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Abstract. A condition characterizing the class of regular languages
which have several nonisomorphic minimal reversible automata is pre-
sented. The condition concerns the structure of the minimum automa-
ton accepting the language under consideration. It is also observed that
there exist reduced reversible automata which are not minimal, in the
sense that all the automata obtained by merging some of their equivalent
states are irreversible. Furthermore, it is proved that if the minimum de-
terministic automaton accepting a reversible language contains a loop in
the “irreversible part” then it is always possible to construct infinitely
many reduced reversible automata accepting such a language.

1 Introduction

A device is said to be reversible when each configuration has exactly one prede-
cessor, thus implying that there is no loss of information during the computation.
On the other hand, as observed by Landauer, logical irreversibility is associated
with physical irreversibility and implies a certain amount of heat generation [8].
In order to avoid such a power dissipation and, hence, to reduce the overall power
consumption of computational devices, the possibility of realizing reversible ma-
chines looks appealing.

A lot of work has been done to study reversibility in different computational
devices. Just to give a few examples in the case of general devices as Turing ma-
chines, Bennet proved that each machine can be simulated by a reversible one [2],
while Lange, McKenzie, and Tapp proved that each deterministic machine can
be simulated by a reversible machine which uses the same amount of space [9]. As
a corollary, in the case of a constant amount of space, this implies that each reg-
ular language is accepted by a reversible two-way deterministic finite automaton.
Actually, this result was already proved by Kondacs and Watrous [5].

However, in the case of one-way automata, the situation is different. In fact,
as shown by Pin, the regular language a∗b∗ cannot be accepted by any reversible
automaton [11].1 So the class of languages accepted by reversible automata is a
proper subclass of the class of regular languages. Actually, there are some dif-
ferent notions of reversible automata in literature. In 1982, Angluin introduced
reversible automata in algorithmic learning theory, considering devices having

1 From now on, we will consider only one-way automata. Hence we will omit to specify
“one-way” all the times.
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only one initial and only one final state [1]. On the other hand, the devices
considered in [11], besides a set of final states, can have multiple initial states,
hence they can take a nondeterministic decision at the beginning of the com-
putation. An extension which allows to consider nondeterministic transitions,
without changing the class of accepted languages, has been considered by Lom-
bardy [10], introducing and investigating quasi reversible automata. Classical
automata, namely automata with a single initial state and a set of final states,
have been considered in the works by Holzer, Jakobi, and Kutrib [6, 3, 7]. In par-
ticular, in [3] the authors gave a characterization of regular languages which are
accepted by reversible automata. This characterization is given in terms of the
structure of the minimum deterministic automaton. Furthermore, they provide
an algorithm that, in the case the language is acceptable by a reversible automa-
ton, allows to transform the minimum automaton into an equivalent reversible
automaton, which in the worst case is exponentially larger than the given min-
imum automaton. In spite of that, the resulting automaton is minimal, namely
there are no reversible automata accepting the same language with a smaller
number of states. However, it is not necessarily unique, in fact there could exist
different reversible automata with the same number of states accepting the same
language.

In this paper we continue the investigation of minimality in reversible au-
tomata. Our first result is a condition that characterizes languages having several
different minimal reversible automata. Even this condition is on the structure of
the transition graph of the minimum automaton accepting the language under
consideration. As a special case, we show that each time the “irreversible part”
of the minimum automaton contains a loop, it is possible to construct at least
two different minimal reversible automata.

We also observe that there exist reversible automata which are not minimal
but they are reduced, in the sense that when we try to merge some of their
equivalent states we always obtain an irreversible automaton. Investigating this
phenomenon more into details, we were able to find a language for which there
exist arbitrary large, and hence infinitely many, reduced reversible automata. In
the paper, we present a general construction that allows to obtain arbitrary large
reversible automata for each language accepted by a minimum deterministic
automaton satisfying the structural condition given in [3] and such that the
“irreversible part” contains a loop. We know that this is also possible in other
situations, namely that our condition is not necessary. We leave as an open
problem, to find a characterization of the class of the languages having infinitely
many reduced reversible automata.

2 Preliminaries

In this section we recall some basic definitions and results useful in the paper. We
assume the reader is familiar with standard notions from automata and formal
language theory (see, e.g., [4]). Given a set S, let us denote by #S its cardinality
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and by 2S the family of all its subsets. Given an alphabet Σ, |w| denotes the
length of a string w ∈ Σ∗ and ε the empty string.

A deterministic finite automaton (dfa for short) is a tupleA=(Q,Σ, δ, qI , F ),
where Q is the finite set of states, Σ is the input alphabet, qI ∈ Q is the initial
state, F ⊆ Q is the set of accepting states, and δ : Q×Σ → Q is the partial tran-
sition function. The language accepted by A is L(A) = {w ∈ Σ∗ | δ(qI , w) ∈ F}.
The reverse transition function of A is a function δR : Q × Σ → 2Q, with
δR(p, a) = {q ∈ Q | δ(q, a) = p}. A state p ∈ Q is useful if p is reachable, i.e.,
there is w ∈ Σ∗ such that δ(qI , w) = p, and productive, i.e., if there is w ∈ Σ∗
such that δ(p, w) ∈ F . In this paper we only consider automata with all useful
states.

We say that two states p, q ∈ Q are equivalent if and only if for all w ∈ Σ∗,
δ(p, w) ∈ F exactly when δ(q, w) ∈ F . When p 6= q are equivalent states, we can
reduce the size of the automaton by “merging” p and q. This would imply to
merge all the states reachable from p and q by reading a same string, namely
the states δ(p, w) and δ(q, w), for w ∈ Σ∗.

Let A′ = (Q′, Σ, δ′, q′I , F
′) be another dfa. A morphism ϕ from A to A′,

in symbols ϕ : A → A′, is a function ϕ : Q → Q′ such that ϕ(qI) = q′I , for
each q ∈ Q, a ∈ Σ, ϕ(δ(q, a)) = δ′(ϕ(q), a), and q ∈ F if and only if ϕ(q) ∈ F ′.
Notice that if there exists a morphism ϕ : A → A′ then it is unique and,
for x, y ∈ Σ∗, δ(qI , x) = δ(qI , y) implies δ′(q′I , x) = δ′(q′I , y). We can observe
that since in all automata we are considering all the states are useful, there
exists the morphism ϕ : A→ A′ if and only if the automaton A′ can be obtained
from A after merging all pairs of states p, q of A, with ϕ(p) = ϕ(q) (and possibly
renaming the states). Hence, the number of states of A′ cannot exceed that
of A. Hence ϕ−1(s) denotes the set of states of A which are merged in the
state s of A′. Two automata A and A′ are said to be equivalent if they accept
the same language, i.e., L(A) = L(A′).

Let C be a family dfas and A ∈ C. We consider the following notions:

– The automaton A is reduced in C if for each morphism ϕ : A → A′, the
automaton A′ does not belong to C, i.e., every automaton obtained from A
by merging some equivalent states does not belong to C.

– The automaton A is minimal in C if and only if each automaton in C has at
least as many states as A.

– The automaton A is the minimum in C if and only if it is the unique (up to
an isomorphism, i.e., a renaming of the states) minimal automaton in C.

Notice that each minimal automaton in a family C is reduced. Furthermore, if C
contains a minimum automaton M , then M is also the only minimal and the
only reduced automaton in C. This happens, for instance, when C is the family
of all dfas accepting a given regular language L. However, a family C which does
not have a minimum automaton, could contain reduced automata which are not
minimal, as in the cases that will be presented in the paper.

A strongly connected component (scc) C of a dfa A = (Q,Σ, δ, qI , F ) is a
maximal subset of Q such that in the transition graph of A there exists a path
between every pair of states in C. A scc consisting of a single state q, without a
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looping transition, is said to be trivial. Otherwise C is nontrivial and, for each
state in q ∈ C, there is a string w ∈ Σ∗ \ {ε} such that δ(q, w) = q.

We introduce a partial order � on the set of sccs of M , such that, for two
such components C1 and C2, C1 � C2 when no state in C1 can be reached from
a state in C2, but a state in C2 is reachable from a state in C1. We write C1 6� C2

when C1 � C2 is false, namely, C1 6= C2 and either C2 � C1 or C1 and C2 are
incomparable.

Given a dfa A = (Q,Σ, δ, qI , F ), a state r ∈ Q is said to be irreversible
when #δR(r, a) ≥ 2 for some a ∈ Σ, i.e., there are two transitions on the
same letter entering r, otherwise r is said to be reversible. The dfa A is said
to be irreversible if it contains at least one irreversible state, otherwise A is
reversible (rev-dfa for short). As pointed out in [7], the notion of reversibility
for a language is related to the computational model under consideration. In this
paper we only consider dfas. Hence, by saying that a language L is reversible,
we refer to this model, namely we mean that there exists a rev-dfa accepting L.

The following result presents a characterization of reversible languages:

Theorem 1. [3] Let L be a regular language and M = (Q,Σ, δ, qI , F ) be the
minimum dfa accepting a language L. L is accepted by a rev-dfa if and only
if there do not exist useful states p, q ∈ Q, a letter a ∈ Σ, and a string w ∈ Σ∗
such that p 6= q, δ(p, a) = δ(q, a), and δ(q, aw) = q.

According to Theorem 1, a language L is reversible exactly when the minimum
dfa accepting it does not contain the “forbidden pattern” consisting of two tran-
sitions on a same letter a entering in a same state r, with one of these transitions
arriving from a state in the same scc as r. Notice that, since transitions enter-
ing the initial state qI can only arrive from states in the same scc of qI , if the
language L is reversible, then the initial state qI of M should be reversible.

An algorithm to convert a minimum dfa M into an equivalent rev-dfa, if
any, was obtained in [3]. Furthermore, the resulting rev-dfa is minimal. We
present an outline of it. The algorithm builds a rev-dfa A in the following way.
At the beginning A is a copy of M . Then, the algorithm considers a minimal
(with respect to �) scc C that contains an irreversible state and replace it with
a number of copies which is equal to the maximum number of transitions on a
same letter incoming in a state of C. This process is iterated until all the states
in A are reversible.

3 Minimal Reversible Automata

In [3] it has been observed that there are reversible languages having several
nonisomorphic minimal rev-dfas. In this section we deepen that investigation
by presenting a characterization of the languages having a unique minimal rev-
dfa. (Notice that it could be different from the minimum dfa accepting the
language.) To prove it we make use of a series of preliminary results. Hence,
from now on, let us fix a reversible language L and the minimum dfa M =
(Q,Σ, δ, qI , F ) accepting it.
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Lemma 2. Let A′=(Q′, Σ, δ′, q′I , F
′) be a rev-dfa and A′′=(Q′′, Σ, δ′′, q′′I , F

′′)
be a minimal rev-dfa both accepting L. Given the morphisms ϕ′ : A′ → M
and ϕ′′ : A′′ →M , it holds that #ϕ′

−1

(s) ≥ #ϕ′′
−1

(s), for each s ∈ Q.

Proof. By contradiction, suppose #ϕ′
−1

(q) < #ϕ′′
−1

(q) for some state q.

Let us partition Q in the set QL = {p | ∃w ∈ Σ∗ δ(p, w) = q} of the states
from which q is reachable and the set QR of remaining states. The sets Q′ and Q′′

are partitioned in a similar way, by defining Q′L = ϕ′
−1

(QL), Q′R = ϕ′
−1

(QR),

Q′′L = ϕ′′
−1

(QL), Q′′R = ϕ′′
−1

(QR).

First, let us suppose #ϕ′
−1

(p) ≤ #ϕ′′
−1

(p) for each p ∈ QL. We build another
automaton A′′′ = (Q′′′, Σ, δ′′′, q′′′I , F

′′′), which starts the computation by simu-
lating A′ using the states in Q′L and, at some point, continues by simulating A′′

using the states in Q′′R. In particular:

– Q′′′ = Q′L ∪Q′′R
– The transitions are defined as follows:

• For s ∈ Q′′R, a ∈ Σ: δ′′′(s, a) = δ′′(s, a);

• For s ∈ Q′L, a ∈ Σ, such that δ′(s, a) ∈ Q′L: δ′′′(s, a) = δ′(s, a);

• The remaining transitions, i.e., δ′′′(s, a), in the case s ∈ Q′L, a ∈ Σ, and
δ′(s, a) ∈ Q′R, are obtained in the following way:

Let us consider set of states {s1, s2, . . . , sk} which are equivalent to s
in A′, i.e., ϕ′(si) = ϕ′(s) for i = 1, . . . , k (notice that s = sh for some h ∈
{1, . . . , k}), and the set of states {r1, r2, . . . , rj} which are equivalent to s
in A′′, i.e., ϕ′′(ri) = ϕ′(s) for i = 1, . . . , j. Since j ≥ k we can safely
define δ′′′(si, a) = δ′′(ri, a), for i = 1, . . . , k.

The resulting automaton A′′′ still recognizes the language L, it is reversible
and it has #Q′L + #Q′′R states. From #ϕ′

−1

(p) ≤ #ϕ′′
−1

(p), for each p ∈ QL,

and #ϕ′
−1

(q) < #ϕ′′
−1

(q), it follows that #Q′L < #Q′′L, thus implying that the
number of states of A′′′ is smaller than the one of A′′, which is a contradiction.

In case #ϕ′
−1

(p) > #ϕ′′
−1

(p) for some p ∈ QL, we can apply the same con-
struction, after switching the role of A′ and A′′, so producing an equivalent rev-
dfa Â′ which is smaller than A′ and still verifies #ϕ̂′

−1

(q) < #ϕ′′
−1

(q), for the
morphism ϕ̂′ : Â′ → M . Then, we iterate the proof on the two rev-dfas Â′

and A′′.

Hence, we can conclude that #ϕ′
−1

(s) ≥ #ϕ′′
−1

(s), for each s ∈ Q. ut

Lemma 2 allows to associate with each reversible language L and the mini-
mum dfa M = (Q,Σ, δ, qI , F ) accepting it, the function c : Q → N such that,
for q ∈ Q, c(q) is the number of states equivalent to q in any minimal rev-dfa
A equivalent to M , i.e., c(q) = #ϕ−1(q) for the morphism ϕ : A → M . No-
tice that c(qI) = 1. Furthermore, each rev-dfa accepting L should contain at
least c(q) states equivalent to q. These facts are summarized in the following
result, where we also show that c(q) has the same value for all states belonging
to the same scc of M .
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q′ q′′
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Fig. 1. A minimum dfa accepting the language L = (aa)∗ + a∗ba∗, with two minimal
nonisomorphic rev-dfas

Lemma 3. Let A be a rev-dfa accepting L, with the morphism ϕ : A→M . If
two states p, q of M belong to the same scc of M then #ϕ−1(p) = #ϕ−1(q) ≥
c(p). Furthermore, if A is minimal then c(p) = c(q) = #ϕ−1(p).

Proof. Observe that since p, q belong to the same scc there exists x ∈ Σ∗ such
that δ(q, x) = p. Let {q1, q2, . . . , qk} = ϕ−1(q) and {p1, p2, . . . , pj} = ϕ−1(p) be
the sets of states in A which are equivalent to q and p, respectively. We are going
to prove that k = j.

For each qi, there exists phi such that δ(qi, x) = phi . Suppose j < k. In
this case there are two indices i′, i′′ such that phi′ = phi′′ and then δ(qi′ , x) =
δ(qi′′ , x) = phi′ , implying that the state phi′ is irreversible, which is a contradic-
tion. This means that j ≥ k. In the same way, by interchanging the roles of p
and q, we can prove that k ≥ j, which leads to the conclusion j = k.

The facts that #ϕ−1(p) ≥ c(p) and, for A minimal, #ϕ−1(p) = c(p), follow
from Lemma 2. ut

In the following, for each scc C of the transition graph of M , we use c(C) to
denote the value c(q), for q ∈ C. Considering the algorithm outlined at the end of
Section 2, we can observe that if C ′ is another scc, then C � C ′ implies c(C) ≤
c(C ′).

As a consequence of Lemma 3, all the minimal rev-dfas accepting L have
the same “state structure”, in the sense that they should contain exactly c(q)
states equivalent to the state q of M . However, they could differ in the transitions
(see Figure 1 for an example).

Lemma 4. Let A′ = (Q′, Σ, δ′, q′I , F
′) and A′′ = (Q′′, Σ, δ′′, q′′I , F

′′) be two rev-
dfas accepting L. If there are no morphisms ϕ : A′ → A′′ then there exists a
state p ∈ Q with #ϕ′′

−1

(p) ≥ 2 such that either p = qI , or

δR(p, a) 6= ∅ and δR(p, b) 6= ∅

for two symbols a, b ∈ Σ, with a 6= b, and the morphism ϕ′′ : A′′ →M .
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Proof. Since there are no morphisms ϕ : A′ → A′′, there exist x, y ∈ Σ∗ such
that δ′(q′I , x) = δ′(q′I , y) and δ′′(q′′I , x) 6= δ′′(q′′I , y). Among all couples of strings
with this property we choose one with |xy| minimal. Furthermore, we observe
that it cannot be possible that x = y = ε.

When x = ε, we have δ′(q′I , ε) = δ′(q′I , y) = q′I and, since M is minimum,
δ(qI , y) = qI . Hence, ϕ′′(δ′′(q′′I , y)) = ϕ′′(q′′I ) = qI . From δ′′(q′′I , y) 6= q′′I =

δ′′(q′′I , ε), we conclude that #ϕ′′
−1

(qI) ≥ 2. The case y = ε is similar.
We now consider x 6= ε and y 6= ε, i.e., x = ua, y = vb for some u, v ∈ Σ∗ and

a, b ∈ Σ. Let δ′(q′I , u) = q′, δ′(q′I , v) = r′, δ′(q′, a) = δ′(r′, b) = p̄, δ′′(q′′I , u) =
q′′, δ′′(q′′I , v) = r′′, δ′′(q′′, a) = s, and δ′′(r′′, b) = t, for states q′, r′, p̄ ∈ Q′,
q′′, r′′, s, t ∈ Q′′, with s 6= t.

Suppose a = b. Since A′ is reversible from δ′(q′, a) = δ′(r′, a) = p̄ we get
q′ = r′. Furthermore q′′ 6= r′′, otherwise A′′ would be nondeterministic. Hence,
on the strings u, v the automaton A′ reaches the same state, while A′′ reaches
two different states, against the minimality of |xy|. Thus a 6= b.

Given the morphism ϕ′ : A′ → M , let p = ϕ′(p̄). Since M is minimum,
it turns out that ϕ′′(s) = ϕ′′(t) = ϕ′(p̄) = p. From s 6= t, we conclude

that #ϕ′′
−1

(p) ≥ 2. Furthermore, from the previous discussion, the reader can
observe that there are transitions on symbols a and b entering in p. ut

We are now able to prove the following:

Theorem 5. Let M = (Q,Σ, δ, qI , F ) be the minimum dfa accepting a re-
versible language L. The following statements are equivalent:

1. There exists a state p ∈ Q such that c(p) ≥ 2, δR(p, a) 6= ∅, δR(p, b) 6= ∅, for
two symbols a, b ∈ Σ, with a 6= b.

2. There exist at least two minimal nonisomorphic rev-dfas accepting L.

Proof. (2) implies (1): By Lemma 4, given two minimal nonisomorphic rev-

dfas A′ and A′′ accepting L, there is a state p such that c(p) = #ϕ′′
−1

(p) ≥ 2.
Furthermore, since c(qI) = 1, p 6= qI . Hence, δR(p, a) 6= ∅, δR(p, b) 6= ∅, for two
symbols a, b ∈ Σ, with a 6= b.

(1) implies (2): Let w ∈ Σ∗ be a string of minimal length such that δ(qI , w) =
p, a ∈ Σ be its last symbol, i.e., w = xa, with x ∈ Σ∗. Let b ∈ Σ be a symbol
with b 6= a and δR(p, b) 6= ∅. Given a minimal rev-dfa A′ = (Q′, Σ, δ′, q′I , F

′)
accepting L and the morphism ϕ : A′ →M , we consider the state p̂ = δ′(q′I , w).
Then ϕ′(p̂) = p.

We show how to build a minimal rev-dfa A′′ nonisomorphic to A′. The idea
is to use the set of states Q′ as in A′ and to modify only the transitions which
simulates the transitions that in M enter the state p with the letter b. There are
different cases.

When δ′R(p̂, b) = ∅, it should exist p̃ ∈ ϕ′−1

(p) such that p̃ 6= p̂ and δ′(q̃, b) =
p̃, for some q̃ ∈ Q′. The automaton A′′ is defined as A′, with the only difference
that the transition δ′(q̃, b) = p̃ is replaced by δ′′(q̃, b) = p̂. To prove that it
is nonisomorphic to A′, we consider a string y ∈ Σ∗ of minimal length such
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that δ′(q′I , y) = q̃. Then δ′(q′I , yb) = p̃ 6= δ′(q′I , w) = p̂, while δ′′(q′I , yb) = p̂ =
δ′′(q′I , w).

When δ′R(p̂, b) 6= ∅ we can use one of the following possibilities:

– If there exists p̃ 6= p̂ such that δ′R(p̃, b) 6= ∅, then it should also exist q̃, q̂ ∈ Q′
with q̃ 6= q̂ such that δ′(q̃, b) = p̃ and δ′(q̂, b) = p̂. The automaton A′′ is
defined by switching the destinations of these two transitions, namely by
replacing them by δ′′(q̃, b) = p̂ and δ′′(q̂, b) = p̃. The proof that A′ and A′′

are non isomorphic is exactly the same as in the previous case.
– If there exists p̃ 6= p̂ such that δ′R(p̃, b) = ∅, then we can consider q̂ such that
δ′(q̂, b) = p̂, and define A′′ by replacing this transition by δ′′(q̂, b) = p̃. Let y ∈
Σ∗ be a string of minimal length such that δ′(q′I , y) = q̂. Then δ′(q′I , yb) =
p̂ = δ′(q′I , w). On the other hand δ′′(q′I , yb) = p̃ 6= p̂ = δ′′(q′I , w). Hence, A′

and A′′ are nonisomorphic.

Finally, we observe that in all cases, the automaton A′′ has the same number of
states as A′. Furthermore, the construction preserves reversibility. ut

As a consequence of Theorem 5 we obtain the following characterization of
reversible languages having a unique minimal (hence a minimum) rev-dfa:

Corollary 6. Let L be a reversible language and M = (Q,Σ, δ, qI , F ) be the
minimum dfa accepting it. There exists a unique (up to isomorphism) minimal
rev-dfa accepting L if and only if for each state p ∈ Q with c(p) ≥ 2, all the
transitions entering in p ∈ Q are on the same symbol.

When the minimum dfa accepting a reversible language contains a loop in
the irreversible part, i.e., in the part “after” an irreversible state, the condition in
Corollary 6 is always false, hence there exist at least two minimal nonisomorphic
rev-dfas. This is proved in the following result:

Theorem 7. Let M = (Q,Σ, δ, qI , F ) be the minimum dfa accepting a re-
versible language L. If there exists an irreversible state q ∈ Q such that the
language accepted by computations starting in q is infinite, then there exists a
state p ∈ Q such that c(p) ≥ 2, δR(p, a) 6= ∅ and δR(p, b) 6= ∅, for two symbols
a, b ∈ Σ, with a 6= b.

Proof. Let p ∈ Q be a state reachable from q which belongs to a nontrivial
scc C. Hence c(p) ≥ 2. Among all possibilities, we choose p in such a way that
all the other states on a fixed path from q to p does not belong to C. Since C
is nontrivial, it should exist a transition from a state of C, which enters in p.
Let a ∈ Σ be the symbol of such transition. Furthermore, it should exist another
transition which enters in p from a state which does not belong to C. (If p 6= q
then we can take the last transition on the fixed path. Otherwise, since the initial
state is always reversible, we have q 6= qI , and so we can take the last transition
entering in q on a path from qI .) Let b the symbol of such transition. If a = b
the automaton M would contain the forbidden pattern (cfr. Theorem 1), thus
implying that L is not reversible. Hence, we conclude a 6= b. ut
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qI p

q0 q1

q2

q3

q4

a

a

b b

a

a

aa

a

Fig. 2. A reduced rev-dfa

As a consequence of Theorem 7, considering Corollary 6 we can observe that
when a reversible language has a unique minimal rev-dfa, all the loops in the
minimum dfa accepting it should be in the reversible part. However, the converse
does not hold, namely there are languages whose minimum dfa does not contain
any loop in the irreversible part, which does not have a unique minimal rev-dfa.
Indeed, in [3] an example with a finite language is presented.

4 Reduced Reversible Automata

In the section we show that there exist rev-dfas which are reduced but not
minimal, namely they have more states than equivalent minimal rev-dfas, but
merging some of their equivalent states would produce an irreversible automaton.
Furthermore, we will prove that there exist reversible languages having arbitrarly
large reduced rev-dfas and, hence, infinitely many reduced rev-dfas.

In Figure 2 a reduced rev-dfa equivalent to the dfas in Figure 1 is depicted.
If we try to merge two states in the loop, then the loop collapses to unique state,
so producing the minimum dfa, which is irreversible. Actually, this example can
be modified by using a loop of N states: if (and only if) N is prime, we get a
reduced automaton. This is a special case of the construction which we are now
going to present:

Theorem 8. Let M = (Q,Σ, δ, qI , F ) be the minimum dfa accepting a re-
versible language L. If M contains a state q such that c(q) ≥ 2 and the language
accepted by computations starting in q is infinite, then there exist infinitely many
nonisomorphic reduced rev-dfas accepting L.

Proof. Without loss of generality, we assume that the scc Cq containing q is
nontrivial. In fact, if this is not the case, we can find a state q̄ which is reachable
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from q, and so c(q̄) ≥ c(q) ≥ 2, and which belongs to a nontrivial scc. Then, we
can give the proof replacing q by q̄.

Let A be a minimal rev-dfa A accepting L, obtained applying the algorithm
outlined in Section 2, and N ≥ c(q) an integer. The idea is to modify A by
replacing the part corresponding to the scc Cq, with N copies of each state
in Cq and arranging the transitions in such a way that all the states in these N
copies form one scc, without changing the accepted language. Furthermore,
all the scc that follow Cq will be replicated a certain number of times. More
precisely, we build a dfa AN = (QN , Σ, δN , qIN , FN ) using the following steps:

(i) We put in AN all the states of A which correspond to sccs C of M with Cq 6�
C and all the transitions between these states.

(ii) We add N copies of the states in Cq to the set of states of AN . Given a
state r ∈ Cq, let us denote its copies as r0, r1, . . . , rN−1.

(iii) We fix a transition δ(q, a) = q′ of M , with q, q′ ∈ Cq. For i = 0, . . . , N − 1,
we define δN (qi, a) = q′(i+1) mod N , and for the remaining transitions, namely

δ(r, b) = r′ with (r, b) 6= (q, a), we define δN (ri, b) = r′i. In this way in AN

we have N copies of the scc Cq, modified in such a way that the transition
from si on a in copy i leads to the state q′(i+1) mod N in copy (i+ 1) mod N .

(iv) We add to AN each transition that in A leads from a state added in (i)
to one state in the first c(q) copies of Cq added in (iii). (We remind the
reader that A should contain c(q) copies of the scc Cq. Hence, in AN we
keep exactly the same connections as in A from the states at point (i) to the
states in these copies.)

(v) We complete the construction of AN by adding a suitable number of copies of
the remaining sccs of M and suitable transitions, in order to derive a rev-
dfa. This can be done just following the steps of the algorithm described in
Section 2.

By construction, the automaton AN so obtained is reversible and it accepts L.
We are going to show that when N is a prime number then AN is reduced. To
this aim we shall prove that if we try to merge two equivalent states p′, p′′ of AN

then we obtain an irreversible automaton. The proof is divided in three cases:

– p′, p′′ are equivalent to a state p of M with Cq 6� Cp, where Cp denotes the
scc containing p.
These states have been added at step (i), copying them from the mini-
mal rev-dfa A. By Lemma 3, A contains exactly c(p) states equivalent
to p. Hence, merging p′ and p′′, the resulting automaton would contain less
than c(p) states equivalent to p and, hence, it cannot be reversible.

– p′, p′′ are equivalent to a state p of M belonging to Cq.
First, suppose p′ = q0 and p′′ = qj , 0 < j < n. Considering step (iii),
we observe that there is a string z such that δ(q′, z) = q, then δ(q, w) =
q and δN (qi, w) = q(i+1) mod N , where w = az. Thus, for each k ≥ 0,

δ(q0, w
k(N−j)) = qk(N−j) mod N and δ(qj , w

k(N−j)) = qj+k(N−j) mod N =
q(k−1)(N−j) mod N . Hence, merging q0 and qj would imply merging all the
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states whose indices are in the set {k(N − j) mod N | k ≥ 0}, which, be-
ingN prime, coincides with {0, . . . , N−1}. As a consequence, all the states qi,
should collapse in a unique state. However, since c(q) ≥ 2, by Lemma 3 this
implies that the resulting automaton is not reversible.

If p′ 6= q0, then we can always find a string y such that δN (p′, y) = q0.
Using the transitions introduced at step (iii), we get that δN (p′′, y) = qj , for
some 0 < j < N . Hence, merging p′ and p′′ would imply merging q0 and qj ,
so reducing to the previous case.

– p′, p′′ are equivalent to a state p of M , such that Cp 6= Cq and Cq � Cp.
Let w ∈ Σ∗ be such that δ(q, w) = p and p′ = δN (q′, w), p′′ = δN (q′′, w).
From p′ 6= p′′, using the fact that AN is reversible, we obtain q′ 6= q′′. So, to
keep reversibility, merging p′ and p′′ would imply merging q′ and q′′, which
are equivalent to q, so reducing to the previous case.

In summary, for each prime number N ≥ c(q) we obtained a reduced rev-
dfa AN with more than N states accepting the language L. Hence, we can
conclude that there exist infinitely many nonisomorphic reduced rev-dfa ac-
cepting L. ut

In Theorem 8 we gave a sufficient condition for the existence of infinitely
many reduced rev-dfas accepting a given language. This condition is not nec-
essary. In fact, even if minimum dfa does not contain any loop in the irreversible
part, it could be possible to construct infinitely many reduced rev-dfas. For
instance, by modifying the construction given to prove Theorem 8, we can show
that if the minimum dfa for a language L has a state p in the irreversible part,
which is entered by transitions on at least two different letters (cfr. Thm. 7) and
those transitions are used to recognize infinitely many strings, then there are
infinitely many reduced rev-dfas accepting L.

5 Conclusion

In this paper we studied the existence of minimal and reduced rev-dfas. In some
cases the minimum dfa accepting a language is already reversible, so assuring
that the language is reversible. However, in general a minimum dfa does not
need to be reversible, although the accepted language could be reversible. Using
Theorem 1 and the construction from [3] outlined in Section 2, in the case the
language is reversible, from a given minimum dfa we can obtain a minimal rev-
dfa. Minimal rev-dfas are not necessarily unique (see Figure 1 for an example,
while Figure 3 shows a case with a unique minimal, and hence minimum, rev-
dfa). In Section 3 we gave a characterization of the languages having a unique
minimum rev-dfa, in terms of the structure of the minimum dfa.

Here we wanted to go beyond the investigation of minimal rev-dfas studying
reduced rev-dfas. We observed the existence of reduced rev-dfas which are
not minimal and we gave a sufficient condition for the existence of infinitely
many reduced rev-dfas accepting a same reversible language.
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qI p

q

a

a

b
b

qI p

q′ q′′

a

a

b b

Fig. 3. The minimum dfa and the minimum rev-dfa accepting the language L =
(aa)∗ + a∗b
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