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Abstract. Complex active systems have been proposed as a formalism for mod-
eling real dynamic systems that are organized in a hierarchy of behavioral abstrac-
tions. As such, they constitute a conceptual evolution of active systems, a class of
discrete-event systems introduced into the literature two decades ago. A complex
active system is a hierarchy of active systems, each one characterized by its own
behavior expressed by the interaction of several communicating automata. The in-
teraction between active systems within the hierarchy is based on special events,
which are generated when specific behavioral patterns occur. Recently, the task of
diagnosis of complex active systems has been studied, with an efficient diagnosis
technique being proposed. However, the observation of the system is assumed to
be linear and certain, which turns out to be an over-assumption in real, large, and
distributed systems. This paper extends diagnosis of complex active systems to
cope with uncertain temporal observations. An uncertain temporal observation is
a DAG where nodes are marked by candidate labels (logical uncertainty), whereas
arcs denote partial temporal ordering between nodes (temporal uncertainty). By
means of indexing techniques, despite the uncertainty of temporal observations,
the intrinsic efficiency of the diagnosis task is retained in both time and space.

Keywords: Complex Systems; Discrete-Event Systems; Fault Diagnosis; Com-
municating Automata; Uncertainty.

1 Introduction

Often, dynamic systems can be modeled as discrete-event systems [4]. Seminal works
on diagnosis of discrete-event systems (DES’s) maximize offline preprocessing in order
to generate an efficient online diagnoser [21, 20]. However, this requires generating the
global DES model, which is bound to be impractical for large and distributed systems.

Other approaches, like diagnosis of active systems (AS’s) [1, 13, 15], avoid gener-
ating the global model of the system by reconstructing online only the behavior which
is consistent with the observation. Still, in the worst case, the number of behavior states
is exponential with the number of components. This is why efficient techniques need to
be designed in order to mitigate the explosion of the reconstructed behavior.

This paper deals with diagnosis of a class of DES’s called complex active systems
(CAS’s), based on a class of observations called uncertain temporal observations.



In the literature, the term complex system is used to encompass a research approach
to problems in a variety of disciplines [7, 2, 10, 8, 22, 6, 19]. Generally speaking, a com-
plex system is a group or organization which is made up of many interacting com-
ponents. In a complex system, interactions between components lead to an emergent
behavior, which is unpredictable from a knowledge of the behavior of the individual
components only. Inspired by complex systems in nature and society, complexity has
been injected into the modeling and diagnosis of active systems [13], a special class of
discrete-event systems [4], which are modeled as networks of interacting components,
where the behavior of each component is described by a communicating automaton [3].
To this end, the notion of context-sensitive diagnosis was first introduced in [14] and
then extended in [18], for active systems that are organized within abstraction hierar-
chies, so that candidate diagnoses can be generated at different abstraction levels. Active
systems have been equipped with behavior stratification [16, 17], where different net-
works of components are accommodated within a hierarchy. This resembles emergent
behavior that arises from the vertical interaction of a network with superior levels based
on pattern events. Pattern events occur when a network performs strings of component
transitions matching patterns which are specific to the application domain. Complex
patterns are also considered in research on cognitive systems [24, 5, 23].

Recently, diagnosis of complex active systems has been addressed, with an efficient
diagnosis technique being proposed [11]. However, the observation of the system is
assumed to be linear and certain, which turns out to be an over-assumption in real,
large, and distributed systems. This paper extends diagnosis of complex active systems
to cope with uncertainty in temporal observations. An uncertain temporal observation
is a DAG where nodes are marked by candidate labels, whereas arcs denote partial
temporal ordering, as proposed in [12] for diagnosis of (plain) active systems. In virtue
of specific indexing techniques, the efficiency of the diagnosis task introduced in [11]
is kept in both time and space when uncertain temporal observations come into play.

2 Active Systems

An active system A is a network of components, each one being defined by a topo-
logical model and a behavioral model. The topological model embodies a set of input
terminals and a set of output terminals. The behavioral model is a communicating au-
tomaton where each state transition is triggered by an event ready at one input terminal.
When triggered, the transition may generate events at some output terminals. Since each

Fig. 1. Component models sensor (left) and breaker (right)



Fig. 2. Active-system model Protection (left) and its instantiation into active system P (right)

output terminal of a component c is connected with the input terminal of another com-
ponent c′, a transition in c may cause the triggering of a transition in c′. More generally,
since components in A form a network, one single transition in one component may
result in a reaction of A involving several (possibly all) components in A.

Example 1 Displayed in Fig. 1 are the topological models (top) and behavioral models
(bottom) of sensor and breaker. The connection of output terminal O of sensor with
input terminal I of breaker gives rise to an active-system model, namely Protection,
outlined on the left-hand side of Fig. 2. An active system P is obtained as an instan-
tiation of Protection model, which requires the instantiations of sensor and breaker
component models by relevant components, namely s and b, respectively, as outlined
in the right-hand side of Fig. 2. We assume that active system P is designed to protect
one side of a power transmission line from short circuits. To this end, sensor s detects
variation in voltage, possibly commanding breaker b to either open or close. Transitions
in behavioral models are detailed below, where event e at terminal t is written e(t):

– (Sensor) s1 detects low voltage and outputs op(O); s2 detects normal voltage and
outputs cl(O); s3 detects low voltage, yet outputs cl(O); s4 detects normal voltage,
yet outputs op(O);

– (Breaker) b1 consumes op(I) and opens; b2 consumes cl(I) and closes; b3 con-
sumes op(I), yet keeps being closed; b4 consumes cl(I), yet keeps being closed;
b5 consumes cl(I); b6 consumes op(I).

An active system (AS) A can be either quiescent or reacting. If quiescent, no event
occurs and, consequently, no transition is performed. A becomes reacting when an ex-
ternal event occurs, which can be consumed by a component in A. When reacting, the
occurrence of a component transition moves A to a new state, with each state being
a pair (S,E), where S = (s1, . . . , sn) is the array of the states of components in A,
whereas E = (e1, . . . , em) is the array of events within links in A.3 We assume that,
sooner or later, A becomes quiescent anew.

The sequence of component transitions moving A from the initial (quiescent) state
to the final (quiescent) state is the trajectory of A. Given the initial state a0 of A, the
graph embodying all possible trajectories ofA, rooted in a0, is the behavior space ofA,
written Bsp(A). A trajectory h = [ t1(c1), t2(c2), . . . , tq(cq) ] in Bsp(A), from initial
state a0 to final state aq , can be represented as:

a0
t1(c1)−−−−→ a1

t2(c2)−−−−→ a2 . . .
tq−1(cq−1)−−−−−−−→ aq−1

tq(cq)−−−−→ aq

where intermediate states a1, a2, . . . , aq−1 of A are indicated.
3 We assume that at most one event can be stored in a link. If the link is empty (no stored event),

the corresponding value in array E is denoted ε (empty event).



3 Complex Active Systems

A complex active system A is a hierarchy of interacting active systems A1, . . . , Ak. In
order to make AS’s interact with one another, four actions are required for each AS A:

1. Definition of a set of input terminals, each one being connected with an input ter-
minal of a component in A;

2. Definition of a set of output terminals;
3. Specification of a set of patterns, with each pattern being a pair (p(ω), r), where
p is a pattern event, ω an output terminal of A, and r a regular expression whose
alphabet is a set of component transitions in A.4

4. Connection of each output terminal of A with an input terminal of another AS A′.

Given a pattern (p(ω), r), pattern event p is generated at output terminal ω of A
when a subsequence of the trajectory of A matches regular expression r. Since there
is a link from output terminal ω of A to an input terminal of A′, which is in its turn
connected with an input terminal of a component c′ ofA′, it follows that the occurrence
of p is bound to trigger a transition of c′. This way, the behavior of A is doomed to
influence (although not completely determine) the behavior of A′.

Like an active system, a complex active system A can be either quiescent or react-
ing.A is quiescent when all AS’s inA are quiescent and all generated pattern events (if
any) have been consumed. When reacting, the occurrence of an AS transition moves A
to a new state. Each state of A is a triple (A,E,P), where:

– A = (a1, . . . , an) is the array of the states of AS’s in A, namely A1, . . . , An;
– E = (e1, . . . , em) is the array of pattern events within links between AS’s in A;
– P = (p1, . . . , pk) is the array of states of pattern-event recognizers.5

The sequence of AS transitions moving A from the initial (quiescent) state to the
final (quiescent) state is the trajectory of A. Given the initial state α0 of A, the graph
embodying all possible trajectories of A, rooted in α0, is the behavior space of A,
written Bsp(A). A trajectory h = [ t1(A1), t2(A2), . . . , tq(Aq−1), tq(Aq) ] in Bsp(A),
from initial state α0 to final state αq , can be represented as:

α0
t1(A1)−−−−→ α1

t2(A2)−−−−→ α2 . . .
tq−1(Aq−1)−−−−−−−→ αq−1

tq(Aq)−−−−→ αq

where intermediate states α1, α2, . . . , αq−1 of A are indicated.

Example 2 Displayed in Fig. 3 is a power transmission line. Each side of the line is
protected from short circuits by two breakers, namely b and r on the left, and b′ and r′

on the right. Both b and b′ (the primary breakers) are connected to a sensor of voltage. If
a short circuit (for instance, a lightning) strikes the line, then each sensor will detect the
lowering of the voltage and command the associated breaker to open. If both breakers
open, then the line will be isolated, thereby causing the short circuit to vanish. If so, the
two breakers are commanded to close in order to restore the line.

4 We assume the classical operators for regular expressions, namely concatenation, disjunction,
optionality, and repetition. If necessary, additional more specific operators can be involved.

5 As detailed in Section 6, the need for pattern matching of (possibly overlapping) pattern events
against relevant regular expressions requires the (offline) generation of specific recognizers,
these being DFA’s named pattern spaces.



Fig. 3. Protected power transmission line

However, faulty behavior may occur: either the sensor does not command the breaker
to open or the breaker does not open. Such misbehavior is detected by a monitor (one
for each side of the line). For example, similarly to the sensor, the monitor on the left-
hand side commands the recovery breaker r to open. In doing so, it also informs the
monitor on the right-hand side to perform the same action on recovery breaker r′. For
safety reasons, once opened, recovery breakers cannot be closed again, thereby leaving
the line isolated.

The protected line can be modeled as the CAS outlined in Fig. 4, called L, which
is composed of four AS’s, namely: P (the protection hardware on the left, including
sensor s and breaker b), P ′ (the protection hardware on the right, including sensor
s′ and breaker b′), M (the monitoring apparatus, including monitors m and m′, and
recovery breakers r and r′), and L (including line l). Arrows within AS’s denote links
between components. For instance, P includes a link from s to b, meaning that an event
generated by s can be consumed by b.

For the sake of simplicity, we assume that, when an event is already present in a link,
no transition generating a new event on the same link can be triggered. Links betweenm
and m′ allow monitors to communicate to one another. Instead, arrows between AS’s
denote links aimed at conveying pattern events. For instance, the link from P to M
makes pattern events (occurring in P ) available to m in M .

Models monitor and line are displayed in Fig. 5. As such, monitor involves input
terminals E and I , and output terminals O and R. Terminal E is entered by the link
exiting the protection hardware (either P or P ′), conveying the pattern events occur-
ring in the latter. R is linked with the recovery breaker, while O and I are linked with
the other monitor. Displayed under the topological models are the behavioral models.
Transitions for monitor and line are detailed below (where pattern events are in bold).

– (Monitor)m1 consumes nd(E) and outputs op(R) and rc(O);m2 consumes nd(E)
and outputs op(R) only; m3 consumes rc(I) and outputs op(R); m4 consumes

Fig. 4. CAS L modeling the protected power transmission line displayed in Fig. 3



Fig. 5. Component models monitor (left) and line (right)

nd(E); m5 consumes di(E); m6 consumes co(E); m7 consumes nc(E); m8

consumes di(E); m9 consumes co(E); m10 consumes nc(E).
– (Line) l1, l2: consume ni(E); l3, l4: consume ni′(E′); l5, l6: consume nr(E); l7,
l8: consume nr′(E′); l9, l10: consume ps′(E); l11, l12: consume ps(E′).

Pattern events have the following meaning. di: the protection hardware disconnects
the side of the line; co: the protection hardware connects the side of the line; nd: the
protection hardware fails to disconnect the side of the line; nc: the protection hardware
fails to connect the side of the line; nr, nr′: the left/right side of the line cannot be
reconnected; ni, ni′: the left/right side of the line cannot be isolated; ps′, ps: the short
circuit persists on the left/right side of the line.

Patterns for P , P ′, and L are listed in Table 1. For example, pattern event nd oc-
curs either when s3(s) (the sensor fails to open the breaker) or s1(s) b3(b) (the sensor
commands the breaker to open, yet the breaker fails to open). For each pattern (p(ω), r)
in Table 1, the alphabet of r is defined as follows. For P and P ′, the alphabet of r is the
whole set of transitions of the involved components (breaker and sensor). For M , the
alphabet equals the set of transitions involved in r only.

4 Uncertain Temporal Observations

During its trajectory, a CAS A, embodying AS’s A1, . . . , Ak, generates a sequence of
observable labels, called the trace of the trajectory. Observable labels are generated for
observable transitions only. In this respect, the trace is the projection of the trajectory
on the labels associated with observable component transitions. Still, what is perceived
by the observer, and given in input to the diagnosis engine, is a relaxation of the trace
called an uncertain temporal observation. An uncertain temporal observation is an array
(O1, . . . ,Ok), where Oi, i ∈ [1 .. k], is the uncertain temporal observation of Ai. The
relaxation of a trace T = [`1, . . . , `m] into O = (O1, . . . ,Ok) is obtained as follows:

1. T is relaxed into an array T ∗ = (T1, . . . , Tk) of sequences, with each Ti, i ∈
[1 .. k], being the subsequence of T involving the labels of T which are associated
with transitions of components in Ai;



Table 1. Specification of patterns by regular expressions

Active system Pattern event p(ω) Regular expression

P

di(O) b1(b)
co(O) b2(b)
nd(O) s3(s) | s1(s) b3(b)
nc(O) s4(s) | s2(s) b4(b)

P ′

di′(O) b1(b
′)

co′(O) b2(b
′)

nd′(O) s3(s
′) | s1(s′) b3(b′)

nc′(O) s4(s
′) | s2(s′) b4(b′)

M

nr(O) m7(m) | m10(m) | b1(r)
ni(O) (m1(m) | m2(m) | m4(m)) b3(r) | b3(r)m4(m)
ps′(O) m6(m)m5(m)
nr′(O′) m7(m

′) | m10(m
′) | b1(r′)

ni′(O′) (m1(m
′) | m2(m

′) | m4(m
′)) b3(r

′) | b3(r′)m4(m
′)

ps(O′) m6(m
′)m5(m

′)

2. Each Ti = [`i1, . . . , `
i
mi

] in T ∗ is relaxed into a sequence Li = [Si
1, . . . , S

i
mi

],
where Si

j , j ∈ [1 ..mi], is a set of labels including `ij , along with possibly ad-
ditional spurious labels (possibly including the null ε label), thereby obtaining
T ∗S = [L1, . . . ,Lk];

3. Additional spurious sets can be inserted into each Li in T ∗S , with each spurious
set involving at least two labels, one of which is necessarily ε, thereby obtaining
T ∗ε = [L′1, . . . ,L′k];

4. Each L′i in T ∗ε is relaxed into a DAG Oi, where sets in L′i are the nodes of Oi,
while an arc Si

p → Si
q is in Oi only if Si

p precedes Si
q in L′i, thereby obtaining the

uncertain temporal observation O = (O1, . . . ,Ok).

The mode in which a trace is relaxed into an uncertain temporal observation is not
under the control of the observer; therefore, the original trace generated by the CAS is,
generally speaking, unknown to the observer.

Example 3 Let T = [awk , awk ′, trg , opb′, opr ] be the trace of CAS L (displayed in
Fig. 4). Based on the steps above, a relaxation of T into O can be obtained as follows:

1. T ∗ = ( [awk] , [awk’, opb’] , [trg, opr] , [ ] );
2. T ∗S = ([{awk , alr}], [{awk ′, ε}, {opb′}], [{trg , opr}, {opr}], [ ]);
3. T ∗ε = ([{awk , alr}, {clb, ε}], [{awk ′, ε}, {clb′, ε}, {opb′}], [{trg , opr}, {opr}], [ ]);
4. O = (OP ,OP ′ ,OM ,OL), where the DAG’s representing OP , OP ′ , and OM are

outlined on the left-hand side of Fig. 6, whereas OL is empty.

Within a DAG OA representing the uncertain temporal observation of an AS A, the
notion of precedence ‘≺’ between two nodes is used. This is defined as the smallest



Fig. 6. Uncertain temporal observations (left), prefix spaces (center), and index spaces (right)

relation satisfying the following two conditions (where n, n′, and n′′ denote nodes,
while n→ n′ denotes an arc from n to n′): (1) if n→ n′ is an arc then n ≺ n′; (2) if
n ≺ n′ and n′ ≺ n′′ then n ≺ n′′.

The extension of a node n inOA, denoted ‖n‖, is the set of labels associated with n.
A candidate trace Tc ofOA having set NA of nodes, is a sequence of labels so defined:

Tc = [ ` | ` ∈ ‖n‖, n ∈ NA ] (1)

where nodes n are chosen based on the partial order defined by arcs, while ε labels
are removed. The extension of OA is the set of candidate traces of OA, written ‖OA‖.

Likewise, the notion of extension can be defined for an uncertain temporal observa-
tion O = (O1, . . . ,Ok) as follows:

‖O‖ = { (T1, . . . , Tk) | ∀i ∈ [1 .. k], Ti ∈ ‖Oi‖ } . (2)

It is possible to prove that, for each Ti in array T ∗, i ∈ [1 .. k], resulting from the
first relaxation step of T , we have Ti ∈ ‖Oi‖. Hence, in virtue of eqn. (2), T ∗ ∈ ‖O‖.

Example 4 With reference to Example 3 and the uncertain temporal observations OP ,
OP ′ , and OM displayed on the left-hand side of Fig. 6, we have:



– ‖OP ‖ = {[awk , clb], [awk] , [alr , clb], [alr ]},

– ‖OP ′‖ = {[awk ′, opb′, clb′], [awk’, opb’] , [opb′, clb′], [opb′], [awk ′, clb′, opb′], [clb′, opb′]},

– ‖OM‖ = { [trg, opr] , [opr , opr ]},

where shadowed candidate traces equal the corresponding traces in T ∗.

In order to match the behavior of the CAS reconstructed by the diagnosis engine
against the uncertain temporal observation O = (O1, . . . ,Ok), each Oi, i ∈ [1 .. k],
needs to be somehow indexed. To this end and for efficiency reasons, for each Oi, an
index space ofOi, namely Idx (Oi) is generated. This is a deterministic finite automaton
(DFA) obtained by determinization of a nondeterministic finite automaton (NFA) called
the prefix space of Oi, namely Pfx (Oi). To define Pfx (Oi), we need to define a prefix
of Oi and the index of a prefix. A prefix of Oi with set of nodes Ni, is a subset of Ni

defined inductively as follows:

1. The empty set ∅ is a prefix of Oi;
2. If p is a prefix of Oi and n′ ∈ Ni − p where ∀n ∈ Ni such that n ≺ n′ we have
n ∈ p, then p ∪ {n′} is a prefix of Oi.

The index of a prefix p, denoted I(p), is the subset of p defined as follows:

I(p) = {n | n ∈ p, ∀n′, n′ ≺ n (n′ ∈ p),∀n′′, n ≺ n′′ (n′′ /∈ p) }. (3)

Given an index I of p, the set of nodes in p is denoted by I−1. An index I is final
when I−1 = Ni.

The prefix space of Oi is the NFA Pfx (Oi) = (Σ,S, τ, s0, Sf), where:

– Σ is the alphabet, which is composed of the labels in Oi;
– S is the set of states, with each state being the index of a prefix of Oi;
– s0 = ∅ is the initial state;
– Sf is the singleton {sf}, where sf ∈ S, I−1(sf) = Ni;

– τ : S ×Σ 7→ 2S is the nondeterministic transition function, where s `−→ s′ ∈ τ iff:

s′ = I (s ∪ {n}) , ` ∈ ‖n‖, n ∈ Ni − s,∀n′ → n ∈ Oi (n
′ ∈ s) . (4)

Example 5 Consider the uncertain temporal observationsOP ,OP ′ , andOM displayed
on the left-hand side of Fig. 6. The corresponding prefix spaces Pfx (OP ), Pfx (OP ′),
and Pfx (OM ) are outlined in the center, with states being renamed by numbers. Index
spaces Idx (OP ), Idx (OP ′), and Idx (OM ) are shown on the right-hand side of the
figure, with states being renamed by symbols =i, i ∈ [0 .. 4].

5 Problem Formulation

Once a real system is modeled as a CAS A composed of AS’s A1, . . . , Ak, it can be
diagnosed based on the uncertain temporal observation O = (O1, . . . ,Ok). In this
paper we focus on a posteriori diagnosis. That is, we assume that O is relevant to a



complete trajectory ofA, which movesA from the known initial (quiescent) state to an
unknown final (quiescent) state.

In order to match O against the behavior of A it is essential to know which are
the observable transitions of components and their associated observable labels. This is
specified by a viewer of A, namely V = (V1, . . . ,Vk), which is the array of the local
viewers of the AS’s, with each local viewer Vi, i ∈ [1 .. k], being a set of pairs (t, `),
where t is an observable transition of a component in Ai and ` an observable label.

The projection of a trajectory h of A on viewer V = (V1, . . . ,Vk) is the array of
AS traces defined as follows:

h[V] = (T1, . . . , Tk),∀i ∈ [1 .. k] (Ti = [ ` | t(c) ∈ h, c ∈ Ai, (t(c), `) ∈ Vi ]) . (5)

We say that trajectory h is consistent withO when h[V] ∈ ‖O‖. Generally speaking,
O is not sufficient to identify the actual trajectory. Rather, several (possibly an infinite
number of) candidate trajectories of A are possibly consistent with O.

Similarly to a local viewer which specifies observable transitions, faulty transitions
are specified by a local ruler, a set of pairs (t, f), where t is a component faulty tran-
sition and f a fault. The array of all local rulers Ri, one for each Ai in A, gives rise to
the ruler of A, namelyR = (R1, . . . ,Rk).

For each candidate trajectory h of A, there is a candidate diagnosis of A, denoted
h[R], which is the set of faults associated with the faulty transitions within the trajectory:

h[R] = {f | t(c) ∈ h, c ∈ Ai, (t(c), f) ∈ Ri} . (6)

A diagnosis problem for A is a quadruple:

℘(A) = (α0,V,O,R) (7)

where α0 is the initial state of A, V a viewer of A, O the uncertain temporal obser-
vation of A, andR a ruler of A.

The solution of ℘(A), namely ∆(℘(A)), is the set of candidate diagnoses δ associ-
ated with the candidate traces of A that are consistent with O:

∆(℘(A)) =
{
δ | δ = h[R], h ∈ Bsp(A), h[V] ∈ ‖O‖

}
. (8)

However, the diagnosis engine is not expected to generate the solution of a diagnosis
problem based on eqn. (8). In fact, eqn. (8) relies on Bsp(A), the behavior space of A,
whose generation is, generally speaking, practically infeasible. Still, the set of candidate
diagnoses generated by the diagnosis engine shall equal ∆(℘(A)). In other words, the
diagnosis technique shall be not only efficient but also sound and complete.

Example 6 With reference to Example 2, we define a diagnosis problem for L as:

℘(L) = (λ0,V,O,R) (9)

where:

– In initial state λ0, breakers are closed, sensors are idle, and monitors are watch (see
component models in Fig. 1 and Fig. 5);



– V = (VP ,VP ′ ,VM ,VL), where VP = {(b1(b), opb), (b2(b), clb), (b5(b), alr),
(b6(b), alr), (s1(s), awk), (s2(s), ide), (s3(s), awk), (s4(s), ide)},
VP ′ = {(b1(b′), opb′), (b2(b′), clb′), (b5(b′), alr ′), (b6(b′), alr ′), (s1(s′), awk ′),
(s2(s

′), ide ′), (s3(s′), awk ′), (s4(s′), ide ′)}, VM = {(m1(m), trg), (m2(m), trg),
(m3(m), trg), (b1(r), opr), (b2(r), clr), (m1(m

′), trg ′), (m2(m
′), trg ′), (m3(m

′), trg ′),
(b1(r

′), opr ′), (b2(r′), clr ′)}, and VL = ∅ (that is, L is unobservable);
– O = (OP ,OP ′ ,OM ,OL), whereOP ,OP ′ , andOM are displayed on the left-hand

side of Fig. 6, whereas OL is empty (necessarily so, being L unobservable);
– R = (RP ,RP ′ ,RM ,RL), where RP = {(b3(b), fob), (b4(b), fcb), (s3(s), fos),
(s4(s), fcs)}, RP ′ = {(b3(b′), fob′), (b4(b′), fcb′), (s3(s′), fos ′), (s4(s′), fcs ′)},
RM = {(m2(m), fm), (m2(m

′), fm ′), (b3(r), for), (b4(r), fcr), (b3(r′), for ′),
(b4(r

′), fcr ′)}, RL = {(l1(l),fls), (l2(l),fls), (l3(l),fls ′), (l4(l),fls ′), (l5(l),fli),
(l6(l),fli), (l7(l),fli ′), (l8(l),fli ′), (l9(l),flp), (l10(l),flp), (l11(l),flp′), (l12(l),flp′)}.

6 Preprocessing

For efficiency reasons, it is convenient to perform some preprocessing on the CAS
specification before the diagnosis engine is operating. The extent of such offline pre-
processing is varying and depends on the performance requirements of the application
domain. In particular, in order to detect pattern events, we need to maintain the recog-
nition states of patterns. Since patterns are described by regular expressions, specific
autoamta-based recognizers are to be generated as follows:

1. For each pattern (p(ω), r), a pattern automaton P equivalent to r is generated, with
final states marked by p(ω);

2. The set P of pattern automata is partitioned based on AS and the alphabet of r;
3. For each part P = {P1, . . . , Ph} in P, four actions are performed:
(3a) A nondeterministic automaton N is created by generating its initial state n0

and one empty transition from n0 to each initial state of Pi, i ∈ [1 .. h];
(3b) In each Pi, i ∈ [1 .. h], an empty transition from each non-initial state to n0 is

inserted (this allows for pattern-matching of overlapping strings of transitions);
(3c) N is determinized into P , where each final state d is marked by the pattern

event that is associated with the states in d that are final in the corresponding
pattern automaton (in fact, each state d of the deterministic automaton is iden-
tified by a subset of the states of the equivalent nondeterministic automaton;
besides, we assume that only one pattern event at a time can be generated);

(3d) P is minimized into the pattern space of part P.

Example 7 Displayed on the left-hand side of Fig. 7 is the nondeterministic automaton
N generated in action (3b) for pattern events di(O), co(O), nd(O), and nc(O). The
tabular representation of the resulting pattern space PP is outlined on the right-hand
side. Listed in first column are the states (0 is the initial state), with final states being
shaded. For each pair state-transition, the next state is specified. Listed in the last col-
umn are the pattern events associated with final states. Pattern space PP ′ is generated
in the same way.

Since regular expressions of pattern events forM are defined on different alphabets,
six additional pattern spaces are to be generated: Pnr, Pni, Pps′ , Pnr′ , Pni′ , and Pps.



b1 b2 b3 b4 s1 s2 s3 s4
0 1 2 3 4 5 6
1 1 2 3 4 5 6 di(O)

2 1 2 3 4 5 6 co(O)

3 1 2 5 3 4 5 6
4 1 2 6 3 4 5 6
5 1 2 3 4 5 6 nd(O)

6 1 2 3 4 5 6 nc(O)

Fig. 7. Generation of pattern space PP

7 Problem Solving

Behavior reconstruction in diagnosis of CAS’s avoids materializing the behavior of the
CAS, that is, the automaton whose language equals the set of CAS trajectories. Instead,
reconstruction is confined to each single AS based on the local observation and the
interface constraints on pattern-event occurrences coming from neighboring inferior
AS’s within the hierarchy of the CAS.

The essential point is that such pattern events come with diagnosis information from
inferior AS’s, which is eventually combined with the diagnosis information of the supe-
rior AS, thereby allowing for the sound and complete solution of the diagnosis problem.

Intuitively, the flow of reconstruction in the hierarchy of the CAS is bottom-up. For
an ASAwith childrenA1, . . . , Ak, the behavior ofA, namely Bhv(A), is reconstructed
based on the interfaces of the children, namely Int(A1), . . . , Int(Ak), and the local
observation of A, namelyOA. The interface is derived from the behavior. Thus, for any
AS A, both Bhv(A) and Int(A) are to be generated (with the exception of the root, for
which no interface is generated).

As such, the notions of behavior and interface depend on each other. However, such
a circularity does not hold for leaf nodes of the CAS (e.g. P and P ′ in Fig. 4): given a
leaf node A, the behavior Bhv(A) is reconstructed based on OA only, as no interface
constraints exist forA. On the other hand, the behavior of the root node (e.g. L in Fig. 4)
needs to be submitted to further decoration-based processing in order to distill the set
of candidate diagnoses.

In short, four sorts of graphs are required in reconstruction: unconstrained behav-
ior (for leaf nodes), interface (for non-root nodes), constrained behavior (for non-leaf
nodes), and decorated behavior (for root node).

Example 8 With reference to CAS L in Fig. 4 and the diagnosis problem defined in
Example 6, namely ℘(L) = (λ0,V,O,R), we first need to generate the unconstrained
behavior of AS’s P and P ′ based on local observations OP and OP ′ , respectively.

Displayed in Fig. 8 are the index space, the unconstrained behavior, and the interface
relevant to P (left) and P ′ (right). Consider the generation of Bhv(P ′). As detailed in
the right-hand side of Table 2, each state is identified by five fields: the state of sensor
s′, the state of breaker b′, the event (if any) ready at terminal I(b′), the state of pattern
space PP ′ , and the state of the index space Idx (OP ′).



Fig. 8. Index space, unconstrained behavior, and interface for P (left) and P ′ (right)

Table 2. Details on states for Bhv(P ) and Bhv(P ′) displayed in Fig. 8

Behavior Bhv(P ) Behavior Bhv(P ′)
State s b I(b) PP Idx (OP )

0 idle closed 0 =0

1 awaken closed op 3 =1

3 awaken closed 5 =1

State s′ b′ I(b′) PP ′ Idx (OP ′)

0 idle closed 0 =0

1 awaken closed op 3 =2

3 awaken open 1 =3

The generation of the behavior starts at the initial state 0 and progressively mate-
rializes the transition function by applying triggerable transitions to each state created
so far. A state is final when all events are consumed and the state of the index space is
final. The transition from 1 to 3 is marked by di′(O) pattern event as the state of PP ′

becomes final in 3 (namely, state 1 in the right-hand side of Fig. 7, where di(O) needs
to be replaced by di′(O)).

In what follows, a diagnosis δ is a set of faults. We make use of the join operator
between two sets of diagnoses, namely ∆1 and ∆2, defined as follows:

∆1 on ∆2 = { δ′ | δ′ = δ1 ∪ δ2, δ1 ∈ ∆1, δ2 ∈ ∆2 }. (10)

Example 9 Shown on the right of each behavior in Fig. 8 are interfaces Int(P ) and
Int(P ′), derived from the corresponding behavior as follows.

1. The identifier of a component transition t(c) marking an arc of the behavior and
associated with a pattern event is replaced by:

– The singleton {∅}, if t(c) is normal;
– The singleton {{f}}, if t(c) is faulty, with f being the associated fault.

2. Interpreting as ε-transitions those transitions which are not associated with pat-
tern events, the obtained nondeterministic automaton (NFA) is determinized so that
each state of the resulting deterministic automaton (DFA) contains the ε-closure
in all its structure (rather than the subset of NFA states only, as is in the classical
determinization algorithm [9]).

3. Within each state d of the DFA, each NFA state n is marked by the diagnosis set
generated by all paths starting at the root state in d and ending at n, while identifiers
of component transitions are eventually removed.



Fig. 9. Index space, constrained behavior, and interface for M (left-hand side), and decorated
behavior for L (right-hand side)

4. Let p be the pattern event marking a transition t exiting a state d in the DFA,∆p the
diagnosis set associated with p in step 1, and ∆ the diagnosis set associated with
the NFA state in d from which t is derived in the determinization process. ∆p is
replaced by ∆ on ∆p.

Example 10 Displayed in Fig. 9 is the constrained behavior Bhv(M), which is gen-
erated based on index space Idx (OM ). Each state of Bhv(M) includes two sorts of
additional information: the pattern events ready (if any) at input terminals of M , and
the pair (i, i′) of interfaces states relevant to interfaces Int(P ) and Int(P ′), respec-
tively. A final state needs the additional condition that both states in (i, i′) are final in
the respective interface. When reconstructing a transition triggered by a pattern event,
the latter is required to mark a transition exiting the corresponding state in the interface,
otherwise the transition cannot be reconstructed.

Compared with Example 9, the derivation of interface Int(M) shown in Fig. 9
exhibits two peculiarities: step 2 creates a DFA state resulting from two NFA transitions,
exiting states 6 and 8 respectively, both marked by pair (b1(r),nr(O)), and step 3 shall
account for the diagnosis sets associated with pattern events.

Once generated, the behavior shall be decorated by sets of diagnoses associated
with states, in a way similar to step 3 in marking NFA states within interface states.

Example 11 Outlined on the right of Fig. 9 is the decorated behavior Bhv∗(L). Starting
from the singleton {∅}marking state 0, the candidate set associated with state 1 is∆(1)
= {∅} on {{fob, fm}} = {{fob, fm}}. Since l5(l) is faulty (associated with fault fli ),
eventually we have ∆(2) = ∆(1) on {{fli}} = {{fob, fm,fli}}. Hence, the solution



of the diagnosis problem ℘(L) defined in Example 6 consists of one single diagnosis
involving three faults: breaker b fails to open (fob), monitor m fails to communicate
with monitor m′ (fm), and line l is isolated (fli ).

8 Conclusion

As shown in [11], despite their complexity, CAS’s can be diagnosed more efficiently
than monolithic DES’s, whose diagnosis is affected by exponential complexity (in the
number of components), either offline when generating the diagnoser [21, 20], or online
when reconstructing the system behavior [1, 13]. Specifically, in [11], complexity (in
time and space) is shown to be linear with the number of components within the CAS.

The contribution of this paper is to extend diagnosis of CAS’s introduced in [11]
by means of uncertain temporal observations. Unlike a (certain) temporal observation,
which consists of a sequence of totally ordered observable labels, within an uncertain
observation, observable labels are both uncertain and partially ordered. Despite this
dissimilarity, an uncertain temporal observation can be thought of as a set of candidate
temporal observations. The notion of index space allows the diagnosis engine to account
for all candidate temporal observations by means of a scalar value, the observation index
=, which is a surrogate of an integer indexing a temporal observation within states of
the reconstructed behavior. In other words, when uncertain temporal observations are
considered, the integer is replaced by a scalar value = identifying a state of the index
space. Consequently, neither space nor time complexity is expected to deteriorate when
uncertain temporal observations come into play in diagnosis of CAS’s.

Despite being introduced based on a simple reference example, diagnosis of CAS’s
is a general technique which can be applied to any real system that can be conveniently
modeled as a CAS, in terms of interconnected AS’s and relevant pattern events.

Diagnosis of CAS’s is still in its infancy. Further research is expected in several di-
rections. Offline preprocessing can be performed in order to accelerate the online diag-
nosis engine by generating in a suitable form the behavior space of each AS embedded
in the CAS. Also, monitoring-based diagnosis can be envisioned, where the diagnosis
engine does not operate a posteriori but, rather, it reacts to each fragment of available
observation by providing the diagnosis information relevant to such a fragment only.
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