fuzzy trees [7] in order to join advantages of fuzzy
logic and decision trees. This kind of trees have simple, clear and intelligible
knowledge structure, which is characteristic for decision trees and they can deal
with noises, imprecise information etc., which is possible thanks to the fuzzy
logic. It allows for using fuzzy decision trees at areas where decision trees didn’t
work well.

Fuzzy decision trees [7] are based on two popular decision tree creation al-
gorithms: CART [4] and ID3 [10]. C. Z. Janikow decided to build his version of
tree following assumptions of ID3, but modifying them in the way that allows
for successful working with both discrete and continuous values. Proposed tree
differs from the traditional one in two ways. First of them is the fact it uses
the different inference procedures. The second one is about using node division
criterions based on the fuzzy relations.

2.2 Random Forests

Random forest was created by L. Brieman and presented in [5]. A forest is
classifier which consists of many trees. Each of these trees makes its own decision
about assigning the object to the given class. After that, forest decides about
the class where the object belongs, using to all of the decisions made by single
trees. The thing which differs random forest from the standard one is the fact
of using randomness during the tree construction process. It reduces correlation
between trees with keeping the accuracy of classification. L. Briemann proposed
two methods of using randomness to create random forest.

First method is based on random set of attributes selection before the node
split. The nubmer of elements in this set is constant and equal for the each tree.
When attributes are selected, the best candidate to divide the node is chosen.
The choice is performed from the mentioned set. Brieman tested two sizes of
attributes sets used to random selection. The first set’s size is one, which means
that from available attributes there is randomly chosen one in order to divide the
node. The second set’s size is the biggest number lower than log2M +1 where M
is a total number of attributes in the dataset. Tree growth is performed according
to the assumptions of CART method [4], trees are not pruned. L. Brieman called
the structure created the described way Forest–RI.

The second proposed method can be used when the dataset has relatively
small number of features. In such situation the random choice is being made
from linear combinations of attributes instead of the attributes. The structure
created that way was called by its author Forest–RC.
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2.3 Fuzzy random forests

The classifier with joins two solutions described in previous paragraphs was first
presented in [1] and then widely described in [3] and [2]. The mentioned classifier
was based on two papers cited before: [7] and [5]. Fuzzy random forest, according
to its assumptions, combines the robustness of ensemble classifiers, the power
of the randomness to decrease the correlation betweeen the trees and increase
the diversity of them and the flexibility of fuzzy logic for dealing with imperfect
data [2].

Fuzzy random forest construction process is similar to Forest–RI, described
in [5]. After the forest is constructed, the algorithm begins its working from the
root of each tree. First, a random set of attributes is chosen (it has the same size
for each node). For each of these attributes information gain is computed, using
all of the objects from training set. Attribute with the highest information gain
is chosen to node split. When the node is splitted, selected attribute is removed
from the set of attributes possible to select in order to divide the following
nodes. Then, for all of the following tree nodes, this operation is repeated using
a new set of randomly selected attributes (attributes which were used before are
excluded from the selection) and the same training set.

During the tree construction process, when the node is dividing, the given
object’s membership degree to the given node is computed. Before the division,
for each node the membership degree is 1. When the division is completed, each
object can belong to any number of created leaves (at least one). If the object
belongs to one leaf, its membership degree to this leaf achieves 1 (for the other
leaves it is equal to 0). If it belongs to more than one leaf, the membership
degree to each leaf can take values between 0 and 1 and it sums to 1 in the set of
all children of the given node. If the division is performed using attribute with
missing value, the object is assigned to each split node with the same membership
degree.

According to described algorithm trees are constructed. Each tree is created
using randomly selected set of attributes, different for each tree, which ensures
diversity of trees in the forest.

Bonissone et al. proposed two fuzzy random forest decision making strategies.
First of them assumpts making decisions by each tree separately – then, using
achieved results, forest is making its final decision about the class where the
object belongs. The second strategy is about making one common decision by
the forest using all of the information collected by all of the trees. For each of
these strategies authors proposed several decision making methods.

2.4 C–Fuzzy Decision Trees

In [9] W. Pedrycz and Z. A. Sosnowski proposed the new kind of decision trees,
called C–Fuzzy Decision Trees. This class of trees was created in order to deal
with the main problems of traditional trees. There are some fundamentals of de-
cision trees. They usually operate on a relatively small set of discrete attributes.
To split the node in the tree construction process, the single attribute which
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brings the most information gain is chosen. In their traditional form decision
trees are designed to operate on discrete class problems – the continuous prob-
lems are handled by regression trees. These fundamentals bring some problems.
To handle continuous values it is necessary to perform the discretization. It can
impact on the overall performance of the tree negatively. What is more, infor-
mation bringed by the nodes which were not selected to split the node is kind
of lost.

C–Fuzzy Decision Trees were developed to deal with these problems of tra-
ditional trees. The idea of this kind of trees assumed treating data as collection
of information granules. These granules analogous to fuzzy clusters. Authors
decided to span the proposed tree over them. The data is grouped in such mul-
tivariable granules characterized by high homogenity (low variablity) which are
treated as generic building blocks of the tree.

The construction of C–Fuzzy Decision Tree starts from grouping the data
set into c clusters. It is performed in the way that the similar objects should be
placed in the same cluster. Each cluster is characterized by its prototype (cen-
troid), which is randomly selected first and then improved iteratively during the
tree counstruction process. When objects are grouped into clusters, the diversity
of the each of these clusters is computed using the given heterogenity criterion.
The computed diversity value decides if the node is selected to split or not. From
all of the nodes the most heterogenous is chosen to split. The selected node is
divided into c clusters using fuzzy clustering. Then, for the newly created nodes,
the diversity is computed and the selection to split is performed. This algorithm
works until it achieves the given stop criterion. The growth of the tree can be
deep or breadth intensive. Each node of such tree has 0 or c children.

To make the paper self contained we describe the tree construction process
in a formal way. Let’s do the following assumptions:

– c is a number of clusters,
– i = 1, 2, ..., c,
– N is a number of training instances,
– k = 1, 2, ..., N ,
– dik is a distance function between the ith prototype and the kth instance,
– m is a fuzzification factor (usually m = 2),
– U = [uik] is a partition matrix,
– Z = {x(k), y(k)} is an input–output pair of data instances,
– zk = [x1(k)x2k...xn(k)y(k)]T ,
– fi is the prototype of the cluster.

Constructing clusters and grouping objects into them is based on Fuzzy C–
Means technique (FCM), which is is an example of a fuzzy clustering. Clusters
are built through a minimization of objective function Q, which assumes the
format:

Q =
c∑

i=1

N∑
k=1

um
ikd

2
ik (1)
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During the iterations of Fuzzy C–Means process partitions uik and prototypes
fi are updated. For partitions it is performed according to the following equation:

uik =
1

c∑
j=1

(
dik
djk

)2/(m−1)

(2)

Prototypes are updated using the following expression:

fi =

N∑
k=1

um
ikzk

N∑
k=1

um
ik

(3)

In order to describe the node splitting criterion let’s do the following assump-
tions:

– Vi is the variability of the data in the output space existing at the given
node,

– mi is the representative of this node positioned in the output space,
– Xi = {x(k)|ui(x(k)) > uj(x(k)) for all j ̸= i}, where j pertains to the

nodes originating from the same parent, denotes all elements of the data set
which belong to the given node in virtue of the highest membership grade,

– Y i = {y(k)|x(k) ∈ Xi} collects the output coordinates of the elements that
have already been assigned to Xi,

– U i = [ui(x(1))ui(x(2))...ui(x(Yi))] is a vector of the grades of membership
of the elements in Xi,

– N i =< Xi,Y i,U i >,

According to these notation, mi is the following weighted sum:

mi =

∑
(x(k),y(k))∈Xi×Y i

ui(x(k))y(k)

∑
(x(k),y(k))∈Xi×Y i

ui(x(k))
(4)

The variability is computed as follows:

Vi =
∑

(x(k),y(k))∈Xi×Y i

ui(x(k))(y(k) −mi)
2 (5)

The tree growth stop criterion could be, for example, defined in the following
way: [9]

– There aren’t enough elements in any node to perform the split. The minimal
number of elements in the node which allows for the split is c. Normally the
boundary number of the elements in each node would be the multiplicity of
c, for example 2 × c or 3 × c,
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– All nodes achieve lower diversity than assumed boundary value,
– The structurability index achieves the lower value than assumed boundary

value,
– The number of iterations (splits) achieved the assumed boundary value.

When the tree is constructed it can be used for classification. Each object
which has to be classified starts from the root node. The membership degrees of
this object to the children of the given node are computed. These membership
degrees are the numbers between 0 and 1 and they sum to 1. The node where the
object belongs with the highest membership is chosen and the object is getting
there. The same operation is repeated as long as the object achieves to the node
which has no children. The classification result is the class assigned to achieved
node.

3 Fuzzy Random Forest with C–Fuzzy Decision Trees

To describe created classifier we used the following notations (based on [2] and
[9]):

– T is the number of trees in the C–FRF ensemble,
– t is the particular tree,
– Nt is the number of nodes in the tree t,
– n is a particular leaf reached in a tree,
– I is the number of classes,
– i is a particular class,
– C FRF is a matrix with size (T×MAXNt) with MAXNt = max {N1, N2, ..., Nt},

where each element of the matrix is a vector of size I containing the support
for every class provided by every activated leaf n on each tree t; this matrix
represents C–Fuzzy Forest or Fuzzy Random Forest with C–Fuzzy Decision
Trees,

– c is the number of clusters,
– E is a training dataset,
– e is a data instance,
– V = [V1, V2, ..., Vb] is the variability vector.
– U = [U1, U2, ..., U|E|] is the tree’s partition matrix of the training objects,
– Ui = [u1, u2, ..., uc] are memberships of the ith object to the c cluster,
– B = {B1, B2, ..., Bb} are the unsplitted nodes,

We propose creating the new kind of classifiers: Fuzzy Random Forest with
C–Fuzzy Decision Trees. It is the forest, based on the idea of Fuzzy Random
Forest, which consists of C–Fuzzy Decision Trees. The Fuzzy Random Forest uses
randomness to improve the classification quality while C–Fuzzy Decision Tree
is constructed randomly by definition – centroids of its clusters (the partition
matrix) are selected randomly first. Combination these two structures is expected
to give promising results.

The randomness in Fuzzy Random Forest with C–Fuzzy Decision Trees is
ensured by two main aspects. The first of them refers to the Random Forest.
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During the tree’s construction process, node to split is selected randomly. This
randomness can be full, which means selecting the random node to split instead
of the most heterogenous, or limited, which assumpts selecting the set of nodes
with the highest diversity, then randomly selecting one of them to perform the
division (the size of the set is given and the same for the each split). The second
aspect refers to the C–Fuzzy Decision Trees and it concerns the creation of
partition matrix. At first, the centroid (prototype) of the each cluster selection
is fully random. Objects which belong to the parent node are divided into clusters
grouped around these centroids using the shortest distance criterion. Then the
prototypes and the partition matrix are being corrected as long as they achieve
the stop criterion. Each tree in the forest, created the described way, can be
selected from the set of created trees. To create the single tree which will be
chosen to the forest there can be build the set of trees. Each tree from such set is
tested and the best of these trees (the one which achieved the best classification
accuracy for the training set) is being chosen as the part of forest. The size of
the set is given and the same for the each tree in the forest.

The split selection idea is similar to the one used in Fuzzy Random Forest.
The difference is about the nature of tree used in the classifier. In Fuzzy Random
Forest, the random attribute was being chosen to split. The node which was
chosen to split was specified by tree growth strategy. In Fuzzy Random Forest
with C–Fuzzy Decision Trees there isn’t any attribute chosen – for each of the
splits all of the attributes are considered. The choice concerns the node to split
selection which means some nodes does not have to be splitted (when the stop
criterion is achieved). The same idea is expressed in two completely different ways
of building trees. Each C–Fuzzy Decision Tree in the forest can be completely
different or very similar – it depends on the stop criterion and the number of
clusters. The influence of randomness can be set using algorithm parameters
which allows classifier to fit the given problem in a flexible way.

Prototypes of each cluster are selected randomly and then corrected itera-
tively, which means some of created trees can work better than others. Diversity
of trees created that way depends on the number of the correction process’ it-
erations. It is possible to build many trees and choose only the best of them
to the forest in order to achieve better results. The diversity of the trees in the
forest can be modified by changing the size of the set from which the best tree
is chosen and the number of iterations. These parameters specifiy the strength
of randomness in the classifier. Operating on these values also allow to fit to the
given problem to improve the classification quality.

3.1 Fuzzy Random Forest with C–Fuzzy Decision Trees learning

The process of Fuzzy Random Forest with C–Fuzzy Decision Trees learning is
analogous to the learning of Fuzzy Random Forest, proposed in [2]. The dif-
ferences concern two aspects. First is about the kind of trees used in the for-
est. In the proposed classifier there are used C–Fuzzy Decision Trees instead of
Janikow’s Fuzzy Trees. The second aspect refers to the way of random selection
of the node to split, which was described before.
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The Fuzzy Random Forest with C–Fuzzy Decision Trees is created using
Algorithm 1.

Algorithm 1 Fuzzy Random Forest with C–Fuzzy Decision Trees learning

1: procedure FRFwC–FDTlearning
2: for 1 to T do
3: 1. Take a random sample of |E| examples with replacement from the dataset

E
4: 2. Apply Algorithm 2 to the subset of examples obtained in the previous

step to construct C–Fuzzy Decision Tree
5: end for
6: end procedure

Each tree in Fuzzy Random Forest with C–Fuzzy Decision Trees is created
using Algorithm 2.

Algorithm 2 C–Fuzzy Decision Tree learning

1: procedure C–FDTlearning
2: 1. Start with the examples in E
3: 2. Create the partition matrix U randomly
4: 3. Perform FCM
5: while Stop criterion is not satisfied do
6: 4. Divide the samples belonging to the splitted node into its children
7: 5. Make a random selection of nodes from the set of unsplitted nodes B
8: 6. Compute the variability matrix V
9: 7. Choose the node with maximum variability to split nodes
10: 8. Perform FCM
11: end while
12: end procedure

3.2 Fuzzy Random Forest with C–Fuzzy Decision Trees
classification

After the Fuzzy Random Forest with C–Fuzzy Decision Trees is constructed it
can be used for new object’s classification. The decision–making strategy used
in the proposed sollution assumpts making decision by forest after each tree’s
decisions are made.1. It is performed according to the algorithm 3. It can be
described by equation, similar to the one presented in [2]:

1 There is also another decision–making strategy which assumpts making the single
decision by the whole forest. It is described in [2]
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DFRF (t, i, C FRF ) =

1 if i = arg max
j,j=1,2,...,I

{
Nt∑
n=1

C FRFt,n,j

}
0 otherwise

Algorithm 3 Fuzzy Random Forest with C–Fuzzy Decision Trees classification

1: procedure FRFwC–FDTclassification
2: DecisionOfTrees
3: DecisionOfForest
4: end procedure
5: procedure DecisionOfTrees
6: for 1 to T do
7: 1. Run the example e to obtain the tree’s partition matrix Ui

8: 2. Choose the class c where c = arg max
i,i=1,2,...,I

D FRFt,i,C FRF

9: end for
10: end procedure
11: procedure DecisionOfForest
12: Assign to class according to the simple majority vote of trees decisions
13: end procedure

4 Experimental studies

To test a quality of created classifier there were performed several experiments.
These experiments were performed on four popular datasets from UCI Machine
Learning Repository [8]:

– Ionosphere,
– Dermatology,
– Pima–Diabetes,
– Hepatitis.

Each dataset was divided into five parts with equal size (or as close to the
equal as it’s possible) randomly. Each of these parts had the same proportions of
objects representing each decision class as it is in the whole dataset (or as close
to the same as it’s possible). There were no situations when in some of parts
there weren’t any objects representing some of decision classes. This random and
proportional division was saved and used for each experiment.

Each experiment was performed using 5–fold crossvalidation. Four of five
parts were used to train the classifier, one to test the learned forest. This op-
eration was repeated five times, each time the other part was excluded from
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training and used for testing the classifier. After that, classification accuracy of
all five out of bag parts were averaged.

For each dataset there were performed researches for both Fuzzy Forest with
C–Fuzzy Decision Trees and Fuzzy Random Forest with C–Fuzzy Decision Trees.
For each of these configurations there were performed expermients with 2, 3, 5,
8, 13 and 20 clusters. Each forest were consisting of 50 trees.

The objective of the research is to test how randomness influences the clas-
sification accuracy of the forest. There is also checked how the classification
accuracy changes with the different number of clusters.

All of the results are presented in paragraph 5. They are all compared with
themselves and also with single C–Fuzzy Decision Tree and C4.5 rev. 8 tree.

5 Results and discussion

Classification accuracies part consists of the following information:

– Classification accuracy achieved using C4.5 rev. 8 Decision Tree,
– Classification accuracy achieved using a single C–Fuzzy Decision Tree,
– Classification accuracies achieved using Fuzzy Forest with C–Fuzzy Decision

Trees,
– Classification accuracies achieved using Fuzzy Random Forest with C–Fuzzy

Decision Trees.

The results for tested datasets are presented in the following tables:

– Ionosphere – Table 1,
– Dermatology – Table 2,
– Pima–Diabetes – Table 3,
– Hepatitis – Table 4.

Number of clusters 2 3 5 8 13 20

C4.5 rev. 8 13,54

Single C–Fuzzy Tree 15,1 15,68 14,82 17,11 38,71 36,17

Fuzzy Forest with C–Fuzzy Decision Trees 15,1 15,39 13,39 15,67 29,93 30,19

Fuzzy Random Forest with C–Fuzzy Decision Trees 14,25 14,82 12,24 13,96 26,2 25,92

Table 1. Results – Ionosphere

Number of clusters 2 3 5 8 13 20

C4.5 rev. 8 5,98

Single C–Fuzzy Tree 6,02 6,3 5,47 17,46 39,36 48,42

Fuzzy Forest with C–Fuzzy Decision Trees 6,02 6,3 2,99 6,01 34,64 38,82

Fuzzy Random Forest with C–Fuzzy Decision Trees 6,02 6,3 2,18 5,17 31,86 34,65

Table 2. Results – Dermatology
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Number of clusters 2 3 5 8 13 20

C4.5 rev. 8 27,95

Single C–Fuzzy Tree 30,08 30,21 27,08 27,74 32,23 31,78

Fuzzy Forest with C–Fuzzy Decision Trees 28,52 29,68 26,31 27,47 29,03 29,43

Fuzzy Random Forest with C–Fuzzy Decision Trees 28,65 29,16 26,96 26,56 28,52 30,07

Table 3. Results – Pima–Diabetes

Number of clusters 2 3 5 8 13 20

C4.5 rev. 8 43,86

Single C–Fuzzy Tree 34,84 41,93 37,42 41,29 44,51 51,61

Fuzzy Forest with C–Fuzzy Decision Trees 34,19 38,06 37,42 36,77 34,19 43,87

Fuzzy Random Forest with C–Fuzzy Decision Trees 34,19 37,42 36,13 38,06 41,29 40

Table 4. Results – Hepatitis

The general tendention that can be observed in all of those results is decreas-
ing the classification accuracy with increasing the number of clusters. In most
cases results were the best for around 5 clusters, a bit worse for 2 – 3 clusters
and significally worse for 13 – 20 clusters. This dependence is a bit different for
each dataset, which means the number of clusters should be chosen according to
the given problem.

In most cases Fuzzy Random Forests with Fuzzy Decision Trees achieved
better results than Fuzzy Forests with Fuzzy Decision Trees. The exception was
Pima–Diabetes dataset, where at the same number of cases the results were
better or worse, depending on the number of clusters. It means that randomness
generally increased the classification accuracy.

For each dataset there was at least one number of clusters which in almost all
cases allowed to achieve better result that C4.5 rev. 8 Decision Tree. For Hepatitis
dataset the better result was achieved independently from the number of clusters
(exception was 20 clusters), but for the rest of datasets there were only one or
two number of clusters, where these results were better. It shows how important
is the choice of the proper number of clusters for C–Fuzzy Decision Trees used in
Fuzzy Forests with Fuzzy Decision Trees and Fuzzy Random Forests with Fuzzy
Decision Trees.

In almost all of the cases (unusual exceptions) results achieved using Fuzzy
Forest with Fuzzy Decision Trees and Fuzzy Random Forest with Fuzzy Decision
Trees were better than using single C–Fuzzy Decision Tree. It clearly shows the
strength ensemble classifier build of this kind of trees. They achieve much better
results when working together that when working as a single classifier.

6 Conclusion

In the previous paragraphs of this article there was proposed Fuzzy Random
Forest with Fuzzy Decision Trees classifier. The created solution was checked
on four datasets. Ionosphere, Dermatology, Pima–Diabetes andHepatitis. There
were tested how successfully the classifier works in comparison to the C4.5 rev.
8 Decision Tree and a single C–Fuzzy Decision Tree. There were also tested how
randomness affects achieved classification quality.
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Performed experiments proved than in most cases Fuzzy Random Forest with
C–Fuzzy Decision Trees classifier gives better results than C4.5 rev. 8 Decision
Tree and single C–Fuzzy Decision Tree classifiers. They also demonstrated that
using randomness in the forest can increase the classification quality.

Acknowledgment

This work was supported by the grant S/WI/1/2013 from Bialystok University
of Technology founded by Ministry of Science and Higher Education.

References

1. P. P. Bonissone, J. M. Cadenas, M. C. Garrido, and R. A. Diaz-valladares. A
fuzzy random forest: Fundamental for design and construction. In In Proceedings
of the 12th International Conference on Information Processing and Management
of Uncertainty in Knowledge- Based Systems (IPMU08), pages 1231–1238, 2008.

2. Piero Bonissone, Jose M. Cadenas, M. Carmen Garrido, and R. Andres Diaz-
Valladares. A fuzzy random forest. International Journal of Approximate Reason-
ing, 51(7):729 – 747, 2010.

3. P.P. Bonissone, J.M. Cadenas, M.C. Garrido, and R.A. Diaz-Valladares. Combi-
nation methods in a fuzzy random forest. In Systems, Man and Cybernetics, 2008.
SMC 2008. IEEE International Conference on, pages 1794–1799, Oct 2008.

4. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Wadsworth and Brooks, Monterey, CA, 1984.

5. Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001.
6. Robin L.P. Chang and Theodosios Pavlidis. Fuzzy decision tree algorithms. Sys-

tems, Man and Cybernetics, IEEE Transactions on, 7(1):28–35, Jan 1977.
7. C.Z. Janikow. Fuzzy decision trees: issues and methods. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), 28(1):1–14, Feb 1998.
8. M. Lichman. UCI machine learning repository, 2013.
9. W. Pedrycz and Z.A. Sosnowski. C-fuzzy decision trees. IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35(4):498–
511, Nov 2005.

10. J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106, March 1986.
11. Yufei Yuan and Michael J. Shaw. Induction of fuzzy decision trees. Fuzzy Sets

Syst., 69(2):125–139, January 1995.


