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Abstract. In this paper, harmony search algorithms have been proposed to self-

configuration of intelligent grids for big data processing. Self-configuration of 

computer grids lies in the fact that new computer nodes are automatically con-

figured by software agents and then integrated into the grid. A base node works 

due to several configuration parameters that define some aspects of data com-

munications and energy power consumption. We propose some optimization 

agents that are based on harmony search to find a suboptimal configuration 

of fault-tolerant grids processing big data. Criteria such as probability that all 

tasks meet their deadlines and also a reliability of grid are considered. Finally, 

some experimental results have been considered. 

1 Introduction 

An intelligent grid is supposed to manage its resources to meet the task requirements 

on the way to achieving the common objective. Self-configuration of computer grids 

lies in the fact that new computer nodes are automatically configured by software 

agents and then integrated into the grid. The whole process of self-configuration is 

similar to the "plug-and-play" rule for some operating systems. However, configuring 

agents launch connectivity and download some configuration parameters. If a new 

computer node is added to the middleware layer and powered on, it is instantly identi-

fied and registered by configuration agents.  

A base node works due to several configuration parameters that define some as-

pects of data communications and energy power consumption. These parameters can 

be improved to change grid behavior, based on some administrator observations. An-

other way is to delegate this competences to optimization agents they find the most 

adjusted configuration to the workload and resource using. One of the most common-

ly used criterion of grid behavior is its reliability that should be maximized. The main 

dilemma is the fact that this problem is NP-hard and it is impossible to find an opti-

mal configuration for hundreds of nodes. 
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In the presented model, we propose some optimization agents that are based on 

harmony search to find a suboptimal configuration of fault-tolerant grids processing 

big data. A fault-tolerant grid deals with failures of its nodes and software where each 

node has some duplicated servers associated with its [38]. One node is the primary, 

and some associated nodes are dedicated for backup [18]. Tasks are performed by 

primary and backup servers, concurrently. Another model of grid is based on assump-

tion that there are no fault-tolerant nodes. A grid node cooperates with other nodes as 

backups. In case of a node failing, all tasks allocated to this server are re-allocated to 

one of its backups. Some algorithms of resource using take into account the fail-

ure/repair rates and the fault-tolerant overheads. These algorithms can improve the 

grid performance meaningfully, but the quality of configuration and delay for its 

founding are still under construction [20, 42]. 

In this paper, an outlook of harmony search metaheuristics is discussed in Section 

2. Moreover, specific aspects for big data are presented in Section 3. Especially, Map-

Reduce model for BD processing is studied in Section 4. Then, intelligent agents 

based on harmony search for improvement of fault-tolerant measure are described in 

Section 5. Moreover, some outcomes from numerical experiments are interpreted in 

Section 6. 

2 Outlook of Harmony Search Metaheuristics  

Harmony search can be applied for self-configuration support of some fault-tolerant 

grids. Harmony search metaheuristics HS models phenomena related to the process of 

playing on musical instruments [41]. An optimization process can be compared to 

a process of selection the best sound while improvising jazz musicians. Similarly, 

a conductor of orchestra searches the best harmony of several instruments or 

a compositor creates the best melody for different music lanes [1]. The HM concept 

was suggested by Zong Woo Geem [15, 45]. Figure 1 shows a diagram of the basic 

version of the HS metaheuristics [2]. 

The HS algorithm determines a solution for one-criterion optimization problem 

with continuous decision variables that can be formulated, as follows [4]: 

  min𝑥∈𝑿 𝑓(𝑥),                                                           (1) 

where: 

f(x) – a value of an objective function f for solution x∈ 𝑿,  𝑓: 𝑹𝐽𝑚𝑎𝑥 → 𝑹; 

x – a vector of decision variables, x=[x1,…,xj,…,𝑥𝐽𝑚𝑎𝑥
]

T
 for 𝑙𝑗 ≤xj ≤ 𝑢𝑗  , j= 1, 𝐽𝑚𝑎𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅; 

𝐽𝑚𝑎𝑥 – a number of decision variables; 

X – a set of decision variables. 

The lower limit vector is  𝑙 = [𝑙1 , … , 𝑙𝑗 , … , 𝑙𝐽𝑚𝑎𝑥
]𝑇 and the upper limit vector is 

𝑢 = [𝑢1 , … , 𝑢𝑗 , … , 𝑢𝐽𝑚𝑎𝑥
]𝑇 , wherein 𝑙𝑗 ∈ 𝑹,  𝑢𝑗 ∈ 𝑹, 𝑙𝑗 ≤ 𝑢𝑗  for 𝑗 = 1, 𝐽𝑚𝑎𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅. An 

initialization the harmonic memory HM (Fig. 1) occurs after setting the following 

parameters: 



• HMS - Harmony Memory Size; 

• HMCR - Harmony Memory Considering Rate is the probability of a random 

event that the value of the decision variable during improvisation (constructing a solu-

tion) is drawn from the memory HM; an uniform distribution is assumed to draw; 

• PAR - Pitch Adjusting Rate is the rate of the randomly selected decision variable; 

• NGmax - Number of Generations (Improvisations); 

• BW - Bandwidth of Generations that is the width of the interval to modify the 

value of the decision variable that is randomly selected from memory; the new value 

of the decision variable is modified by adding the value from the range [-BW, BW]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A diagram of the harmony search algorithm [29] 

In memory HM, there are stored HMS randomly generated solutions with Jmax co-

ordinates and the corresponding fitness function values fitness(x). If restrictions are 

imposed on the solution, its efficiency is reduced by the appropriate punishment in 
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case of violation of restrictions. The efficiency of each solution can be increased by 

an amount such that the accepted value of non-negative. The basic version of the 

harmony search algorithm has been repeatedly modified to adjust to solve some opti-

mization problems [22]. 

3 Intelligent Agent Architecture for Big Data  

Big data (an acronym BD) is related to databases with petabyte capacities 10
15

 B. 10 

terabytes is a large capacity for a financial transaction system, but it is too small to 

test a web search engine. BD is uncooperative to work with using some relational 

database management systems like DB2, INGRES, Oracle, Sybase or SQL Server. 

Big data requires hundred thousand processors for data processing like supercomput-

ers [36], grids [11] or clouds [8]. Especially, cloud architectures are preferred to BD 

processing because of commercial data centers with expensive information. 

Tasks developed SQL-like queries to BD are massive parallel because the short 

time of a query performing is required. For instance, a query for multi-terabyte da-

tasets at BigQuery service in Google Cloud is performed during few seconds. 

BigQuery service is scalable cloud like IaaS Infrastructure as a Service. Furthermore, 

this RESTful web service enables interactive analysis cooperating with Google Stor-

age [16]. The most important tasks are related to analytics, capture, search, sharing, 

storage, and visualizing. Moreover, some BD mining tasks can be used to find predic-

tions as well as some descriptive statistics tasks can be developed for business intelli-

gence [23].  

BD can be characterized by the 4Vs model due to high volume, extraordinary ve-

locity, great data variety, and veracity. Data can be captured via Internet of Things 

from different sensors like smartphones, tablets, microphones, cameras, computers, 

radars, satellites, radio-telescopes and the other sensors. Moreover, data can be cap-

tured from social networks. A storage capacity can achieve many petabytes for one 

volume that is high volume [26]. MongoDB is one of perspective solutions for BD 

because the NoSQL database supports data stored to different nodes. Mongo DB can 

cooperate with massively parallel cluster with lots of CPUs, GPUs, RAM units and 

disks [27].  A crucial problem with BD is related to reading from a storage system to 

obtain the rapid answer on a complex query that is divided on some parallel opera-

tions acting on diverse data. Big data can be spread over some partitions that run on 

some separate modes with own table spaces, logs, and configurations.  In that case, 

a query is performed on all partitions concurrently [35, 44]. 

In an experimental grid called Comcute, two kinds of intelligent tasks have been 

considered to implement a middleware layer [13]. This grid is dedicated to parallel 

computting with using volunteer computing. Agents for data management send data 

from source databases to distribution agents. Then, distribution agents cooperate with 

web computers to calculate results and return them to management agents. Both types 

of agents can autonomously move from one host to another to improve quality of grid 

resource using. Moreover, the other agents based on harmony search have been intro-

duced to optimize big data processing regarding some fault-tolerant aspects. These 

http://en.wikipedia.org/wiki/Web_service


harmony search schedulers can cooperate with distributors and managers to give them 

information about optimal workload in a grid [9, 10].  

The lambda architecture is developed for real-time BD analysis [26]. The batch 

layer of this architecture supports offline data processing by MapReduce framework 

[39]. This layer produces batch views of data, which can be exposed to external appli-

cations (Fig. 2). The serving layer offers prepared views to clients. The speed layer is 

responsible for real-time processing of data streams. It analyses data that was not yet 

processed by the batch layer. Speed layer produces real-time views that can be cou-

pled with batch views to create complete representation of the extracted knowledge 

[19].  

 

Fig. 2. Multi-agent real-time processing utilizing lambda architecture [37] 

The lambda architecture can be defined in terms of a heterogeneous multiagent 

system [37]. An implementation requires integration of a few components: one for 

batch processing, another one for serving views, a different solution for real-time 

stream analysis and a component that merges real-time views with batch views [43].  

The use of multiagent environment will provide a common way for information 

exchange between different component and a common execution model [40]. The 

differences between individual components of the lambda architecture lead to inher-

ently heterogeneous realizations so the ability to handle diversity in agent systems in 

another motivation for this approach [22].  

4 Map-Reduce Model for Fault-Tolerant Grid  

Grid and volunteer computing systems are different from super-computing systems 

because inexpensive hardware commodities have been widely deployed, which is 

helpful to the scalability. But it also brings a large number of hardware failures. 

Moreover, many machines constantly restart to update systems, which cause huge 

software failures [14]. Similarly, the popular cloud computing model MapReduce also 

has to overcome the failures [5, 7].  



When a job consists of thousands tasks, the possibility of a few failed tasks is very 

high. Several fault-tolerant applications can be executed in the platform, which can 

use the result despite of some failed tasks. To support such fault-tolerant computing, 

an open source implementation of MapReduce can be applied. Hadoop has already 

provided the interface, by which the job can tolerate a given percentage of failed 

tasks. It was observed that optimizing the availability of individual task is not an ef-

fective approach for ensuring the high availability of these multi-task jobs [30].  

However, Hadoop implicitly assume the nodes are homogeneous, but it doesn’t 

hold in practice. These motivate to propose an optimal multi-task allocation scheme 

towards heterogeneous environments, which can tolerant a given percentage of fail-

ures to total tasks [28]. In this case the reduce function’s responsibility is to sum the 

each key’s values [34]. 

MapReduce is applied to solve several problems like large-scale machine learning 

for the Google News. Moreover, an extraction of data is used to produce reports of 

popular queries and extraction of geographical locations from a large corpus of web 

pages for localized search. In 2004, Google changed an indexing system that produces 

data used for web search service to system that used MapReduce. The new indexing 

system takes input documents that have been retrieved from a crawling system store 

as a set of files, and then they are processed by from five to ten MapReduce opera-

tions. It is easier to operate because of automatic resolving problems like machine 

failures, slow machines and networking hiccups [17, 25]. 

5 Harmony Search Agents for Local Grid Self-configuration 

Intelligent agents can optimize a grid resource management for tasks related to big 

data queries. An agent based on harmony search metaheuristics AHS can reconfigure 

a local part of a grid. The whole grid is divided on zones and the AHS is assigned to 

its grid zone to support self-optimization of a system. The main part of AHS is 

a multi-objective scheduler for tasks from a middleware layer. This scheduler opti-

mizes a probability that all tasks meet their deadlines, and the grid reliability [12]. We 

assume that each computer and each link between them are assumed to fail inde-

pendently with exponential rates. It is preferred to allocate modules to computers on 

which failures are least likely to occur during the execution of task modules [3]. The 

rationale assumption is that repair and recovery times are largely implementation-

dependent. Moreover, repair and recovery routines usually introduce too high time 

overheads to be used on-line for time-critical applications [6]. 

The overhead performing time of the task Tv by the computer 

},...,,...,{ 1 Jjj   is represented by tvj. Let the computer j  be failed inde-

pendently due to an exponential distribution with rate j . Computers can be allocated 

to nodes and also tasks can be assigned to them in purpose to maximize the reliability 

function R, as below [21]: 
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Figure 3 shows the relation between the measure of system reliability R and time 

of using this system for the chosen two-computer system for λ1=0.001 [TU
-1

] and 

λ2=0.002 [TU
-1

]. 

 

Fig. 3. The time-depended reliability of two-computer system 

6 Task scheduling algorithm  

Let the distributed application An starts running after λn and complete it before δn 

[31]. Figure 4 shows an example of the task flow graph for two applications. Task m2 

is performed with the probability q in a sub-graph denoted as OR (Fig. 4) and task m3 

– with the probability (1-q). Task may be performed at the most Lmax times in a sub-

graph denoted as Loop, and each repetition of this module is performed with the prob-

ability p.  The task flow graph is split on some instances to schedule tasks if the sub-

graph OR appears. There are 2Lmax instances for the task graph from Figure 4. The 

instance, where task m2 appears and task m5 runs k times, occurs with the probability:  

 

pi=q(1- p) p 
k-1

                                                        (2) 

An allocation of modules to computers ),( xxm  creates possibility to schedule 

tasks for each computer. Times of task completions (C1,...,Cv,...,CV) can be calculated 

for scheduled allocation modules to computers x. Let dv represents the completion 

deadline for the vth task. If vv dC  , then the time constraint is satisfied what can be 

written as 1)(  vv Cd . The state of deadline constraints regarding the ith in-

stance of the flow graph with the set of tasks marked Mi is determined, as below [32]: 
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Probability that all tasks meet their deadlines for K instances of the flow graph is 

calculated, as follows [33]:  
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Fig. 4. A flow graph for two applications 

Figure 5 shows an example of a compromise configuration for its middleware zone 

in the Comcute grid that was found by the agent based on the harmony search for its 

area consisted on 14 modules divided among 2 computers. 

 

  

Fig. 5. A compromise configuration in the Comcute grid: a) criterion space b) a solution 

7 Concluding Remarks and Future Work 

Intelligent agents in the middleware of grid can significantly support efficiency of 

fault-tolerant self-configuration in grids. Agents based on harmony search can solve 
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NP-hard multi-objective optimization problem of grid resource using to improve the 

level of fault-tolerance.  

Our future works will focus on testing the other AI algorithms to find fault-tolerant 

configurations. Moreover, quantum-inspired algorithm can support big data, too [7]. 
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