
HAL Id: hal-01637464
https://inria.hal.science/hal-01637464

Submitted on 17 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Harmony Search for Self-configuration of Fault–Tolerant
and Intelligent Grids

Jerzy Balicki, Waldemar Korlub, Jacek Paluszak, Maciej Tyszka

To cite this version:
Jerzy Balicki, Waldemar Korlub, Jacek Paluszak, Maciej Tyszka. Harmony Search for Self-
configuration of Fault–Tolerant and Intelligent Grids. 15th IFIP International Conference on Com-
puter Information Systems and Industrial Management (CISIM), Sep 2016, Vilnius, Lithuania. pp.566-
576, �10.1007/978-3-319-45378-1_50�. �hal-01637464�

https://inria.hal.science/hal-01637464
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Harmony search for self-configuration

of fault-tolerant and intelligent grids

J. Balicki
1
, W. Korłub

2
, J. Paluszak

2
, M. Tyszka

2

1Faculty of Mathematics and Information Science, Warsaw University of Technology,

Koszykowa St. 75, 00-662 Warsaw, Poland

 2Faculty of Telecommunications, Electronics and Informatics, Gdańsk University of Technol-

ogy, Narutowicza St. 11/12, 80-233 Gdańsk, Poland,

balicki@eti.pg.gda.pl, waldemar.korlub@pg.gda.pl, jpaluszak@gmail.com,

tyszka.maciej@gmail.com

Abstract. In this paper, harmony search algorithms have been proposed to self-

configuration of intelligent grids for big data processing. Self-configuration of

computer grids lies in the fact that new computer nodes are automatically con-

figured by software agents and then integrated into the grid. A base node works

due to several configuration parameters that define some aspects of data com-

munications and energy power consumption. We propose some optimization

agents that are based on harmony search to find a suboptimal configuration

of fault-tolerant grids processing big data. Criteria such as probability that all

tasks meet their deadlines and also a reliability of grid are considered. Finally,

some experimental results have been considered.

1 Introduction

An intelligent grid is supposed to manage its resources to meet the task requirements

on the way to achieving the common objective. Self-configuration of computer grids

lies in the fact that new computer nodes are automatically configured by software

agents and then integrated into the grid. The whole process of self-configuration is

similar to the "plug-and-play" rule for some operating systems. However, configuring

agents launch connectivity and download some configuration parameters. If a new

computer node is added to the middleware layer and powered on, it is instantly identi-

fied and registered by configuration agents.

A base node works due to several configuration parameters that define some as-

pects of data communications and energy power consumption. These parameters can

be improved to change grid behavior, based on some administrator observations. An-

other way is to delegate this competences to optimization agents they find the most

adjusted configuration to the workload and resource using. One of the most common-

ly used criterion of grid behavior is its reliability that should be maximized. The main

dilemma is the fact that this problem is NP-hard and it is impossible to find an opti-

mal configuration for hundreds of nodes.

mailto:jpaluszak@gmail.com

In the presented model, we propose some optimization agents that are based on

harmony search to find a suboptimal configuration of fault-tolerant grids processing

big data. A fault-tolerant grid deals with failures of its nodes and software where each

node has some duplicated servers associated with its [38]. One node is the primary,

and some associated nodes are dedicated for backup [18]. Tasks are performed by

primary and backup servers, concurrently. Another model of grid is based on assump-

tion that there are no fault-tolerant nodes. A grid node cooperates with other nodes as

backups. In case of a node failing, all tasks allocated to this server are re-allocated to

one of its backups. Some algorithms of resource using take into account the fail-

ure/repair rates and the fault-tolerant overheads. These algorithms can improve the

grid performance meaningfully, but the quality of configuration and delay for its

founding are still under construction [20, 42].

In this paper, an outlook of harmony search metaheuristics is discussed in Section

2. Moreover, specific aspects for big data are presented in Section 3. Especially, Map-

Reduce model for BD processing is studied in Section 4. Then, intelligent agents

based on harmony search for improvement of fault-tolerant measure are described in

Section 5. Moreover, some outcomes from numerical experiments are interpreted in

Section 6.

2 Outlook of Harmony Search Metaheuristics

Harmony search can be applied for self-configuration support of some fault-tolerant

grids. Harmony search metaheuristics HS models phenomena related to the process of

playing on musical instruments [41]. An optimization process can be compared to

a process of selection the best sound while improvising jazz musicians. Similarly,

a conductor of orchestra searches the best harmony of several instruments or

a compositor creates the best melody for different music lanes [1]. The HM concept

was suggested by Zong Woo Geem [15, 45]. Figure 1 shows a diagram of the basic

version of the HS metaheuristics [2].

The HS algorithm determines a solution for one-criterion optimization problem

with continuous decision variables that can be formulated, as follows [4]:

 min𝑥∈𝑿 𝑓(𝑥), (1)

where:

f(x) – a value of an objective function f for solution x∈ 𝑿, 𝑓: 𝑹𝐽𝑚𝑎𝑥 → 𝑹;

x – a vector of decision variables, x=[x1,…,xj,…,𝑥𝐽𝑚𝑎𝑥
]

T
 for 𝑙𝑗 ≤xj ≤ 𝑢𝑗 , j= 1, 𝐽𝑚𝑎𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅;

𝐽𝑚𝑎𝑥 – a number of decision variables;

X – a set of decision variables.

The lower limit vector is 𝑙 = [𝑙1 , … , 𝑙𝑗 , … , 𝑙𝐽𝑚𝑎𝑥
]𝑇 and the upper limit vector is

𝑢 = [𝑢1 , … , 𝑢𝑗 , … , 𝑢𝐽𝑚𝑎𝑥
]𝑇 , wherein 𝑙𝑗 ∈ 𝑹, 𝑢𝑗 ∈ 𝑹, 𝑙𝑗 ≤ 𝑢𝑗 for 𝑗 = 1, 𝐽𝑚𝑎𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅. An

initialization the harmonic memory HM (Fig. 1) occurs after setting the following

parameters:

• HMS - Harmony Memory Size;

• HMCR - Harmony Memory Considering Rate is the probability of a random

event that the value of the decision variable during improvisation (constructing a solu-

tion) is drawn from the memory HM; an uniform distribution is assumed to draw;

• PAR - Pitch Adjusting Rate is the rate of the randomly selected decision variable;

• NGmax - Number of Generations (Improvisations);

• BW - Bandwidth of Generations that is the width of the interval to modify the

value of the decision variable that is randomly selected from memory; the new value

of the decision variable is modified by adding the value from the range [-BW, BW].

Fig. 1. A diagram of the harmony search algorithm [29]

In memory HM, there are stored HMS randomly generated solutions with Jmax co-

ordinates and the corresponding fitness function values fitness(x). If restrictions are

imposed on the solution, its efficiency is reduced by the appropriate punishment in

Im
p

ro
v

is
at

io
n

Start

HM initialization

PAR

Evaluation of a new harmony x

Can x be added to HM?

Is the stop criterion satisfied?

Stop

Y

N

N

Y

 HMCR

Updating HM by x

case of violation of restrictions. The efficiency of each solution can be increased by

an amount such that the accepted value of non-negative. The basic version of the

harmony search algorithm has been repeatedly modified to adjust to solve some opti-

mization problems [22].

3 Intelligent Agent Architecture for Big Data

Big data (an acronym BD) is related to databases with petabyte capacities 10
15

 B. 10

terabytes is a large capacity for a financial transaction system, but it is too small to

test a web search engine. BD is uncooperative to work with using some relational

database management systems like DB2, INGRES, Oracle, Sybase or SQL Server.

Big data requires hundred thousand processors for data processing like supercomput-

ers [36], grids [11] or clouds [8]. Especially, cloud architectures are preferred to BD

processing because of commercial data centers with expensive information.

Tasks developed SQL-like queries to BD are massive parallel because the short

time of a query performing is required. For instance, a query for multi-terabyte da-

tasets at BigQuery service in Google Cloud is performed during few seconds.

BigQuery service is scalable cloud like IaaS Infrastructure as a Service. Furthermore,

this RESTful web service enables interactive analysis cooperating with Google Stor-

age [16]. The most important tasks are related to analytics, capture, search, sharing,

storage, and visualizing. Moreover, some BD mining tasks can be used to find predic-

tions as well as some descriptive statistics tasks can be developed for business intelli-

gence [23].

BD can be characterized by the 4Vs model due to high volume, extraordinary ve-

locity, great data variety, and veracity. Data can be captured via Internet of Things

from different sensors like smartphones, tablets, microphones, cameras, computers,

radars, satellites, radio-telescopes and the other sensors. Moreover, data can be cap-

tured from social networks. A storage capacity can achieve many petabytes for one

volume that is high volume [26]. MongoDB is one of perspective solutions for BD

because the NoSQL database supports data stored to different nodes. Mongo DB can

cooperate with massively parallel cluster with lots of CPUs, GPUs, RAM units and

disks [27]. A crucial problem with BD is related to reading from a storage system to

obtain the rapid answer on a complex query that is divided on some parallel opera-

tions acting on diverse data. Big data can be spread over some partitions that run on

some separate modes with own table spaces, logs, and configurations. In that case,

a query is performed on all partitions concurrently [35, 44].

In an experimental grid called Comcute, two kinds of intelligent tasks have been

considered to implement a middleware layer [13]. This grid is dedicated to parallel

computting with using volunteer computing. Agents for data management send data

from source databases to distribution agents. Then, distribution agents cooperate with

web computers to calculate results and return them to management agents. Both types

of agents can autonomously move from one host to another to improve quality of grid

resource using. Moreover, the other agents based on harmony search have been intro-

duced to optimize big data processing regarding some fault-tolerant aspects. These

http://en.wikipedia.org/wiki/Web_service

harmony search schedulers can cooperate with distributors and managers to give them

information about optimal workload in a grid [9, 10].

The lambda architecture is developed for real-time BD analysis [26]. The batch

layer of this architecture supports offline data processing by MapReduce framework

[39]. This layer produces batch views of data, which can be exposed to external appli-

cations (Fig. 2). The serving layer offers prepared views to clients. The speed layer is

responsible for real-time processing of data streams. It analyses data that was not yet

processed by the batch layer. Speed layer produces real-time views that can be cou-

pled with batch views to create complete representation of the extracted knowledge

[19].

Fig. 2. Multi-agent real-time processing utilizing lambda architecture [37]

The lambda architecture can be defined in terms of a heterogeneous multiagent

system [37]. An implementation requires integration of a few components: one for

batch processing, another one for serving views, a different solution for real-time

stream analysis and a component that merges real-time views with batch views [43].

The use of multiagent environment will provide a common way for information

exchange between different component and a common execution model [40]. The

differences between individual components of the lambda architecture lead to inher-

ently heterogeneous realizations so the ability to handle diversity in agent systems in

another motivation for this approach [22].

4 Map-Reduce Model for Fault-Tolerant Grid

Grid and volunteer computing systems are different from super-computing systems

because inexpensive hardware commodities have been widely deployed, which is

helpful to the scalability. But it also brings a large number of hardware failures.

Moreover, many machines constantly restart to update systems, which cause huge

software failures [14]. Similarly, the popular cloud computing model MapReduce also

has to overcome the failures [5, 7].

When a job consists of thousands tasks, the possibility of a few failed tasks is very

high. Several fault-tolerant applications can be executed in the platform, which can

use the result despite of some failed tasks. To support such fault-tolerant computing,

an open source implementation of MapReduce can be applied. Hadoop has already

provided the interface, by which the job can tolerate a given percentage of failed

tasks. It was observed that optimizing the availability of individual task is not an ef-

fective approach for ensuring the high availability of these multi-task jobs [30].

However, Hadoop implicitly assume the nodes are homogeneous, but it doesn’t

hold in practice. These motivate to propose an optimal multi-task allocation scheme

towards heterogeneous environments, which can tolerant a given percentage of fail-

ures to total tasks [28]. In this case the reduce function’s responsibility is to sum the

each key’s values [34].

MapReduce is applied to solve several problems like large-scale machine learning

for the Google News. Moreover, an extraction of data is used to produce reports of

popular queries and extraction of geographical locations from a large corpus of web

pages for localized search. In 2004, Google changed an indexing system that produces

data used for web search service to system that used MapReduce. The new indexing

system takes input documents that have been retrieved from a crawling system store

as a set of files, and then they are processed by from five to ten MapReduce opera-

tions. It is easier to operate because of automatic resolving problems like machine

failures, slow machines and networking hiccups [17, 25].

5 Harmony Search Agents for Local Grid Self-configuration

Intelligent agents can optimize a grid resource management for tasks related to big

data queries. An agent based on harmony search metaheuristics AHS can reconfigure

a local part of a grid. The whole grid is divided on zones and the AHS is assigned to

its grid zone to support self-optimization of a system. The main part of AHS is

a multi-objective scheduler for tasks from a middleware layer. This scheduler opti-

mizes a probability that all tasks meet their deadlines, and the grid reliability [12]. We

assume that each computer and each link between them are assumed to fail inde-

pendently with exponential rates. It is preferred to allocate modules to computers on

which failures are least likely to occur during the execution of task modules [3]. The

rationale assumption is that repair and recovery times are largely implementation-

dependent. Moreover, repair and recovery routines usually introduce too high time

overheads to be used on-line for time-critical applications [6].

The overhead performing time of the task Tv by the computer

},...,,...,{ 1 Jjj   is represented by tvj. Let the computer j be failed inde-

pendently due to an exponential distribution with rate j . Computers can be allocated

to nodes and also tasks can be assigned to them in purpose to maximize the reliability

function R, as below [21]:

),exp()(
1 1 1


  


V

v

I

i

J

j

ij

m

vivjj xxtxR  (1)

where








 , the toassigned is if1

case.other in the0
iwj

xij








, toassigned is taskif1

case,other thein0
iwvTm

vix

),(xxm .],...,,...,,...,,...,,...,,,...,,...,,...,[1111111
T

IJIjIijJ
m
VI

m
vi

m
I

m xxxxxxxxxx 

Figure 3 shows the relation between the measure of system reliability R and time

of using this system for the chosen two-computer system for λ1=0.001 [TU
-1

] and

λ2=0.002 [TU
-1

].

Fig. 3. The time-depended reliability of two-computer system

6 Task scheduling algorithm

Let the distributed application An starts running after λn and complete it before δn

[31]. Figure 4 shows an example of the task flow graph for two applications. Task m2

is performed with the probability q in a sub-graph denoted as OR (Fig. 4) and task m3

– with the probability (1-q). Task may be performed at the most Lmax times in a sub-

graph denoted as Loop, and each repetition of this module is performed with the prob-

ability p. The task flow graph is split on some instances to schedule tasks if the sub-

graph OR appears. There are 2Lmax instances for the task graph from Figure 4. The

instance, where task m2 appears and task m5 runs k times, occurs with the probability:

pi=q(1- p) p
k-1

 (2)

An allocation of modules to computers),(xxm creates possibility to schedule

tasks for each computer. Times of task completions (C1,...,Cv,...,CV) can be calculated

for scheduled allocation modules to computers x. Let dv represents the completion

deadline for the vth task. If vv dC  , then the time constraint is satisfied what can be

written as 1)( vv Cd . The state of deadline constraints regarding the ith in-

stance of the flow graph with the set of tasks marked Mi is determined, as below [32]:

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

time

λ1

λ2

λ1+λ2





iv Mm

vvi xCdS))(( . (3)

Probability that all tasks meet their deadlines for K instances of the flow graph is

calculated, as follows [33]:

 
 


K

i Mm

vviD

iv

xCdpxP
1

))(()( . (4)

Fig. 4. A flow graph for two applications

Figure 5 shows an example of a compromise configuration for its middleware zone

in the Comcute grid that was found by the agent based on the harmony search for its

area consisted on 14 modules divided among 2 computers.

Fig. 5. A compromise configuration in the Comcute grid: a) criterion space b) a solution

7 Concluding Remarks and Future Work

Intelligent agents in the middleware of grid can significantly support efficiency of

fault-tolerant self-configuration in grids. Agents based on harmony search can solve

yinf

Start

λ1=10

m1

m3 m2

Stop

δ1=15

q 1-q

Start

λ2=12

m4

Lmax

m5

Stop

δ2=18

p

send
receive

replay

OR Loop

limit

timeP =0.6

Rlimit=0.3

R(x)

timeP

a) b)

NP-hard multi-objective optimization problem of grid resource using to improve the

level of fault-tolerance.

Our future works will focus on testing the other AI algorithms to find fault-tolerant

configurations. Moreover, quantum-inspired algorithm can support big data, too [7].

8 References

1. Afshari S, Aminshahidy B, Pishvaie MR (2011) Application of an improved harmony search algo-
rithm in well placement optimization using streamline simulation. J. Petrol. Sci. Eng., 78:664–678

2. Ahmed AM, Bakar AA, Hamdan AR (2011) Harmony search algorithm for optimal word size in sym-

bolic time series representation. Proc. Conf. on Data Mining and Optimization, Malaysia, pp. 57–62.

3. Ajith AP, Murthy CSR (1998) Algorithms for reliability-oriented module allocation in distributed

computing systems. Journal of System Software, 40:125-138

4. Al-Betar MA, Khader AT, Zaman M (2012) University course timetabling using a hybrid harmony
search metaheuristic algorithm. IEEE Trans. Syst. Man Cybern: Part C: Appl. Rev., 42:66–681

5. Apache Hadoop, http://hadoop.apache.org/, Accessed 15 March 2016

6. Balicki J (2006) Negative selection with ranking procedure in tabu-based multi-criterion evolutionary
algorithm for task assignment. In: Alexandrov VN, VanAlbada GD; Sloot PMA, et al., Proc. the 6th

Int. Conference on Computational Science, Reading, England, Lecture Notes in Computer Science,
3993:863-870

7. Balicki J (2009) An Adaptive Quantum-based Multiobjective Evolutionary Algorithm for Efficient

Task Assignment in Distributed Systems. In: Mastorakis N. et al. (Eds.): Recent Advances in Comput-
er Engineering. Proc. of the 13th WSEAS Int. Conf. on Computers, Rhodes, Greece, 417-422

8. Balicki J, Korłub W, Szymański J, Zakidalski M (2014) Big data paradigm developed in volunteer

grid system with genetic programming scheduler. In: L. Rutkowski et al. (Eds.): Artificial Intelligence
and Soft Computing. Lecture Notes in Computer Science, 8467, Proc. of the 13th Int. Conf. on Artifi-

cial Intelligence and Soft Computing ICAISC, Part II, Zakopane, Poland, June 1-5, 2014, 771-782

9. Balicki J, Kitowski Z (2001) Multicriteria evolutionary algorithm with tabu search for task assign-
ment. In: Zitzler E, Deb K, Thiele L, et al., Proc. the 1st Int. Conference on Evolutionary Multi-

Criterion Optimization, Zurich, Switzerland, Lecture Notes in Computer Science 1993: 373-384

10. Balicki J., Korlub W., Krawczyk H., et al. (2013): Genetic programming with negative selection for
volunteer computing system optimization. In: Paja WA; Wilamowski BM: Proc. the 6th Int. Confer-

ence on Human System Interactions, Gdańsk, Poland, pp. 271-278

11. BOINC. http://boinc.berkeley.edu/. Accessed 15 March 2016
12. Cao L, Gorodetsky V, Mitkas PA (2009) Agent Mining: The Synergy of Agents and Data Mining.

IEEE Intelligent Systems 24:64-72

13. Comcute. http://comcute.eti.pg.gda.pl/. Accessed 25 April 2016
14. Dean J, Ghemawat S (2008) MapReduce: Simplified Data Processing on Large Clusters. Communica-

tions of the ACM 51:1–13

15. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search.
Simulation, 76:60–68

16. Gunarathne T. et al. (2010) Cloud computing paradigms for pleasingly parallel biomedical applica-

tions. Proc. Int. Symp. on High Performance Distributed Computing, Chicago, Illinois, pp. 460-469
17. Guojun L, Ming Z, Fei Y (2010) Large-Scale Social Network Analysis Based on MapReduce. Proc.

Int. Conference on Computational Aspects of Social Networks, pp.487-490

18. Huang Z, Wang C, Liu L, Peng Y (2012) Improve availability of fault-tolerant computing: Optimal
multi-task allocation in MapReduce. Proc. Int. Conf. on Computer Science&Education, 249-254

19. Jennings NR, Wooldridge M (1998) Applications of intelligent agents. In: Jennings NR, Wooldridge M: Intel-

ligent agents, Springer-Verlag, New York, pp. 3-28
20. Kafil M. Ahmad I (1998) Optimal Task Assignment in Heterogeneous Distributed Computing Sys-

tems. IEEE Concurrency, 6:42-51

21. Kartik S, Murthy CSR (1997) Task allocation algorithms for maximizing reliability of distributed

computing systems. IEEE Transactions on Computers, 46:719-724

22. Leyton-Brown K, Shoham Y (2008) Multiagent Systems: Algorithmic, Game-Theoretic, and Logical

Foundations. Cambridge University Press

23. Li HX, Chosler R (2007) Application of Multilayered Multi-Agent Data Mining Architecture to Bank

Domain. Proc. Int. Conf. on Wireless Communications, Networking and Mobile Comp., 6721-6724

24. Manjarres D. et al (2013) A survey on applications of the harmony search algorithm. Engineering
Applications of Artificial Intelligence, 26:1818-1831

25. Mardani S, Akbari MK, Sharifian S (2014) Fraud detection in Process Aware Information systems us-

ing MapReduce. In: Proc. on Information and Knowledge Technology, pp.88-91
26. Marz N, Warren J (2014) Big data - Principles and best practices of scalable realtime data systems.

27. O'Leary DE (2013) Artificial Intelligence and Big Data. IEEE Intelligent Systems 28:96-99

28. Ostrowski DA (2014) MapReduce Design Patterns for Social Networking Analysis. In: Proc. Int. Con-
ference on Semantic Computing, pp.316-319

29. Paluszak J (2015) Optimizing the use of resources in distributed systems with grid architecture. PhD

Dissertation, Gdańsk University of Technology, Gdańsk 2015 (in Polish)
30. Qiu X et al. (2009) Using MapReduce Technologies in Bioinformatics and Medical Informatics. In:

Proc. the Int. Conf. for High Performance Computing, Networking, Storage and Analysis, Portland

31. Sarvari H, Zamanifar K (2010) A self-adaptive harmony search algorithm for engineering and relia-
bility problems. Second Int. Conf. on Comp. Intelligence, Modelling and Simulation, pp. 59–64

32. Schneidewind N (2006) Allocation and analysis of reliability: multiple levels: system, subsystem, and

module, Innovations in System and Software Engineering, Springer London, 2:121-136
33. Shatz SM, Wang JP (1989) Models & algorithms for reliability-oriented task-allocation in redundant

distributed-computer systems. IEEE Transactions On Reliability, 38:16-27.

34. Shvachko K. et al. (2010) The Hadoop distributed file system. In: MSST, pp. 1–10
35. Snijders C, Matzat U, Reips U-D (2012) ‘Big Data’: Big gaps of knowledge in the field of Internet.

International Journal of Internet Science 7:1-5

36. Shwe T, Win A (2008) A fault tolerant approach in cluster computing system. The 5th Int. Conf. on
Electrical Engineering/Electronics, Computer, Telecom. and Information Technology, 1:149-152

37. Twardowski B, Ryzko D (2014) Multi-agent Architecture for Real-Time Big Data Processing. In:
Proc. Int. Conference on Web Intelligence and Intelligent Agent Technologies, Vol.3, pp.333-337

38. Varvarigou T., Trotter J.: Module replication for fault-tolerant real-time distributed systems. IEEE

Transaction on Reliability, Vol. 47, No. 1, 1998, pp. 8-18.
39. Vavilapalli VK (2013): Apache hadoop yarn: Yet another resource negotiator. In: Proc. of the 4th

Annual Symposium on Cloud Computing, New York, USA: pp. 5:1–5:16

40. Verbrugge T, Dunin-Kęplicz B (2010) Teamwork in Multi-Agent Systems. A formal Approach. John
Wiley & Sons

41. Wang L, Li LP (2012) A coevolutionary differential evolution with harmony search for reliability-

redundancy optimization. Expert Syst. Appl., 39:5271–5278
42. Węglarz J, Błażewicz J, Kovalyov M (2006) Preemptable malleable task scheduling problem. IEEE

Transactions on Computers 55:486-490

43. Wooldridge M (2002) Introduction to MultiAgent Systems. John Wiley & Sons
44. Zhou D et al. (2010) Multi-Agent Distributed Data Mining Model Based on Algorithm Analysis and

Task Prediction. In: Proc. 2nd Int. Conf. on Information Engineering and Computer Science, pp.1-4

45. Zou D et al. (2010) A novel global harmony search algorithm for reliability problems. Comput. Ind.
Eng., 58:307–316

