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Abstract. Prediction of protein-protein interaction (PPI) types is an important 
problem in life sciences because of fundamental role of PPIs in many biological 
processes. In this paper we propose a new classification approach based on the 
extended classical Fisher linear discriminant analysis (FLDA) to predict obli-
gate and non-obligate protein-protein interactions. To characterize properties of 
the protein interaction, we proposed to use the binding free energies (total of 
282 features). The obtained results are better than in the previous studies.  
Keywords: sparse discriminant analysis, feature selection, protein-protein in-
teraction. 

1 Introduction 

Prediction of protein-protein interaction (PPI) types is an important problem in life 
sciences because of fundamental role of PPIs in many biological processes.  PPIs 
have been investigated in various ways, involving both experimental (in vivo or in 
vitro) and computational (in silico) approaches [2,10]. Experimental approaches tend 
to be costly, labor intensive and suffer from noise. Therefore, using computational 
approaches for prediction of PPIs is a good choice for many reasons.  

PPIs can be divided into non-obligate and obligate complexes (binding components 
can/cannot form stable functional structures). Based on the duration and life time of 
the interactions, there are transient complexes and permanent ones. Although inter-
faces have been the main subject of study to predict protein-protein interactions, an 
accuracy of 70% has been independently achieved by several different groups 
([9,10,13,14]). These approaches have been carried out by analyzing a wide range of 
parameters, including solvation energies, amino acid composition, conservation, elec-
trostatic energies, and hydrophobicity. 

These includes a method based on PCA combined with Chernoff extension of 
Fisher linear discriminant analysis [9]. PCA is necessary to reduce the dimensionality 
of the input feature space (i.e. to be less than the sample size). As a consequence some 
important information is lost.  



In this paper, we propose a new classification approach based on sparse discrimi-
nant analysis [12] to predict obligate (permanent) and non-obligate (transient) protein-
protein interactions. To characterize properties of protein interaction, we proposed to 
use the binding free energies. 

2 Fisher and Sparse regularized linear discriminant analyses 

Fisher Linear Discriminant analysis (FLDA) [5,11] is a multivariate technique which 
is concerned with the search for a linear transformation that reduces the dimension of 
a given p-dimensional statistical model to q (q<p) dimensions, while maximally pre-
serving the discriminatory information for the several classes within the model.  

Formally, suppose that there are k classes and let iij njx ,,1,   be vectors of ob-

servations from the i-th class, .,,1 ki   Set knnn  1  and let 
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space. FLDA determines a linear mapping L, i.e. a pq  matrix A, that maximizes 
the so-called Fisher criterion FJ : 

                                ))()(()( 1 T
B

T
WF AASAAStrAJ                                 (1) 

where  


k

i
T

iiiB mmmmpS
1

))(( and  


k

i iiW SpS
1

 are the between-

class and the average within-class scatter matrix, respectively; 
T

iij
n

j iij
i

i mxmx
n

S i )()(
1

1
1




  
 is the within-class covariance matrix of class i, 

im  is the mean vector of class i, ip  is it’s a priori probability, and  


k

i iimpm
1

 is 

the overall mean. FLDA maximizes the ratio of between-class scatter to average with-
in-class scatter in the lower-dimensional space. Optimizing (1) comes down to deter-
mining an eigenvalue decomposition of BW SS 1 , and taking the rows of A to equal the 
q eigenvectors corresponding to the q largest eigenvalues. There are no more than 

)1,min( kp  eigenvectors corresponding to nonzero eigenvalues. 
When the number of variables exceeds the sample size, i.e., in the high-

dimensional, low-sample size (HDLSS) settings, the within-class covariance matrix 
WS  is singular and the classical FLDA breaks down. Several extensions have been 

proposed to overcome this problem but all of them possess the data pilling problem 
[8]. To ameliorate this problem, some sparse version of LDA have been proposed. 

In our approach, to circumvent this problem, we adapt the sparse linear discrimi-
nant approach (slda) from [12] that incorporates feature selection in FLDA. The term 
“sparse” means that the discriminant vectors have only a small number of nonzero 
components. The underlying assumption is that, among the large number of variables 
there are many irrelevant or redundant variables for the purpose of classification. This 
method is based on the connection of FLDA and a generalized eigenvalue problem, 
stated formally by the following theorem: 



Theorem [12]: 
Suppose wS is a positive definite matrix and denote its Cholesky decomposition as 

w
T
ww RRS   ( wR  is an upper triangular matrix). Let bH be pk   matrix, qVV ,,1   

( )1,min(  kpq ) denote the eigenvectors of BW SS 1 corresponding to the q largest 

eigenvalues q 1 , ],,[ 1 qA   , ],,[ 1 qB   . For 0  let BA ˆ,ˆ  be 

the solution to the following problem: 
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where: 
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iiib xxnH )(,   is the i-th row of the matrix 

 Tkkb xxnxxnH )(,),( 11   , 
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Then qjj ,1,ˆ  , span the same linear space as  qjV j ,,1,  . 

The following method of regularization is applied in [12] to circumvent the singu-
larity problem and to obtain the sparse linear discriminants: i.e. the first q sparse dis-
criminant directions q ,,1  are defined as the solutions to the following optimiza-

tion problem: 
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1j  is the 1-norm of the vector 

j , the same   is used for all q directions, different j,1 ’s are allowed to penalize 

different discriminant directions. 
Our empirical study suggests that the solution is very stable when   varies in a 

wide range, for example in (0.01, 10000). We can use K-fold cross validation (CV) 
[11] to select the optimal parameters j,1 , but when the dimension of the input data is 

very large, the numerical algorithm becomes time consuming and we can let 
q,11,1   .  The tuning parameter   controls the strength of the regularization of 

the matrix wS , the large values will bias too much wS  towards identity matrix (high 
degree of regularization). In our empirical studies, we find that the results are not 
sensitive to the choice of   if a small value that is less than 0.1 is used, in our studies 
we set 05.0 . More careful studies of choice of  are left for future research. 

The above problem can be numerically solved by alternating optimization over A 
and B [12] and the resulting algorithm is summarized below. 
 

*** 
Regularized sparse LDA ( rSLDA) algorithm (based on [12]): 



 
1. Form the matrices from the input data: 
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2. Compute upper triangular matrix wR  from the Cholesky decomposition of: 
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3. Solve the q independent optimization problems  
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4. Compute SVD: 
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5. Repeat steps 3 and 4 until converges. 
 

*** 

3 Protein-protein interaction classification method  

To characterize properties of protein interaction, we proposed to use the binding free 
energies. These were computed using FastContact [4], which obtains their fast esti-
mates. FastContact delivers the electrostatic energy, solvation free energy, and the top 
20 maximum and minimum values for: 

1. residues contributing  to the binding free energy,  
2. ligand residues contributing to the solvation free energy,  
3. ligand residues contributing to the electrostatic energy,  
4. receptor residues contributing to the solvation free energy,  
5. receptor residues contributing to the electrostatic energy,  
6. receptor-ligand residue solvation constants, 
7. receptor-ligand residue electrostatic constants.  



Thus, all these values and the total solvation and electrostatic energy values compose 
a total of 282 features characterizing interaction. 

To create a dataset for classification, we used the pre-classified dataset from previ-
ous study [9] containing 62 transient and 75 obligate complexes as two different clas-
ses for classification. Each complex is listed in the form of chains for ligand and re-
ceptor respectively. The relevant data about the structure of each complex was ob-
tained from the Protein Data Bank (PDB) [1] and then obtaining the 282 features by 
invoking FastContact. 

Due to the fact that the number of features (282) is greater than the number of 
samples in a dataset (137), we have HDLSS setting, so we apply sparse regularized 
linear discriminant analysis for the calculation of discriminant directions, i.e. the algo-
rithm sparsed rLDA described above. 

For the classification of the samples in the new discriminant space, we applied the 
nearest centroid method [11] as the classification algorithm. 

4 Rapid estimation of contact and binding free energies  

The estimation of contact and binding free energies may be in general a time consum-
ing job. One of components of the binding energy is electrostatic energy. This term 
applies to a system of charges and is defined as the work necessary to move all the 
electric charges from infinity to positions occupied in the analyzed system. This work 
does not depend on the path traveled by the charges and is one of properties of a static 
arrangement of charges in space. Electrostatic interaction works on relatively long 
distances [7]. For proteins, it refers to the interaction between electrically charged 
atoms in different proteins or interactions between charges in the surface of the pro-
tein and charges in the environment. The exact computation of this energy for each 
possible conformation would be time consuming. 

We have used a method called FastContact, developed by Camacho et al. [4,3]. 
The binding energy is computed as a sum of the electrostatic potential and the 
desolvation free energy in proteins: ndesolvatioticelectrostabinding GEG  . In this formula, 

ticelectrostaE is the standard intermolecular Coulomb electrostatic potential with relative 
permittivity varying with the distance r and equal to 4r. The term ndesolvatioG includes 
basic features of the desolvation free energy in proteins: hydrophobic interactions, 
self-energy change resulting from desolvating charge on polar atom groups and side-
chain entropy loss. The ndesolvatioG term is calculated as a sum of atomic contact po-
tentials (ACP) between all pairs of atoms, where the first atom belongs to the recep-
tor, the second to the ligand. Each term of this sum is additionally multiplied by a 
function g(r) depending on the distance r between involved atoms. For r > 7 Å the 
value is 0, for r < 5 Å is 1 and between 5 Å and 7 Å g(r) is a smooth function. These 
ACPs are defined for 18 atom types. The function g(r) makes possible faster compu-
tation by zeroing interactions between distant atoms. 

 



5 Experimental results  

In our experiments we have used the dataset of 137 protein complexes described in 
[13]. 75 samples in this dataset belong to the first class (i.e. “obligate interactions”) 
and 62 samples to the second class (i.e. “non-obligate interactions”). This dataset is 
randomly divided into a “training set” and “testing set” in a ratio of 4:1. 

As we have only two classes (k=2), there is only one discriminant direction 1  
(q=1). Using all variables in constructing the discriminant vector 1  might cause the 
overfitting of the training data, resulting in high testing error rate. Moreover it is 
computationally demanding, so sparsification would be a good choice. 

Denote the number of significant variables involved in specifying the discriminant 
direction 1  (i.e. giving the best prediction), to be m. To find these most significant 
variables we have performed the experiment with varying values of m. For a given 
value of m, only the m maximum values of the coordinates of the vector 1  (so called 
beta values) are left, the rest is zeroed. 

Fig. 2 shows the components of vector 1  obtained by the SLDA algorithm in one 
of experiments converted to the absolute values and sorted in the ascending order.  

We leave only m biggest values, zeroing all others. We keep track of indices of 
these biggest values and modify the original 1  leaving only m biggest values. These 
values are used to cast the original 282-dimensional vector onto a one-dimensional 
space.  The projection of the samples from the protein dataset uses only these m non-
zero coefficients. 

Then, classification is performed in such new discriminant space by the nearest 
centroid method. 

The results are shown in Fig. 1. We can observe that the error rate of the nearest 
mean classifier grows rapidly and then decreases with the rise of m, up to 28 (error = 
~25% ±5 measured on the testing set). Then, for bigger values of m, almost a constant 
error rate was observed. 

From the plot it is clear that if we specify m=28 as the number of component vari-
ables in discriminant vector 1  - sparse LDA algorithm can discriminate the two 
classes fairly well (the classifier performance = ~75% ±5). 

These 28 input features (“selected” by the rslda algorithm) are the most significant 
for classification. These are the following (corresponding to the ascending order of 
the absolute value of the coefficients composing vector 1 ): 

202 198 281 200 48 42 243 203 47 133 128 121 161 160 
     157 132 49 156 46 134 241 131 155 158 127 119 135 41 

Among these 28 features – 13 are from the receptor residues contributing to the 
desolvation free energy, but these are not from the beginning of the above list. It can 
be observed that in each of the 7 groups of energetic features – only features with 
extreme (min or max) contribution to the energy are always selected. The features 
from the beginning of the list are those from the receptor residues contributing to the 
electrostatics energy. One may conclude that electrostatic energy is the most im-
portant in the prediction of obligate/non-obligate protein-protein interactions. Electro-



static energy involves a long-range interaction and occur between charged atoms of 
two interacting proteins. 

Thus, the rslda algorithm does suggest which constituents are the most important in 
the classification of interactions. 

 
Fig. 1.  The average classification error rate as a function of the number of variables using 
nearest centroid method [10] on the projected data (based on 5 random partitions of the dataset 
into training and test) – the local minimum is at 28 

6 Conclusions 

We have proposed a classification approach for obligate/non-obligate (transient) pro-
tein-protein complexes. We have used regularized version of sparse linear discrimi-
nant analysis algorithm [12] for feature extraction as well as for input variable selec-
tion. To discriminate between two types of protein interactions: obligate and non-
obligate, we have used the “energetic features”. These are based on the binding free 
energy defined as the sum of the desolvation and electrostatic energies. These were 
computed effectively using the package FastContact [4]. The results on the protein-
protein interactions dataset showed that using only 28 from 282 input variables ena-
bles the classification of the mentioned two types of interactions with the performance 
of 75%. Among the most important features are those from residues contributing to 
the electrostatic energy. 

The hypothesis on the importance of the electrostatic energy in the prediction of 
obligate/non-obligate protein-protein interactions should be confirmed by the addi-
tional experiments on bigger protein datasets. This will be the subject of our future 
research. 

References 

1. Berman H. et al. (2000) The Protein Data Bank. Nucleid Acid Research 28, 235-242. 
2. Bordner A., Abagyan R. (2005) Statistical analysis and prediction of protein-protein inter-

faces. Proteins 60(3), 353-366. 



3. Camacho C. J., Gatchell D. W., Kimura S. R., Vajda S. (2000) Scoring Docked Confor-
mations Generated by Rigid-Body Protein-Protein Docking. PROTEINS: Structure, Func-
tion, and Genetics 40, 525–537. 

4. Camacho C., Zhang C. (2005) FastContact: rapid estimate of contact and binding free en-
ergies. Bioinformatics 21(10), 2534-2536. 

5. Fukunaga K. (1990) Introduction to statistical pattern recognition. New York: Academic 
Press. 

6. Jones S., Thornton J.M. (1996) Principles of protein-protein interactions. Proc. Natl. 
Acad. Sci. USA 93(1), 13-20. 

7. Maleki M., Vasudev G., Rueda L. (2013) The role of electrostatic energy in prediction of 
obligate protein-protein interactions. Proteome Sci., 11 (Suppl. 1) (2013), p. S11. 

8. Marron J. et al. (2007). Distance-weighted discrimination. Journal of American Statistical 
Association, 102, 1267-1273. 

9. Rueda L. et al. (2010) Biological protein-protein interaction prediction using binding free 
energies and linear dimensionality reduction. In: Dijkstra T., et al. (eds): PRIB 2010, 
LNBI 6282, 383-394, Springer Berlin. 

10. Skrabanek L. et al (2008) Computational prediction of protein-protein interactions. Mo-
lecular Biotechnology, 38(1), 1-17. 

11. Stąpor K. (2011) Classification methods in computer vision. PWN Warszawa (in Polish). 
12. Qiao Z., Zhou L., Huang J. (2009) Sparse linear discriminant analysis with applications to 

high dimensional low sample size data. IAENG Int. Journal of Applied Mathematics, 39, 
1. 

13. Zhou H., Shan Y. (2001) Prediction of protein-protein interaction sites from sequence pro-
file and residue neighbor list. Proteins 44(3), 336-343. 

14. Zhu H., et al. (2006) NoxClass: prediction of protein-protein interaction types. BMC Bio-
informatics 7(27).  

 


