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Abstract. Large-scale RDF graph databases stored in shared-nothing clusters
require query processing engine that can effectively exploit highly parallel com-
putation environment. We propose algebra of RDF graphs and its physical coun-
terpart, physical algebra of RDF graphs, designed to implement queries as dis-
tributed dataflow programs that run on cluster of servers. Operations of algebra
reflect the characteristic features of RDF graph data model while they are tied to
the technology provided by relational query execution systems. Algebra of RDF
graphs allows for the expression of pipelined and partitioned parallelism. Prelim-
inary experimental results show that proposed algebra and architecture of query
execution system scale well with large clusters of data servers.

1 Introduction

Recent development of graph-based semantic web shows the enormous interest of so-
ciety to construct a detailed knowledge base (graph) including properties of categories
from all popular areas of human activities. Knowledge bases such as Knowledge Graph,
Wikidata, YAGO and Knowledge Vault currently include from 1000 up to 350.000 cat-
egories, up to 570 Mega instances of categories, up to 35.000 relationship types, and,
up to 18 Giga relation instances [8]. However, from many aspects existent knowledge
graphs are in their infant stage—more systematic use of intelligent tools for extracting
the knowledge from various data sources has just begun.

The need for triple-store systems capable to store and manage from Tera (1012)
towards Peta triples is obvious. The scalability of storage system and query processing
system to this amount of data is currently possible by using large-scale distribution of
data into shared-nothing clusters. Query execution system in such environment must be
able to employ various types of parallelism to allow simultaneous execution of huge
amount of queries and provide reasonable response time.

Distributed triple-store big3store is based on dataflow architecture of query pro-
cessing. Each query is a tree of algebra operations that is dynamically mapped to the
tree composed of processes interconnected by streams of graphs, i.e., sets of triples.
The scheduler that maps query trees to set of processes balances the computation load
among the servers of cluster.

Triple-store of big3store is distributed into columns that store replicas of partitions
into rows—cluster data servers. Data distribution is achieved by means of semantic dis-
tribution function [14] that splits the triples on the basis of the relation of each particular
triple to the taxonomy of RDF classes and properties.



Algebra of RDF graphs is an abstract model used for the implementation of query
execution system. Algebra is defined using set semantics—inputs and outputs of op-
erations are sets of graphs. We present the denotational semantics of algebra and its
implementation in the form of physical algebra that is further mapped to sets of pro-
cesses implementing algebra operations. The architecture of query execution system
based on algebra allows for the use of pipelined and partitioned parallelism [7].

Programming environment of parallel programming language Erlang [2] is used for
the implementation of big3store. Erlang, together with database management system
Mnesia that is tightly integrated with Erlang, may represent alternative data processing
system for big data to Hadoop [17]. Indeed, it provides simple and robust parallel pro-
gramming environment allowing processes to be effectively used in cluster of servers,
it incorporates mechanisms that allow for the implementation of reasonable level of
fault-tolerance, and, it integrates low-level database system appropriate for telecommu-
nication applications that includes key-value indexes comparable to those of Hadoop
storage system.

The contributions of this paper are the following. The architecture of distributed
query execution system for processing large-scale RDF graphs based on algebra of RDF
graphs is proposed. Query processor uses left-deep query trees to implement pipelined
parallelism of algebra operations. Furthermore, it employs semantic triple distribution
function [14] to achieve highly flexible partitioned parallelism. Access methods for
tripe-patterns that address large partitions of triple-base are distributed to larger number
of data servers, while the queries that address small partitions are executed on a single
server. Query processor uses affinity scheduling, i.e., two level scheduling that persists
to allocate the same data servers for execution of algebra operations for particular user.
Finally, it uses key-value indexes in a similar manner to Hadoop to access data triples
and to implement index-based nested-loop join operations.

The rest of the paper is organized as follows. The following Section 2 presents
algebras of RDF graphs closely related to big3store algebra. Section 3 gives formal
definition of algebra of RDF graphs and describes its physical counterpart, physical al-
gebra of RDF graphs. The architecture of big3store query execution system together
with detailed description of algebra implementation, is presented in Section 4. Prelim-
inary experimental results are described in Section 5. Finally, Section 6 gives some
conclusions and presents further work.

2 Related work

Algebra of RDF graphs implemented in distributed triple-store big3store is based on
relational algebra and technology of relational database management systems [10, 11].
Database algebras are by nature functional languages where inputs and outputs of alge-
bra operations can be treated as input and output flows of database objects. Operations
of database algebra can be combined to form graph structure where operations (nodes)
are interconnected by flows of objects [7].

The design of big3store algebra of graphs follows the leading ideas of relational
algebra [5] while we identified and incorporated in it the salient features of triple-store
data model. Firstly, instead of access methods scanning relational tables we use triple-



pattern based access method to triple-store that can use all possible indexes on SPO
attributes. Secondly, the results of algebra operations are not relations—sets of tuples—
but sets of graphs. Consequently, operations select , project and join are adapted for
graphs. Selection is based on expressions defined by means of graph nodes. Similarly,
operation project eliminates graph edges. Finally, operation join is defined on graphs
by introducing graph matching as join predicate.

Similar approach to definition of algebra for querying triple-stores are proposed by
Angles and Gutierrez in [1]. Their formalization of SPARQL operations is based on
mappings that follow semantics of triples. While their definition is tuned for studying
expressive power of the language, our work is focused more on the implementation of
algebra of graphs in shared-nothing cluster. They have shown in the paper that SPARQL
have equivalent expressive power to non-recursive Datalog with negation that has, in
turn, equivalent expressive to classical relational algebra.

Schmidt et.al. have proposed SPARQL algebra [15] to be used as foundations for
SPARQL query optimization. They have defined set-based semantics for SPARQL by
introducing SPARQL set algebra including similar operations to our algebra of graphs.
They have identified fragments of SPARQL together with their complexity classes. For
instance, they have shown that OPTIONAL-free fragments of SPARQL are either NP-
complete or in PTIME. Furthermore, they have introduced algebraic equivalence rules
that can be used for SPARQL query optimization, and, extensions of classical chase
algorithm for optimization of AND queries.

Cyganiak proposed in [6] the use of relational algebra for SPARQL query process-
ing. He presents the transformation from SPARQL into abstract relational algebra and
shows differences between semantics of SPARQL and relational model. This approach
allows for direct use of relational query optimization and query evaluation techniques
for processing SPARQL queries. The transformation from relational algebra to SQL is
defined. In comparison to Cyganiak’s proposal, our approach focuses on distributed im-
plementation of algebra of graphs while, in the similar manner, we use knowledge and
technology gathered in area of relational systems for the implementation of triple-store
database system.

3 Algebra of RDF graphs

Algebra of RDF graphs is a functional language defined on sets of RDF graphs. Inputs
and outputs of algebra operations are sets of RDF graphs that are linked to other oper-
ations forming in this way a tree. As we will show later, algebra expressions i.e. trees
of algebra operations are converted to trees of Erlang processes that can be located on
different data servers.

Let us first define the basic terminology used in presentation. Let I be the set of
URI-s, B the set of blanks and L be the set of literals. Let us also define sets S = I∪B,
P = I , and O = I ∪B ∪ L.

RDF triple is a triple (s, p, o) ∈ S × P × O. RDF graph g ⊆ S × P × O is a set
of triples. Set of all graphs will be denoted as G. We suppose the existence of a set of
variables V and the set of terms T = O ∪ V . Term t ∈ T is ground if t ∈ O.



We say that RDF graph g1 is sub-graph of g2, denoted g1 v g2, if all triples in g1

are also triples from g2.

3.1 Ground graphs and graph patterns

Triple pattern (s, p, o) ∈ (S ∪ V ) × (P ∪ V ) × (O ∪ V ) is a triple that can include
variables as components. Graph pattern gp ⊆ (S ∪ V ) × (P ∪ V ) × (O ∪ V ) is a
set of triple patterns, i.e., graph defined as set of triples that can include variables as
components. The set of all graph patterns is in the sequel denoted as GP .

We will separate between ground and abstract entities. Ground triples are triples that
include ground terms. Abstract triples, that can include variables, are triple patterns.
Similarly, ground graphs are graphs that include triples composed of ground values,
and, graph patterns represent abstract graphs that stand for a set of graphs from a given
triple-store.

To be able to determine set of variables included in graph pattern gp we define
function vars : GP → P(V ).

Matching of graphs. Let us now define relationship “match”, denoted as ∼, between
graphs including graph patterns. Graphs g1 and g2 match, denoted g1 ∼ g2, iff the
following conditions hold.

1. Two terms t1, t2 ∈ T match, written t1 ∼ t2, if either t1 and t2 are ground and
t1 = t2, or, one of values is variable and the other is ground value.

2. Matching between two triples r1 and r2 exists, written r1 ∼ r2, if all components
of r1 and r2 match.

3. Graph g1 matches graph g2, written g1 ∼ g2, when there exists bijection alpha :
g1 → g2 so that each triple t1 ∈ g1 matches alpha(t1) = t2 ∈ g2.

Let gp be graph pattern. Function val : V × GP × G → O maps variables v ∈
vars(gp), graph patterns gp ∈ Gp and ground graphs g ∈ G that match gp to values o ∈
O. Let t1 ∈ gp be triple that includes variable v, then val(v, gp, g) = o is component

of triple alpha(t1) = t2 ∈ g that corresponds to v in gp.

Interpretation of graph pattern. Interpretation of graph pattern gp in database of
triples storing graph db is a set of all sub-graphs g of db that match gp.

JgpKdb = {g | g v db ∧ g ∼ gp}

Special case of graph pattern is triple pattern tp where complete graph is one single
triple that can include variables possibly in all three positions. Interpretation of tp is a
set of all triples from db that match tp.

Triple patterns represent graph counterpart of relational access methods [4]. They
are always the leafs of query tree. Implementation of query node for a given triple
pattern can use SPO indexes to access ground triples.



3.2 Definition of algebra

Let us now present algebra of RDF graphs. We denote graph query as Q, triple pattern
as TP , selection condition as C, condition operations as OP , sets of variables as SV ,
and, variables as V . Syntax of algebra is defined as follows.

Q ::= TP | select(Q, C) | project(Q, SV )| join(Q, Q) | union(Q, Q) |
intsc(Q, Q) | diff (Q, Q) | leftjoin(Q, Q)

TP ::= (S | V, P | V,O | V )
C ::= V OP V | V OP O | C ∧ C | C ∨ C | ¬ C
OP ::= = | 6= | > | ≥ | < | ≤
SV ::= {V +}
S ::= URI | Blank-Node
P ::= URI
O ::= URI | Blank-Node | Literal
V ::= ?a .. ?z

We extend previously defined function vars to queries. Let (Q) be the set of all
queries. The function vars : Q → P(V ) maps each query to the set of variables that
are included in the query. Let us now present the denotational semantics of RDF algebra
by defining the interpretation of each particular operation.

Access paths to database of triples storing graph db are defined using triple patterns
(t1, t2, t3) where t1 ∈ (S ∪ V ), t2 ∈ (P ∪ V ) and t3 ∈ (O ∪ V ).

J(t1, t2, t3)Kdb = { (s, p, o) | (s, p, o) v db ∧ (s, p, o) ∼ (t1, t2, t3) }

SPARQL operation FILTER is represented by means of operation select(q, C) where
q is query and C is condition expression.

Jselect(q, C)Kdb = { g | g ∈ JqKdb ∧ C(g) = true }

The evaluation of condition C on graph g is defined by the following rules. Value
of C(g) is presented by cases of C structure.

– C =?a OP o, where ?a ∈ V and o ∈ O: if val(?a, q, g) OP o = true then
C(g) = true, else false.

– C =?a OP ?b, where ?a, ?b ∈ V : if val(?a, q, g) OP val(?b, q, g) = true then
C(g) = true, else false.

– C = C1 ∧ C2: if C1(g) = true and C2(g) = true then C(g) = true, else false.
– C = C1 ∨ C2: if C1(g) = true or C2(g) = true then C(g) = true, else false.
– C = ¬C1: if C1(g) = false then C(g) = true, else false.

Operation project(q, s) projects graphs g ∈ JqKdb to graphs composed of triples that
include values of variables from set s. Let tr-vars : db×GP → P(V ) denote function
that maps triples t ∈ JqKdb and query q to set of variables vs ∈ P(V ) such that for each
var ∈ vs value of variable var is a component of t.



Jproject(q, s)Kdb = { g1 | g ∈ JqKdb ∧ ∀t ∈ g(tr-vars(t, q) ⊆ s =⇒ t ∈ g1) }

Operation join(q1, q2) joins two sets of graphs that are interpretations of queries
q1 and q2. Let vs be a set of variables vars(q1) ∩ vars(q2). The result of join includes
union of graphs g1 ∈ Jq1Kdb and g2 ∈ Jq2Kdb such that they agree in the values of all
common variables from vs. Observe also that joining two graphs is obtained by making
union of graph triples from both graphs. Semantics of operation join can be defined as
follows.

Jjoin(q1, q2)Kdb = { g1 ∪ g2 | g1 ∈ Jq1Kdb ∧ g2 ∈ Jq2Kdb ∧
∀v ∈ vs : val(v, q1, g1) = val(v, q2, g2) }

Set operations are defined in a usual way except that argument sets can include
graphs that have heterogeneous structure. Union, intersection and difference of q1 and
q2 is defined as union, intersection and difference of their interpretations Jq1Kdb and
Jq2Kdb. Set operations of RDF algebra are defined as follows.

Junion(q1, q2)Kdb = { g | g ∈ Jq1Kdb ∨ g ∈ Jq2Kdb) }
Jintsc(q1, q2)Kdb = { g | g ∈ Jq1Kdb ∧ Jq2Kdb) }
Jdiff (q1, q2)Kdb = { g | g ∈ Jq1Kdb ∧ g 6∈ Jq2Kdb }

Finally, to implement SPARQL operation OPTION we define operation leftjoin(q1, q2),
that is, left outer join of two sets of graphs which are elements of the interpreta-
tions of queries q1 and q2. For each pair g1 ∈ Jq1Kdb and g2 ∈ Jq2Kdb the result of
leftjoin(q1, q2) includes either g1 ∪ g2 in the case that g1 can be joined with g2, or g1 if
g1 can not be joined with g2. Let vs be a set of variables vars(q1)∩ vars(q2). Operation
leftjoin(q1, q2) can be defined as follows.

Jleftjoin(q1, q2)Kdb = { g | g1 ∈ Jq1Kdb ∧ g2 ∈ Jq2Kdb ∧
((is-join(g1, g2) ∧ g = g1 ∪ g2) ∨ (¬is-join(g1, g2) ∧ g = g1)) },

where is-join(g1, g2) is defined as

is-join(g1, g2) = ∀v ∈ vs : val(v, q1, g1) = val(v, q2, g2)

3.3 Physical algebra of RDF graphs

The design of physical algebra of RDF graphs follows the ideas used for implemen-
tation of relational algebra in the frame of relational database management systems
[10,11]. Previously presented operations of RDF algebra are converted into three phys-
ical operations: physical access method (AM) AM, physical join denoted join, and,
physical set operations union, diff and intsc.

All physical operations now include besides the functionality of their logical coun-
terparts also the functionality of operations select and project operations. Each physical



operation therefore includes also select list and project list. There are more reasons for
folding more logical operations into single physical operation.

Firstly, it makes sense to perform selection of triples immediately after data needed
for selection is available. For instance, immediately after obtaining triples by means of
a given triple-pattern access method, they are filtered using selection conditions.

For similar reason operation project is performed as soon as possible. Immediately
after some triple in a result RDF graph is not useful, it is dropped. For instance, after
using particular triple for performing join operation, it can be omitted from result graph,
if of course it is not needed as the result of query, or, for some other operation higher in
the query.

The above two rules resemble “pushing” selections and projections down towards
the leafs of query tree in relational database systems.

(a) (b)

Fig. 1. (a) Left-deep query tree (b) Left-deep query tree with multiple AM operations

Secondly, the reasons for folding selections and projection into AM and join are:
1) the possibility to use join reordering algorithm for query optimization, and, 2) the
possibility to implement left-deep as well as bushy query trees [10]—both of them have
operations AM as leafs and operations join as the inner nodes of query trees.

big3store is currently using left-deep query trees. An example of left-deep query
tree with 3 join operations and 4 AM operations is given in Figure 3.3(a). The most
important advantage of using left-deep trees is the pipeline that is formed by physi-
cal join operations. The results of retrieving graphs from outer query node of join
operation is used for index-based access to the inner query node. The graph that is con-
structed as the result of join operation is then sent to the parent query node i.e. join
query node. Consequently, there is no need to store intermediate results during query
evaluation.

Triples related to some class with very large number of instances are, by using of
semantic distribution algorithm, distributed to more data servers. Therefore, physical
operation AM, defined using some triple-pattern, may be executed on number of data
servers. Indeed, it is desirable that triple-pattern based operations AM, that tackle large
number of triples, are distributed to more servers. The number of servers depends on
the size of targeted set of triples. Left-deep query trees can therefore have multiple AM
query nodes as presented in Figure 3.3(b).



4 Distributed query execution system

Storing and querying huge volumes of data efficiently is currently possible by using
shared-nothing cluster architecture [16]. Efficient data servers with huge amount of
RAM and disk storage are available as inexpensive commodity hardware. This allows
heavy distribution and replication of data as well as massive distribution of query pro-
cessing on servers forming very large clusters.

Big3store is a data-flow system [3] where triple-store is composed of an array of data
servers arranged into columns and rows. The complete triple-store is partitioned and
distributed into columns based on semantic information attached to triples via triple-
store schema. Each column stores a partition of triple store that is replicated to the
column rows. Rows of the column therefore contain replicas of triple-store partitions
assigned to columns.

While triple store partitioning affects significantly the performance of query exe-
cutions, it is not the focus of this paper. Detailed presentation of big3store partitioning
algorithm is given in [14]. Let us here present only some important ideas that have
guided the design of triple-store (graph) partitioning.

Hash-based partitioning can not be employed for storing huge triple datasets that
are expected to grow significantly in the following decade. Splitting data into a large
number of partitions based on hashing can increase significantly the communication
traffic among the data servers, especially, when large number of transactions is executed
in parallel.

Big3store uses semantic distribution algorithms to partition triple-store into chunks
that are suitable for distribution and that are related to a set of schema entities which
serve as the key for distribution. Since distribution is based on rich taxonomy of classes
spanning more then ten hierarchical levels we can achieve well-defined distribution
in the sense that triples defined for classes including large number of instances are
split into larger number of chunks. Triples defined for a class that has small number of
instances is stored in one chunk. Query distribution must follow data distribution: larger
the class of triples addressed by query, larger the number of columns where query will
be executed.

2.

5.

1.

4.

3.

(a) (b)B

A

(c) (d) (e) (f)

Fig. 2. Configuration of servers for a particular query

Figure 4 shows a cluster composed of two types of servers: front servers represented
as the nodes of plane A, and data servers represented as the nodes of plane B. Data



servers are configured into columns labeled from (a) to (f). A complete database is
distributed to columns such that each column stores a portion of the complete database.

The portion of the database stored in a column is replicated into rows labeled from
1 to 5. The number of rows for a particular column is determined dynamically based on
the query workload for each particular column. The heavier the load on a given column,
larger the number of row data servers chosen for replication. The particular row used
for executing a query is selected dynamically based on the current load of servers in a
column.

4.1 Architecture of query execution system

Erlang programming environment [2] is used for the implementation of big3store as
an alternative to Hadoop-like systems [17]. It provides remarkably simple and effec-
tive parallel programming model based on lightweight processes. Erlang processes use
“shared nothing” philosophy where the communication among processes is realized
solely by means of synchronous and asynchronous messages.

Fig. 3. Architecture of big3store query executor

Query execution system of big3store is composed of modules presented in Figure
4.1. Each module includes the implementation of particular type of process.

State modules b3s_state and node_state are used for efficient sharing of
big3store configuration data structures as well as for storing and querying current state
of system, such as for instance number of processes running at each particular data
server.

Each data server runs one instance of Erlang Mnesia database system that serves as
local triple-store. Triple-store is realized by means of a single table triple_store



that is accompanied with 6 indexes for all combination of SPO attributes. Mnesia pro-
vides transaction-based access to local triple-store through module db_interface.
However, since db_interface provides only very simple cursor based access to a
single table, local triple-store can be easily replaced by other database engine, and, even
file-based access to RDF triples.

Module triple_distributor implements various schema-based algorithms
for the distribution of triple-store into a set of cluster columns [14].

Session processes are implemented in module session. They serve as user-interface
for interaction with users, initiate creation of query-tree processes, control the execution
of query tree, and collect the results of query execution. One session can spawn many
query trees in parallel.

Module query-tree implements query tree processes that run on front-servers.
The main task of query-tree process is to prepare, schedule and initiate the execution of
query in the form of query tree composed of query-node processes interconnected by
means of streams. Therefore, each query-tree process controls one or more query node
processes that constitute query. This is presented in more detail in Sub-section 4.2.

Physical algebra operations AM, join, union, intsc and diff are implemented
in query-node modules. Each physical algebra operation is realized as independent
Erlang query-node process that runs on one of data servers. All operations are imple-
mented as state machines executing particular protocol: access method to local triple-
store, indexed nested-loop join algorithm, or, particular set operation. Sub-sections 4.4
and 4.5 give more detailed description of operations AM and join.

4.2 Query-tree process

Query-tree module implements processes that serve as front-end of query tree repre-
sented as tree of inter-connected processes running on array of servers. Query is re-
ceived from session process in the form of a list of triple-patterns augmented with pro-
jections and selections as presented in previous section.

Query of type qt_query() presented to query tree process as parameter of mes-
sage start is converted into tree data structure stored as process dictionary entry.
First element of list representing qt_query() is triple-pattern of the lower leftmost
query node. Last element of list is triple-pattern of the upper rightmost query node. All
other triple-patterns are placed as inner query nodes in order between lower leftmost
and upper rightmost.

Query-tree process analyzes the query, computes all components of query node pro-
cesses to be started, determines cluster columns associated to each query node, and,
schedules the rows of columns to be employed for running each particular query node
of query tree.

Query-tree process determines the location of each query node in terms of col-
umn and row in array (cluster) of servers. Each query node is executed on location
determined by query tree process. Firstly, the column of query node is computed by
using distribution function that translates triple-patterns to columns in array of servers.
Secondly, rows in given columns are scheduled dynamically based on current load of
servers in columns.



We use two types of scheduling of column rows to query nodes. First type of
scheduling is random assignment of rows to query nodes. The second method used
for scheduling is bookkeeping the execution of each particular query node on particu-
lar server. Bookkeeping is realized by means of local node_state process. Besides
bookkeeping node_state provides a function that selects row server with least load.

Both types of scheduling resemble affinity scheduling where we tend to select the
same servers for the same session. The benefits of assigning the same servers (rows) in
columns for same session is primarily in utilizing cache of local database management
system Mnesia. Experiments are currently under way to present the benefits of affinity
scheduling in terms of execution speed.

4.3 Triple-pattern query node

Triple-pattern (abbr. TP) query node is implemented as Erlang gen-process. It re-
alizes access method at local triple-store implemented as Mnesia table. Access method
is defined by means of triple-pattern, and, it can use index based access to triple-store.

TP query node is implemented as state machine. Input and output messages trig-
ger coroutines that comprise protocol. The states of TP query node are: active,
db_access, eos, and inactive. Message start initializes TP query node pro-
cess and moves state to active. Message eval starts with evaluation and moves state
to read_db.

After obtaining triples from local Mnesia database, TP query node process checks
them against selection list. The selected triples are sent to parent of query node by us-
ing datamessages. Protocol requires that each datamessage is sent to parent process
only after receiving empty message from parent process. Therefore, protocol can con-
trol the number of data/emptymessages that comprise stream. Subsequent messages
empty retain state read_db.

After end_of_stream is obtained from function accessing triple-store, state moves
to eos. Message eval can be received multiple times if in state active or eos. Fi-
nally, stop message puts TP query node to state inactive.

4.4 Join query node process

Join query node is implemented as independent Erlang gen-process. Join query
node is a state-machine realizing protocol that has incoming and outcoming messages.
Each message is implemented as coroutine.

Join query node state-machine has the following states: active, wait_next_outer,
wait_next_inner, eos and inactive. Message start initializes the main
data structures of join query node and sets state of protocol to active. Message
eval start the evaluation of join query node by sending message eval to all chil-
dren, and, moves state to wait_next_outer. After this, state alternates between
wait_next_outer and wait_next_inner. State moves to eos after end of
outer streams is detected.

Join query node implements join method which is a variant of indexed nested-loop
join algorithm. However, it can have multiple outer query nodes as well as multiple



inner query nodes. Since we suppose that every local triple-store indexes triple table on
all possible subsets of SPO, all join variables are supported by indexes.

Algorithm of join method is defined as follows. Each graph obtained from outer
query nodes causes initialization of inner query nodes by means of message eval.
Initialization of inner query nodes uses the values of join variables obtained from outer
graph. Only those graphs are retrieved from inner query nodes that match previously
obtained outer graph. Each outer and inner graphs are merged into one graph which
is tested against selection list and projected using project list of given query node. If
selected then resulting graph is sent to parent query node.

4.5 Fault tolerance

Erlang programming environment provides the tools for the construction of fail-safe
process hierarchies by means of Erlang supervision processes [2]. Important process
state data structures are circulating among supervision and supervised processes. The
mechanism is integrated into message sending/receiving protocol. Each message re-
ceived by process A includes the current state of A that was stored by its supervision
process. After completing the task, process A returns its new state as a function result.
In this way, a supervision process always has up-to-date state of all processes that it
manages. In the case that process failure is detected by supervision process it can be
restarted using the last state. Furthermore, supervised processes can form various types
of structures with specific behavior.

5 Experimental results

As a preliminary study, the execution time of benchmark queries in big3store are com-
pared with the execution time obtained with Virtuoso [9].

Benchmark environment comprises six server machines. All of them have the same
physical specifications. Each server has two 2.9 GHz Xeon E5-2960 CPU and 256
GB of RAM. One Erlang interpreter process was invoked on each server. Benchmark
configuration uses one server as front server and the other five servers as data servers.

Virtuoso was installed on one of the servers that were used to execute big3store.
Let us first describe benchmark queries presented in Figure 5. The first group of

queries are simple queries that produce small number of intermediate and final results.
Query Q1 finds all triples having property <startedOnDate>. It returns 9 triples
from YAGO2s. Query Q2 finds all sets (graphs) of triples sharing the same subject that
has <startedOnDate> and <endedOnDate> properties in the graph. It returns
1 triple. Query Q3 finds graphs that describe Japanese computer scientists that have
created a programming language. Query Q4 returns the creation dates of all things
classified as wordnet_language that were created by Ericsson.

Query Q5 compares <Slovenia> and <Japan> by using the same predicate in
triple patterns. While it is similar to query Q2, query Q3 returns 241,596 graphs. Query
causes large number of intermediate results that are transferred as messages among data
servers.



SELECT * WHERE { SELECT * WHERE {
?sbj <startedOnDate> ?obj. ?p rdf:type

} <wikicategory_Japanese_computer_scientists> .
?p <created> ?o .

Query Q1 ?o rdf:type <wordnet_programming_language> .
}

SELECT * WHERE {
?sbj <startedOnDate> ?obj1. Query Q3
?sbj <endedOnDate> ?obj2.

} SELECT * WHERE {
<Ericsson> <created> ?pl.

Query Q2 ?pl rdf:type <wordnet_language>.
?pl <wasCreatedOnDate> ?dt.

SELECT * WHERE { }
<Slovenia> ?prd ?obj1.
<Japan> ?prd ?obj2. Query Q4

}
SELECT * WHERE {

Query Q5 ?p <hasGivenName> ?gn.
?p <hasFamilyName> ?gn.

SELECT * WHERE { ?p rdf:type <wordnet_scientist>.
?a1 <actedIn> ?movie. ?p <wasBornIn> ?c1.
?a2 <actedIn> ?movie. ?c1 <isLocatedIn> <Switzerland>.
?a1 <livesIn> ?c1. ?p <hasAcademicAdvisor> ?a.
?c1 <isLocatedIn> <England>. ?a <wasBornIn> ?c2.
?a2 <livesIn> ?c2. ?c2 <isLocatedIn> <Germany>.
?c2 <isLocatedIn> <England>. }

}
Query Q7

Query Q6
SELECT * WHERE {

SELECT * WHERE { <Tim_Burton> <directed> ?movie1.
?p1 <isMarriedTo> ?p2. <Johnny_Depp> <actedIn> ?movie1.
?p1 <wasBornIn> ?city. ?p1 <directed> ?movie1.
?p2 <wasBornIn> ?city. ?p2 <influences> ?p1.

} ?p3 <actedIn> ?movie1.
?p3 <actedIn> ?movie1.

Query Q8 ?p4 ?prd1 ?p3.
?p4 <actedIn> ?movie2.
?p1 ?prd1 ?p4.

}

Query 9

Fig. 4. Benchmark queries

Table 1. Benchmark Results (in seconds)

Query big3store Virtuoso
Q1 0.015 0.149
Q2 0.086 0.133
Q3 0.033 0.159
Q4 0.009 0.608
Q5 95.594 0.054
Q6 3.652 0.262
Q7 7.549 0.279
Q8 23.512 0.182
Q9 104.364 0.558



Queries Q6, Q7, and Q8 correspond to YAGO queries B1, A1, and B2 from [13], re-
spectively. Because YAGO and YAGO2s [12] have different schema structures, queries
were rewritten to have similar meaning.

Query Q6 returns pairs of actors that were playing in the same film and live in the
same city in England. Query Q7 returns graphs describing scientists that were born in
a city in Switzerland, and have academic advisor who was born in a city in Germany.
Query Q8 returns all married couples that were born in the same city.

Query Q9 was constructed to test circular queries. While current version of query
Q9 is specific and executes fast, a circular query can be constructed by removing the
first two triple patterns of <Tim_Burton> and <Johnny_Depp>.

Let us now give some comments on comparison presented in Table 1. System
big3store executed queries Q1, Q2, Q3 and Q4 faster than Virtuoso. One reason for
this is that Mnesia copies complete database in main memory, if it is possible.

It is also apparent that queries that do not produce a lot of traffic execute in big3store
much faster that queries that produce a lot of traffic among the servers. There are more
reasons for this. Firstly, we currently do not use any data compression, so data is stored
in raw form. Secondly, streams are implemented by sending one message for one graph.

The improved version of big3store will map IRIs to integers to optimize storage and
transfer speed. Furthermore, the speed of stream transfer will be improved by packing
more graphs into bundles that will serve as unit of transfer.

Another reason for slow performance of some queries is in the implementation of
cursors in Mnesia. Index-based access to table always returns all results in one package.
Consequently, there is almost no parallelism in the execution of queries. The improved
version of big3store will replace Mnesia with BerkeleyDB.

6 Conclusions

Algebra of RDF graphs and its implementation on shared-nothing clusters is presented.
Algebra is described by first defining denotational semantics of abstract algebra. Physi-
cal algebra corresponding to its abstract counterpart is based on technology of relational
and parallel database systems. The architecture of distributed query processing system
based on the presented algebra is described. Finally, some preliminary experimental
results are discussed.

We have a list of tasks that remain to be completed. Among the most important are:
distributed implementation of mapping from strings (URIs) to integers and its inverse
mapping, more deep study of the effects of structure and distribution of query trees to
the execution speed, experimental study that will give more insight into interrelations
between data and query distribution, and, improving the communication speed among
cluster servers by packing triples into bundles.
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