
HAL Id: hal-01633949
https://inria.hal.science/hal-01633949

Submitted on 13 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Descriptional Complexity of Bounded Regular
Languages

Andrea Herrmann, Martin Kutrib, Andreas Malcher, Matthias Wendlandt

To cite this version:
Andrea Herrmann, Martin Kutrib, Andreas Malcher, Matthias Wendlandt. Descriptional Complexity
of Bounded Regular Languages. 18th International Workshop on Descriptional Complexity of Formal
Systems (DCFS), Jul 2016, Bucharest, Romania. pp.138-152, �10.1007/978-3-319-41114-9_11�. �hal-
01633949�

https://inria.hal.science/hal-01633949
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Descriptional Complexity of
Bounded Regular Languages

Andrea Herrmann, Martin Kutrib, Andreas Malcher, and Matthias Wendlandt

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{kutrib,malcher,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. We investigate the descriptional complexity of the subreg-
ular language classes of (strongly) bounded regular languages. In the
first part, we study the costs for the determinization of nondeterministic
finite automata accepting strongly bounded regular languages. The up-
per bound for the costs is larger than the costs for determinizing unary
regular languages, but lower than the costs for determinizing arbitrary
regular languages. In the second part, we study for (strongly) bounded
languages the deterministic operational state complexity of the Boolean
operations as well as the operations reversal, concatenation, and itera-
tion. In detail, we present upper and lower bounds and we develop for
the proof of the lower bounds a tool that exploits the number of different
colorings of cycles occurring in deterministic finite automata accepting
bounded languages.

1 Introduction

Descriptional complexity is an area of theoretical computer science in which one
of the main questions is how succinctly a formal language can be described by
a formalism in comparison with other formalisms. A fundamental result is the
exponential trade-off between nondeterministic (NFA) and deterministic finite
automata (DFA) [16]. A further exponential trade-off is known to exist between
unambiguous and deterministic finite automata, whereas the trade-offs between
alternating and deterministic finite automata [14] as well as between determin-
istic pushdown automata and deterministic finite automata [19] are bounded by
doubly-exponential functions.

The question of whether the costs for determinization remain exponential
even for subclasses of the regular languages, called subregular language classes,
has been studied in [3, 4] for unary languages and in [18] for finite languages.
A systematic study of the problem for subregular language classes is provided
in [2]. In this paper, we study with bounded regular languages another subreg-
ular language class which has not gained much attention yet apart from the
fundamental paper [7] in which bounded regular languages are introduced and,
for example, characterization theorems are established. In general, a language is
called (strongly) bounded if it is a subset of a∗1a

∗
2 · · · a∗k, where a1, a2, . . . , ak are

(pairwise distinct) symbols. Bounded languages have been investigated to a large

2 A. Herrmann, M. Kutrib, A. Malcher, M. Wendlandt

extent in the literature. We would like to mention that basic results are summa-
rized in [8] and that there exist strong connections to counter machines which
are shown, for example, in [11, 13]. The descriptional complexity of bounded
context-free languages has first been studied in [15] and recently in [12].

In this paper, we start to investigate the descriptional complexity of bounded
regular languages. We provide the necessary definitions and notions in Section 2.
Additionally, we summarize the closure properties for (strongly) bounded regular
languages. In Section 3 we compute the costs for determinizing NFAs accepting
strongly bounded regular languages. As bounded languages are both an exten-
sion of unary languages and a restriction of arbitrary languages, we obtain a
‘similar’ result for the upper bound of the determinization costs that turns out
to be larger than the costs for determinizing unary NFAs, but lower than the
costs for determinizing arbitrary NFAs. Finally, we study in Section 4 the deter-
ministic operation problem for bounded regular languages which quantifies the
costs (in terms of states of a DFA) of operations on (strongly) bounded regular
languages such as union, intersection, concatenation, iteration, and reversal. The
deterministic operation problem for regular languages has initially been studied
in [20, 21]. Nowadays, there exists a vast literature on the deterministic and non-
deterministic operational state complexity of subregular languages, and we refer
to the recent survey [6]. Here, we complement these findings with the results
for (strongly) bounded regular languages. It should be noted that we devise a
new tool to obtain lower bounds for bounded regular languages which may be
of interest on its own.

2 Preliminaries and Closure Properties

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR. For the length of w we write |w|. For the number of occurrences of a
symbol a in w we use the notation |w|a. We denote the powerset of a set S
by 2S . By gcd(x1, x2, . . . , xk) we denote the greatest common divisor of the
integers x1, x2, . . . , xk, and by lcm(x1, x2, . . . , xn) their least common multiple.
If two numbers x and y are relatively prime, that is gcd(x, y) = 1, we write x⊥ y.

A nondeterministic finite automaton (NFA) is a system M = 〈S,Σ, δ, s0, F 〉,
where S is the finite set of internal states, Σ is the finite set of input sym-
bols, s0 ∈ S is the initial state, F ⊆ S is the set of accepting states, and
δ : S × Σ → 2S is the partial transition function. The language accepted by M
is L(M) = {w ∈ Σ∗ | δ(s0, w) ∩ F 6= ∅ }, where the transition function is recur-
sively extended to δ : S ×Σ∗ → 2S .

A finite automaton is deterministic (DFA) if and only if |δ(s, a)| = 1, for all
s ∈ S and a ∈ Σ. In this case we simply write δ(s, a) = p for δ(s, a) = {p}
assuming that the transition function is a mapping δ : S × Σ → S. So, any
DFA is complete, that is, the transition function is total, whereas for NFAs it is
possible that δ maps to the empty set.

Descriptional Complexity of Bounded Regular Languages 3

A language L ⊆ Σ∗ is said to be bounded if and only if L ⊆ a∗1a∗2 · · · a∗k, for
k ≥ 1 and ai ∈ Σ, 1 ≤ i ≤ k. It is strongly bounded if all letters a1, a2, . . . , ak are
pairwise different. It should be noted that in the literature bounded languages
which are defined as above are often called letter-bounded languages. Moreover,
if symbols a1, a2, . . . , ak are replaced by fixed words w1, w2, . . . , wk, a language
L ⊆ w∗1w

∗
2 · · ·w∗k is called word-bounded. However, in this paper we confine

ourselves to investigating only bounded and strongly bounded languages over
symbols.

The closure properties of bounded and strongly bounded languages are sum-
marized in Table 1. Although both language classes are not closed under all
operations, it is well known that the regular languages are closed under all oper-
ations. This allows to study the deterministic state complexity of all operations
for (strongly) bounded regular languages.

∪ ∩ R · ∗
Bounded Regular no yes yes yes yes no

Strongly Bounded Regular no no yes yes no no

Table 1. Summary of closure properties of the language families discussed.

3 Determinization

It is well known that the costs for the simulation of a nondeterministic finite
automaton with n states by a deterministic finite automaton can be limited
by 2n many states using the power set construction. On the other hand, several
different NFAs are known that reach this bound exactly. In the unary case the
upper bound as well as the lower bound collapses to eΘ(

√
n·logn). Considering the

costs for determinization in the strongly bounded regular case, one may expect
that the bounds for the conversion might be strictly in between the bounds for
the general and the unary case. In the following, we present an upper bound
which is slightly more costly than in the unary case.

Theorem 1. Let A be an NFA with n states accepting a strongly bounded regular
language L(A) over the alphabet Σ and m = n · |Σ|2 + |Σ|. Then an equivalent

DFA A′ with at most |Σ|2 · e|Σ|·Θ
(√

m·log(m)
)

many states can be constructed.

Proof. Given an NFA A = 〈S,Σ, s0, δ, F 〉 with n states accepting a strongly
bounded regular language L(A) over the alphabet Σ, we will construct an equiv-
alent DFA. We may assume that Σ = {a1, a2, . . . , ak} and L(A) ⊆ a∗1a

∗
2 · · · a∗k

with k ≥ 2 and pairwise distinct ai ∈ Σ with 1 ≤ i ≤ k.
The principal idea of the construction is to divide automaton A into ‘unary’

sections Sa1 , Sa2 , . . . , Sak according to the read input symbols, to determinize

4 A. Herrmann, M. Kutrib, A. Malcher, M. Wendlandt

1 3 5 7 9 11

0 10

2 4 6 8 12

start

a

a

a

a

c

b

b

b

b

b

c

c c

c

c c

Fig. 1. An NFA A accepting a strongly bounded regular language.

these unary subautomata, and finally to reassemble the different deterministic
subautomata to an equivalent DFA. In the first step, we construct an equivalent
NFA A′ with the property that each state of A′ has incoming edges with at most
one type of symbol. We define A′ = 〈S′, Σ, s′0, δ′, F ′〉, where s′0 is a new state,
S′ = { sx | s ∈ S, x ∈ Σ } ∪ {s′0} and F ′ = { sx | s ∈ F, x ∈ Σ } ∪ { s′0 | s0 ∈ F }.
If s′ ∈ δ(s, a) for some s, s′ ∈ S and a ∈ Σ, then define s′a ∈ δ′(sx, a) for all
x ∈ Σ. If s ∈ δ(s0, a) for some s ∈ S and a ∈ Σ, then define sa ∈ δ′(s′0, a).
The number of states of A′ is at most n · |Σ| + 1. Now, each state of A′ has
incoming edges with at most one type of symbol and a state sa is defined to be
in section Sa of A′, for a ∈ Σ. Furthermore, the initial state s′0 of A′ is only
visited in the first computation step and then never again. It is the single state
in the special section Sinit.

The next step is to modify A′ in such a way that it has no states having
more than one edge to another section labeled with the same symbol. Assume
that there is some state s ∈ S′ having ` ≥ 2 edges labeled with a leading to
section Sa. Then we add a new state s′ to section Sa, add for every edge from s
labeled with an a to some state s′′ in Sa an edge from s′ labeled with λ to the
state s′′, and replace the ` old edges by one edge from s to s′ labeled with a.
These modifications introduce at most |Σ| new states for every state as well as
λ-moves to the NFA, but preserve the given language. Moreover, for every input
symbol a ∈ Σ, all nondeterministic moves on a take place inside section Sa. The
number of states of A′ is now at most n · |Σ|2 + |Σ|.

The first two steps of the construction based on the example NFA shown in
Figure 1 are depicted in Figure 2.

In the following, the sections are successively determinized. We start with
the determinization of the first section Sa1 having n1 many states and define
the set Ia1 of incoming states as the set of all states with incoming edges from
other sections. Here, Ia1 = δ′(s′0, a1) consists of one state only, since there are
no states having more than one edge to another section labeled with the same
symbol. Additionally, we define the set Oa1 of states with outgoing edges to
other sections as Oa1 = { s ∈ Sa1 | r ∈ δ′(s, aj) for some r ∈ S′ and k ≥ j > 1 }.
For the state s ∈ Ia1 we construct an NFA As as subautomaton of A′ with

Descriptional Complexity of Bounded Regular Languages 5

1 3 5 7 9 11

0 00 07 10

i 2 4 6 8 12

start

a
a a

a

a

λ

λ

b

b

c

b

b

b

c

c

c

c

c

c c

Fig. 2. The first two steps of the construction of A′. States 00 and 07 are added so
that the initial state has no incoming edges and every state has only incoming edges
with the same label. State i is added to ensure that there are no states having more
than one edge to another section labeled with the same symbol.

state set Sa1 and s as initial state. Furthermore, all edges labeled with ai
such that i 6= 1 are removed. Finally, we eliminate λ-moves applying the con-
struction given in [10] which does not increase the number of states. Addi-
tionally, we set all outgoing states from Oa1 as accepting. This is done to
avoid that states with outgoing edges possibly disappear in the determinization
process. Such states will later be rechanged to non-accepting states and com-
pleted with the outgoing edges to other sections. Thus, the NFA As accepts the
unary language {w ∈ a∗1 | δ′(s, w) ∩ (F ′ ∪Oa1) 6= ∅ } and has at most n1 states.
Next, we apply the construction given in [3] to obtain a DFA A′s such that
L(A′s) = L(As). According to [3] the costs for determinizing As are bounded

by e
Θ
(√

n1·log(n1)
)
. Since n1 is bounded by m = n · |Σ|2 + |Σ|, we get an upper

bound of `1 = e
Θ
(√

m·log(m)
)

many states. Next, we construct an NFA A′′ based
on A′ by replacing automaton As in section Sa1 of A′ by its deterministic ver-
sion. Additionally, let s′ be the initial state of the DFA A′s, then all transitions
in A′′ that link to state s are redirected to the initial state s′ of A′s. As a result
of the construction, the DFA A′s implemented in A′′ has two different types of
accepting states. The first type are the original accepting states where some in-
put is accepted in A′. The second type are the states where the outgoing edges
have to be placed. These have to be changed into non-accepting states and the
outgoing edges have to be added to A′′.

To find out which states in section Sa1 have to be accepting and which states
have to be connected with other sections, we do the following considerations.
Let B be an NFA accepting a unary language having a single accepting state.
Then the lengths of the words of the accepted language L(B) can be described
by a finite set E of equations of the form g(x) = zg ·x+yg, where x, yg, zg ≥ 0 are
integers (see, for example, [3]). Looking at the equivalent DFA B′, we obtain that
for each equation g ∈ E there are one or more accepting states in B′ indicating
the divisibility of the input words according to g.

6 A. Herrmann, M. Kutrib, A. Malcher, M. Wendlandt

Now, we consider again for state s ∈ Ia1 the NFA As and its equivalent
DFA A′s. First, we set all states in A′s non-accepting. Second, for every accepting
state f in As such that f ∈ F ′ (thus, being an original accepting state in A′), we
consider an NFA As,f based on As where f is the only accepting state and we
determine the set of equations E for As,f . Based on the obtained divisibilities we
set the corresponding states in A′s as accepting. Third, for every outgoing state
o ∈ Oa1 linking with input symbol aj to some state sj ∈ Sj for some k ≥ j > 1,
we consider an NFA As,o based on As where o is the only accepting state and we
determine the set of equations E for As,o. Based on the obtained divisibilities we
add to the corresponding states in A′s outgoing edges labeled with aj to state sj .
We notice that this adding of edges may introduce nondeterminism in A′s. To
remove such possible nondeterministic moves, we do the following: for every state
q ∈ A′s having more than one outgoing edges labeled by some aj with k ≥ j > 1,
we introduce a new state p to section Saj , replace all outgoing aj-edges from q
by outgoing λ-edges from p, and add one aj-edge from q to p. Note that the
removing of nondeterministic moves adds at most `1 states to each section Saj .
Finally, we rename the NFA A′′ with a determinized section Sa1 to A′ and start
the determinization of the next section Sa2 .

Again, we define the set Ia2 of states with incoming edges from other sections
and the set Oa2 of states with outgoing edges to other sections. Formally,

Ia2 = { s ∈ Sa2 | s ∈ δ′(r, a2) for some r ∈ S′ and r 6∈ δ′(q, a2) for all q ∈ S′ },
Oa2 = { s ∈ Sa2 | r ∈ δ′(s, aj) for some r ∈ S′ and k ≥ j > 2 }.
For each state s in Ia2 we construct an automaton As in a similar way as above.
Thus, As accepts the unary language {w ∈ a∗2 | δ′(s, w)∩(F ′∪Oa2) 6= ∅ } and has
at most n2 + 1 states, if s has been added by removing nondeterministic moves
in the previous step, and at most n2 states otherwise. Next, we determinize As
and obtain an equivalent DFA A′s with at most

e
Θ
(√

(m+1)·log(m+1)
)

= e
Θ
(√

m·log(m)
)

= `1

many states. Then we construct an NFA A′′ based on A′ by replacing automa-
ton As in section Sa2 of A′ by its deterministic version and all transitions in A′

that link to state s are redirected in A′′ to the initial state of A′s. Finally, we
determine the accepting states of A′s as well as the connections from outgoing
states to other sections, and we remove possibly introduced nondeterminism.
Having done this for all s ∈ Ia2 we rename the NFA A′′ with determinized
sections Sa1 and Sa2 again to A′. The size of the determinized section Sa2 can

be calculated as follows: we have at most m + `1 = e
Θ
(√

m·log(m)
)

= `1 states
in Ia2 . Each determinization costs at most `1 states. Thus, we obtain `2 = `21 as
an upper bound for the determinization costs of section Sa2 . Again, note that the
removing of nondeterministic moves adds at most `2 states to each section Saj
with k ≥ j > 2.

We continue the construction by determinizing successively the following
sections in a similar way as described above. The costs for determinizing sec-
tion Sai with 3 ≤ i ≤ k can be calculated as follows. There are at most

Descriptional Complexity of Bounded Regular Languages 7

m+ `1 + `2 + · · ·+ `i−1 states in Iai and each determinization costs at most `1
states. By setting `i = `i1, we obtain i · `i as total upper bound.

After determinizing all sections Sa1 , Sa2 , . . . , Sak we obtain a DFA A′ being
equivalent to A and the number of states of A′ is bounded by the function

1 + `1 + 2`2 + · · ·+ k · `k ≤ k2`k1 = |Σ|2 · e|Σ|·Θ
(√

m·log(m)
)
. ut

4 Deterministic Operational State Complexity

This section is devoted to studying the deterministic operational state complex-
ity of the family of strongly bounded regular languages, that is, the languages are
given by DFAs. Clearly, the known upper bounds for general regular languages
apply also here. Moreover, every unary language is also (strongly) bounded. So,
the known lower bounds for unary languages apply here as well. In [21] it has
been shown that the tight bounds for Boolean operations coincide for general
regular and unary regular languages. In the unary case the lower bound requires
the numbers of states to be relatively prime. In [17] unary regular languages are
studied whose deterministic state complexities are not relatively prime. Here we
can derive the following corollary for strongly bounded regular languages.

Corollary 2. For any integers m,n ≥ 1 let A be an m-state and B be an n-state
DFA that accept strongly bounded languages.

1. Then m states are sufficient and necessary in the worst case for a DFA to
accept the language L(A).

2. Then m·n states are sufficient for a DFA to accept the language L(A)∩L(B)
(respectively L(A) ∪ L(B)).

3. If m⊥n, then there exist a unary m-state DFA A and a unary n-state DFA
B (with the same input symbol) such that any DFA accepting L(A) ∩ L(B)
(respectively L(A) ∪ L(B)) needs at least m · n states.

Notice that the languages L(A)∪L(B) and L(A) are not necessarily strongly
bounded. However, since they are regular they are accepted by DFAs in any
case.

In the following, we turn to the operations reversal, iteration, and concate-
nation for which the deterministic state complexities of general and unary lan-
guages are different (see, for example, the summary in Table 2). So, an immediate
question is to what extent the state complexity of strongly bounded languages
is strictly in between both cases. Since the deterministic state complexities for
unary languages are well known, we suppose that the strongly bounded lan-
guages that are investigated in the remainder of this section are defined over
an alphabet of size at least two. In other words, we consider strongly bounded
languages L ⊆ a∗1a∗2 · · · a∗k such that k ≥ 2.

4.1 A Tool for Constructing Lower Bound Witnesses

A widely used method to show lower bounds is to define an infinite family of
witness languages so that the sizes of the minimal automata accepting them

8 A. Herrmann, M. Kutrib, A. Malcher, M. Wendlandt

establish the bound. In order to allow the construction of witnesses as well as
to determine the necessary sizes of the automata, lower bound techniques are
very helpful. For example, in proofs dealing with the nondeterministic state
complexity on regular languages specified by NFAs, the so-called fooling set
technique can be used [1, 9].

Here we first present a tool for the definition of lower bound witnesses, that is,
for the construction of DFAs accepting (strongly) bounded languages. The idea
is based on the number of possibilities to color a cycle of a DFA whose edges are
labeled with the same input letter. All cycles in a DFA accepting a (strongly)
bounded language have this unary form. We use the two colors gray (g) and
white (w).

Let Sc be a (sub)set of states of a given DFA that build a cycle on some
fixed input letter. The set of all colorings of Sc with colors from {g, w} is
X = { f | f : Sc → {g, w} }. So, there are |X| = 2|Sc| different such colorings.

Example 3. The DFA A depicted in Figure 3 has a cycle on input letter b, where
the states of the cycle are Sc = {1, 2, 3, 4}. The coloring shown at the top of the
figure is f1 ∈ X with f1(1) = g, f1(2) = g, f1(3) = w, and f1(4) = w. �

0 1 2 3 4
a b b b

b

start

0 1 2 3 4
a b b b

b

start

Fig. 3. Coloring of the cycle of DFA A from Example 3. Edges to the rejecting sink
state are omitted.

For the clarity of presentation, colorings are written as words. For exam-
ple, coloring f1 can be written as ggww, and the set of all such colorings is
X = {wwww, gwww,wgww, . . . , gggg}. Moreover, a coloring can be uniquely
identified by the set of states that are colored by w. For example, f1 is given
by {3, 4}.

Two colorings f1 and f2 are said to be equivalent if f1 can be obtained from f2
by applying the transition function. More precisely, two colorings f1 and f2 are
equivalent if and only if there is some ` ≥ 0 so that f1(i) = f2(δ(i, x`)), for all
i ∈ Sc. Here, Sc is the set of cycle states and the cycle is on input symbol x.

Example 4. Let f2 ∈ X with f2(1) = w, f2(2) = g, f2(3) = g, and f2(4) = w be
the coloring shown at the bottom of Figure 3. Then f1 and f2 are equivalent,
since f1(i) = f2(δ(i, b)), for all i ∈ {1, 2, 3, 4}. �

Descriptional Complexity of Bounded Regular Languages 9

Now, we turn to determine the number of possibilities to color a cycle with
inequivalent colorings. The number depends only on the number of states in the
cycle. For example, for four states we obtain the following equivalence classes
{wwww}, {gwww,wgww,wwgw,wwwg}, {ggww,wggw,wwgg, gwwg}, {gggg},
{gggw,wggg, gwgg, ggwg}, and {gwgw,wgwg}, and thus six possibilities.

Now we consider the cyclic group G generated by the cyclic permutation
〈(12 · · · |Sc|)〉. The group naturally operates on Sc. Moreover, for σ ∈ G and
f ∈ X, let σf ∈ X be defined as σf(s) = f(σ−1(s)), for all s ∈ Sc. With this op-
eration, G acts on the set X of colorings as well. So, two colorings are equivalent
if and only if they are in the same orbit of G. Therefore, the number of possi-
bilities to color a cycle with inequivalent colorings coincides with the number of
orbits of G acting on X. This number can be determined by Polya’s enumeration
lemma that is a generalization of the well-known Burnside lemma on the num-
ber of orbits of a group action on a set (see, for example, [5, Chapter 8]). In the
particular case of a cyclic group generated by a cyclic permutation 〈(12 · · ·n)〉
and two colors, the number or orbits is 1

n

∑
d|n ϕ(d) · 2n

d , where d|n denotes the

positive divisors of n and ϕ(d) = |{ 1 ≤ k ≤ d | gcd(k, d) = 1 }| is Euler’s func-
tion. For example, for n = 4 we have d|n = {1, 2, 4}. Since ϕ(1) = 1, ϕ(2) = 1,
and ϕ(4) = 2, the number of orbits and, identically, the number of inequivalent

colorings is 1
4 (1 · 24 + 1 · 2 4

2 + 2 · 2 4
4) = 6.

4.2 Reversal, Concatenation, and Iteration

The first operation we consider in detail is the reversal. It turns out that the
upper bound and lower bound can be described by an exponential function which
is slightly smaller than in the case of arbitrary regular languages. On the other
hand, in comparison with unary regular languages we obtain an exponential
increase. The upper bound in the bounded case is derived from the observation
that any DFA accepting some bounded language over an alphabet with at least
two elements must have a rejecting sink state.

Theorem 5. Let k, n ≥ 2 be two integers and A be an n-state DFA that accepts
a (strongly) bounded language L(A) ⊆ a∗1a∗2 · · · a∗k. Then 2n−1 states are sufficient
for a DFA to accept the language L(A)R.

Proof. Every non-unary DFA A = 〈S,Σ, δ, s0, F 〉 accepting a (strongly) bounded
language necessarily has a rejecting sink state, say e ∈ S. Now an NFA for the
reversal of L(A) is constructed by interchanging the initial state with the accept-
ing states and reversing the direction of the transitions. The NFA is determinized
which yields a DFA A′ = 〈2S , Σ, δ′, s′0, F ′〉 accepting L(A)R. Since for all states
p, q ∈ 2S so that p = q∪{e} we have δ′(p, v) ∈ F ′ if and only if δ′(q∪{e}, v) ∈ F ′
if and only if δ′(q, v) ∈ F ′, for all v ∈ Σ∗, the states p and q are equivalent. We
conclude that A′ has at most 2n−1 states. ut

In order to show the lower bound 2n−2 + 1 the coloring of cycles is exploited.
Next, the construction of the witness DFAs is given, then we analyze a witness
for six states. Finally, the general case is proven.

10 A. Herrmann, M. Kutrib, A. Malcher, M. Wendlandt

Let n > 3 be an integer. The DFA An = 〈Sn, Σ, δn, 0, {n−2}〉 is constructed
as follows (see Figure 4): Sn = {0, 1, . . . , n− 2, e} where e denotes the rejecting

sink state, Σ = {a, a1, a2, . . . , ak} with k = 1
n−2

(∑
d|n−2 ϕ(d) · 2n−2

d

)
− 1, and

δn(i, a) =

{
(i+ 1) mod n− 2 for 0 ≤ i ≤ n− 3

e otherwise
.

The transition function is still incomplete. Now we consider the colorings of the
cycle, that is, of the states {0, 1, . . . , n− 3}, whereby we disregard gg · · · g. From

above it is known that there remain k = 1
n−2

(∑
d|n−2 ϕ(d) · 2n−2

d

)
− 1 inequiv-

alent colorings. From each equivalence class Mj one element mj , 1 ≤ j ≤ k, is
chosen and identified by the states that are colored white. For example, wwgw is
identified by {0, 1, 3}. Now, the definition of the transition function is completed
by setting

δn(i, aj) =

{
n− 2 if i ∈ mj

e otherwise

for 1 ≤ j ≤ k. The DFA An accepts the language

L(An) =

k⋃
j=1

⋃
i∈mj

(an−2)∗aiaj ⊆ a∗a∗1a∗2 · · · a∗k.

0 1 2 · · · n− 4 n− 3

n− 2

a a a a a

a

X0 X1 X2 Xn−4 Xn−3

start

Fig. 4. The witness DFA An for reversal. The set of all aj with i ∈ mj are denoted
by Xi. Edges to the rejecting sink state are omitted.

Example 6. There are six inequivalent possibilities to color the 4-state cycle
of A6. Disregarding the coloring where all states are gray, the five equivalence

Descriptional Complexity of Bounded Regular Languages 11

classes in question are

M1 = {{0}, {1}, {2}, {3}}, M2 = {{0, 1}, {1, 2}, {2, 3}, {3, 0}},
M3 = {{0, 2}, {1, 3}}, M4 = {{0, 1, 2}, {1, 2, 3}, {2, 3, 0}, {3, 0, 1}},
M5 = {{0, 1, 2, 3}}.

Choosing m1 = {3}, m2 = {2, 3}, m3 = {1, 3}, m4 = {1, 2, 3}, m5 = {0, 1, 2, 3}
yields X0 = {a5}, X1 = {a3, a4, a5}, X2 = {a2, a4, a5}, X3 = {a1, a2, a3, a4, a5}
in Figure 4. �

Theorem 7. For any integer n > 3, there exists an n-state DFA A that accepts
a (strongly) bounded language such that any DFA accepting L(A)R needs at least
2n−2 + 1 states.

Proof. We use the DFA An = 〈Sn, Σ, δn, 0, {n − 2}〉 from above as witness. To
show that An is minimal, consider two states p, q ∈ {0, 1, . . . , n− 3}. Let Mr

denote the equivalence class with the colorings that color only one state white,
and let mr = {s}. Then δn(p, axar) = n − 2 and δn(q, axar) 6= n − 2, for
x = n− 2− |p− s|, since ar sends only state s to the sole accepting state n− 2.
Clearly, the states n− 2 and p ∈ {0, 1, . . . , n− 3} are inequivalent.

The NFA Bn = 〈Pn, Σ, νn, pn−2, {p0}〉 with Pn = {p0, p1, . . . , pn−2} and

νn(pn−2, ai) =
⋃
j∈mi

pj , for 1 ≤ i ≤ k, and

νn(pi, a) = pj with i = (j + 1) mod (n− 2), for 0 ≤ i ≤ n− 3,

accepts the language L(An)R. Notice that n− 2 /∈ mj for all 1 ≤ j ≤ k.
By applying the powerset construction, the NFA Bn is determinized which

yields the DFA A′n = 〈S′n, Σ, δ′n, pn−2, F ′n}〉, where S′n = 2Pn\{pn−2} ∪ {pn−2},
F ′n = {T ∈ 2Pn\{pn−2} | T∩{p0} 6= ∅ }, δ′n({pn−2}, ai) =

⋃
j∈mi

pj , for 1 ≤ i ≤ k,

δ′n({pn−2}, a) = ∅, and δ′n(T, a) =
⋃
t∈T ν(t, a), for T ∈ 2Pn\{pn−2}.

The DFA A′n accepts L(A)R and has 2n−2 + 1 states. By the construction
of An and since the equivalence classes of colorings partition the set 2Pn\{pn−2},
all states of A′n are reachable.

In order to show that A′n is minimal, first consider the states {pn−2} and
Ri ∈ S′n, for 0 ≤ i ≤ n − 3. For pl ∈ Ri we have δ′n(Ri, a

l) ∈ F ′n while
δ′n({pn−2}, al) /∈ F ′n.

Now let Ri and Rj be two different states from S′n \ {pn−2} and let pl be
in their symmetric difference, say, pl ∈ Ri \ Rj . Then δ′n(Ri, a

l) ∈ F ′n while
δ′n(Rj , a

l) /∈ F ′n. Therefore, A′n is minimal. ut

Next, we turn to the operation iteration. Here, we will obtain tight upper
and lower bounds that lie strictly in between the bounds for unary regular and
arbitrary regular languages. Roughly speaking, the bounds for unary regular
languages are quadratic and for arbitrary regular languages exponential. The
bound for strongly bounded regular languages turns out to be the sum of a
quadratic and an exponential function, where the quadratic function depends
on the number of states of the first part of the given DFA and the exponential

12 A. Herrmann, M. Kutrib, A. Malcher, M. Wendlandt

function depends on the number of remaining states. The partitioning of the
state set of a DFA accepting a strongly bounded language L ⊆ a∗1a

∗
2 · · · a∗k into

two sets is done, roughly speaking, as follows: the first set is given by all states
that are reachable with words from a∗1. Since the DFA is deterministic, these
states form a line or a line followed by a cycle in the state graph.

More precisely, let A = 〈S,Σ, δ, s0, F 〉 be a minimal DFA accepting a strongly
bounded language L ⊆ a∗1a∗2 · · · a∗k and let e denote the rejecting sink state of A
if it exists. In the sequel, the set of states q ∈ S with q 6= e such that there
exists a word v from a∗1a

∗
2 · · · a∗k \ a∗1 with δ(s0, v) = q is denoted by S2. The set

S \ (S2 ∪ {e}) is denoted by S1.
So, all states from S1 are reachable only by words of the form a∗1. For k ≥ 2,

we have S = S1 ∪ S2 ∪ {e}. The next theorem shows the upper bound for the
iteration.

Theorem 8. Let n1 ≥ 2 and n2 ≥ 1 be two integers and A be an (n1 +n2 + 1)-
state DFA with state set S that accepts a strongly bounded language, so that
S = S1 ∪ S2 ∪ {e} with |S1| = n1 and |S2| = n2. Then (n1 − 1)2 + 2n2 + 2 states
are sufficient for a DFA to accept the language L(A)∗.

In order to show a matching lower bound the coloring of cycles is exploited.
Next, the construction of a (2n + 1)-state witness DFA is given. Let n ≥ 1 be
an integer. The DFA Bn = 〈S,Σ, δn, 0, {n− 1, 2n− 1}〉 is constructed as follows
(see Figure 5): S = {0, 1, . . . , 2n− 1, e} where e denotes the rejecting sink state,

Σ = {a, b, a1, a2, . . . , ak} with k = 1
n

(∑
d|n ϕ(d) · 2n

d

)
− n− 1, and

δn(i, a) =

{
(i+ 1) mod n for 0 ≤ i ≤ n− 1

e otherwise
,

δn(i, b) =


i+ n for 0 ≤ i ≤ n− 1

(i+ 1) mod n for n ≤ i ≤ 2n− 1

e otherwise

.

In order to complete the definition of the transition function we consider colorings
of the cycle on input letter b, that is, of the states {n, n+1, . . . , 2n−1}, whereby
we disregard gg · · · g, wgg · · · g, wwgg · · · g, · · · , ww · · ·wg, and ww · · ·w. There

remain k = 1
n

(∑
d|n ϕ(d) · 2n

d

)
−n− 1 inequivalent colorings. From each equiv-

alence class Mj one element mj , 1 ≤ j ≤ k, is chosen and identified by the states
that are colored white. The states in mj are denoted by r0,j , r1,j , . . . , r|mj |−1,j .
The definition of the transition function is completed by setting

δn(i, aj) =

{
ri,j if 0 ≤ i ≤ n− 1 and ri,j is defined

e otherwise

for 1 ≤ j ≤ k. The DFA Bn accepts the language

L(Bn) = (an)∗an−1 ∪
n−1⋃
j=0

(an)∗ajbn−j(bn)∗ ∪
k⋃
j=1

|mj |−1⋃
i=0

(an)∗aiajb
2n−1−ri,j (bn)∗,

Descriptional Complexity of Bounded Regular Languages 13

that is, L(Bn) ⊆ a∗a∗1a∗2 · · · a∗kb∗.

0 1 2 3

4 5 6 7

start a a a

a

b b b

b

b, a1 b a1 b b

Fig. 5. The witness DFA B4 for iteration. Edges to the rejecting sink state are omitted.

Example 9. From the six inequivalent possibilities to color the four-state cy-
cle (see Example 6) of B4 on input letter b only the sole equivalence class
M1 = {{4, 6}, {5, 7}} remains. Choosing m1 = {4, 6} yields r0,1 = 4 and r1,1 = 6.
So, δn(0, a1) = 4 and δ(1, a1) = 6 are defined (see Figure 5). �

Theorem 10. For any integers n1 = n2 ≥ 1, there exists an (n1 + n2 + 1)-
state DFA A that accepts a (strongly) bounded language such that any DFA
accepting L(A)∗ needs at least (n1 − 1)2 + 2n2 + 2 states.

The final operation we consider is the concatenation. Again, the structure
of (strongly) boundedness allows to reduce the descriptional complexity com-
pared with the general case. As for iteration we obtain that the upper bound
is described by the sum of a quadratic and an exponential function, where the
number of states of the first DFA appear as quadratic resp. linear factor in both
addends. As is done for iteration, the states of the second DFA are partitioned
into two parts and the number of states of the first part appear as linear factor in
the quadratic addend and as exponential factor in the other addend. The proof
of the next theorem gives a detailed construction of the upper bound for the
concatenation of two strongly bounded regular languages.

Theorem 11. Let m,n1, n2 ≥ 1 be integers, A be an m-state DFA, and A′

be an (n1 + n2 + 1)-state DFA with state set S′ that accept strongly bounded
languages, so that S′ = S′1 ∪ S′2 ∪ {e′} with |S′1| = n1 and |S′2| = n2. Then in
total m2n1 + (2m− 1)2n2 states are sufficient for a DFA to accept the language
L(A)L(A′).

The currently best known lower bound for the concatenation of strongly
bounded languages is derived from the concatenation of unary languages. In [21]

14 A. Herrmann, M. Kutrib, A. Malcher, M. Wendlandt

it is shown that for any m,n ≥ 1 with gcd(m,n) = 1 there exist an m-state
DFA A and an n-state DFA A′ accepting unary (and thus strongly bounded)
languages so that any DFA that accepts the concatenation L(A)L(A′) has at
least mn states. The results on the deterministic state complexity obtained in
this section are summarized in Table 2.

unary regular bounded regular regular

L1 ∪ L2 ≤ mn ≤ mn mn

L1 ∩ L2 ≥ mn, if gcd(m,n) = 1 ≥ mn, if gcd(m,n) = 1

L m m m

L1L2 ≤ mn ≤ m2n1 + (2m− 1)2n2 (2m− 1)2n−1

≥ mn, if gcd(m,n) = 1 ≥ mn, if gcd(m,n) = 1

L∗ (m− 1)2 + 1 (m1 − 1)2 + 2m2 + 2 2m−1 + 2m−2

LR m ≤ 2m−1 2m

≥ 2m−2 + 1

Table 2. Summary of the deterministic state complexity of the operations studied in
this section. The upper and lower bounds for bounded regular languages are obtained
in this section. The results for unary regular and arbitrary regular languages may be
found, for example, in [6, 21].

5 Conclusions

In this paper, we have studied the descriptional complexity of (strongly) bounded
regular languages. We have described a procedure for determinizing nondeter-
ministic finite automata accepting strongly bounded regular languages. The ob-
tained upper bound on the number of states is close to the known upper bound
for the determinization of unary nondeterministic finite automata. Moreover,
we have determined the deterministic state complexity of several operations on
strongly bounded regular languages, in particular, of the operations reversal, it-
eration, and concatenation. The resulting upper and lower bounds are basically
strictly in between the known bounds for unary and arbitrary regular languages.
As interesting points for further research on the topic we would like to mention
the improvement of the lower bound on concatenation, the study of additional
operations, and the investigation of the nondeterministic state complexity of op-
erations. Another interesting question is to look more closely at the size of the
alphabets of the witness languages for the lower bounds. In the proofs given in
this paper, the size is depending on the given number of states. It would clearly
be of interest to study fixed alphabets or to consider the size of the alphabet as
an additional parameter for upper and lower bounds.

Descriptional Complexity of Bounded Regular Languages 15

References

1. Birget, J.C.: Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43, 185–190 (1992)

2. Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accepting
subregular languages. Theor. Comput. Sci. 410(35), 3209–3222 (2009)

3. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47(2),
149–158 (1986)

4. Chrobak, M.: Errata to “Finite automata and unary languages”. Theoret. Comput.
Sci. 302, 497–498 (2003)

5. Erickson, M.J.: Introduction to Combinatorics. Wiley (1996)
6. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity.

CoRR abs/1509.03254 (2015), http://arxiv.org/abs/1509.03254
7. Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proc. Amer. Math. Soc. 17(5),

1043–1049 (1966)
8. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw Hill,

New York (1966)
9. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic

finite automata. Inform. Process. Lett. 59, 75–77 (1996)
10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading, Massachusetts (1979)
11. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-

lems. J. ACM 25(1), 116–133 (1978)
12. Ibarra, O.H., Ravikumar, B.: On bounded languages and reversal-bounded au-

tomata. Inf. Comput. 246, 30–42 (2016)
13. Ibarra, O.H., Seki, S.: Characterizations of bounded semilinear languages by one-

way and two-way deterministic machines. Int. J. Found. Comput. Sci. 23(6), 1291–
1306 (2012)

14. Leiss, E.L.: Succinct representation of regular languages by Boolean automata.
Theoret. Comput. Sci. 13, 323–330 (1981)

15. Malcher, A., Pighizzini, G.: Descriptional complexity of bounded context-free lan-
guages. Inf. Comput. 227, 1–20 (2013)

16. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: SWAT 1971. pp. 188–191. IEEE (1971)

17. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. Int. J. Found. Comput. Sci. 13, 145–159 (2002)

18. Salomaa, K., Yu, S.: NFA to DFA transformation for finite languages over arbitrary
alphabets. J. Autom. Lang. Comb. 2, 177–186 (1997)

19. Valiant, L.G.: Regularity and related problems for deterministic pushdown au-
tomata. J. ACM 22, 1–10 (1975)

20. Yu, S.: State complexity of regular languages. J. Autom., Lang. Comb. 6, 221–234
(2001)

21. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)

