
HAL Id: hal-01633942
https://inria.hal.science/hal-01633942

Submitted on 13 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Contextual Array Grammars with Matrix and Regular
Control

Henning Fernau, Rudolf Freund, Rani Siromoney, K. G. Subramanian

To cite this version:
Henning Fernau, Rudolf Freund, Rani Siromoney, K. G. Subramanian. Contextual Array Grammars
with Matrix and Regular Control. 18th International Workshop on Descriptional Complexity of Formal
Systems (DCFS), Jul 2016, Bucharest, Romania. pp.98-110, �10.1007/978-3-319-41114-9_8�. �hal-
01633942�

https://inria.hal.science/hal-01633942
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Contextual Array Grammars with
Matrix and Regular Control

Henning Fernau 1, Rudolf Freund 2,
Rani Siromoney 3, and K.G. Subramanian 4

1 Universität Trier, FB 4 – Abteilung Informatikwissenschaften,
D-54296 Trier, Germany; E-mail: fernau@uni-trier.de

2 Technische Universität Wien, Institut für Computersprachen,
A-1040 Wien, Austria; E-mail: rudi@emcc.at

3 Chennai Mathematical Institute,
Kelambakkam 603103, India; E-mail: siromoney@cmi.ac.in

4 Department of Mathematics and Computer Science, Faculty of Science,
Liverpool Hope University Liverpool, L16 9JD UK

E-mail: kgsmani1948@yahoo.com

Abstract. We investigate the computational power of d-dimensional
contextual array grammars with matrix control and regular control lan-
guages. For d ≥ 2, d-dimensional contextual array grammars are less
powerful than matrix contextual array grammars, which themselves are
less powerful than contextual array grammars with regular control lan-
guages. Yet in the 1-dimensional case, for a one-letter alphabet, the fam-
ily of 1-dimensional array languages generated by contextual array gram-
mars with regular control languages coincides with the family of regular
1-dimensional array languages, whereas for alphabets with more than
one letter, we obtain the array images of the linear languages.

1 Introduction

Contextual string grammars were introduced by Solomon Marcus [14] with moti-
vations arising from descriptive linguistics. A contextual string grammar consists
of a finite set of strings (axioms) and a finite set of productions, which are pairs
(s, c) where s is a string, the selector, and c is the context, i. e., a pair of strings,
c = (u, v), over the alphabet under consideration. Starting from an axiom, con-
texts iteratively are added as is indicated by the productions, which yields new
strings. In contrast to usual sequential string grammars in the Chomsky hi-
erarchy (e.g., see [20]), these contextual string grammars are pure grammars
where new strings are not obtained by rewriting, but by adjoining strings. Sev-
eral classes of contextual grammars have been introduced and investigated, e.g.,
see [3] and [17] for surveys on the area.

The idea of contextual productions then was also introduced for multi-
dimensional array grammars, for instance, to carry over ideas from formal lan-
guages to the processing of digital images. In the area of two-dimensional picture



2 H. Fernau, R. Freund, R. Siromoney, K. G Subramanian

languages, e.g., see [12, 16, 18, 19], different kinds of array grammars, both iso-
metric and non-isometric ones, have been proposed, motivated by many applica-
tions such as character recognition (also confer [4]), cluster analysis of patterns,
and so on. Isometric contextual array grammars were introduced in [11].

Regulated rewriting with different control mechanisms has been studied ex-
tensively especially for string grammars (e.g., see [2]), for example, grammars
with control languages and matrix grammars, but then also for array grammars,
e.g., see [9]. Non-isometric contextual array grammars (with regulation) were
considered in [8, 7, 13].

In this paper we consider matrix contextual array grammars and contextual
array grammars with regular control and examine their generative power. In
the 1-dimensional case, we obtain special results: the family of 1-dimensional
array languages generated by contextual array grammars with regular control
languages coincides with the family of regular 1-dimensional array languages over
unary alphabets and with array images of the linear languages over alphabets
with more than one letter; already for binary alphabets, regular control is strictly
more powerful than matrix control, a phenomenon rarely observed in regulated
rewriting (confer [10]).

2 Definitions

For notions and notations as well as results related to formal language theory we
refer to books like [2]. The families of λ-free (λ denotes the empty string) regular
string languages (over a k-letter alphabet) is denoted by L (REG) (L

(
REGk

)
).

For the definitions and notations for arrays and sequential array grammars we
refer to [9, 18, 22].

Let Z be the set of integers and N be the set of positive integers. Let d ∈ N.
A d-dimensional array A over the alphabet V is a mapping A : Zd → V ∪ {#}
where shape (A) =

{
v ∈ Zd | A (v) 6= #

}
is finite and # /∈ V is called the blank

symbol. We usually write A = {(v,A (v)) | v ∈ shape (A)}. The set of all d-di-
mensional arrays over V is denoted by V ∗d. The empty array Λd in V ∗d satisfies
shape(Λd) = ∅. Moreover, we define V +d = V ∗d \ {Λd} .

Let v ∈ Zd. Then the (linear) translation τv : Zd → Zd is defined by
τv (w) = w + v for all w ∈ Zd, and for any array A ∈ V ∗d we define τv (A), the
corresponding d-dimensional array translated by v, by (τv(A)) (w) = A (w − v)
for all w ∈ Zd. The vector (0, ..., 0) ∈ Zd is denoted by Ωd.

Usually (see [18]) arrays are regarded as equivalence classes of arrays with
respect to linear translations. The equivalence class [A] of an array A ∈ V ∗d

satisfies [A] =
{
B ∈ V ∗d | B = τv (A) for some v ∈ Zd

}
. The set of all equiva-

lence classes of d-dimensional arrays over V with respect to linear translations
is denoted by

[
V ∗d

]
, and this bracket notation carries over to classes of array

languages, as well.

As many results for d-dimensional arrays for a specific d can be taken over
immediately for higher dimensions, we introduce special notions:



Contextual Array Grammars with Matrix and Regular Control 3

Let n,m ∈ N with n ≤ m. For n < m, the natural embedding in,m : Zn →
Zm is defined by in,m (v) = (v,Ωm−n) for all v ∈ Zn; for n = m we define
in,n : Zn → Zn by in,n (v) = v for all v ∈ Zn. To an n-dimensional array
A ∈ V +n with A = {(v,A (v)) | v ∈ shape (A)} we assign the m-dimensional
array in,m (A) = {(in,m (v) ,A (v)) | v ∈ shape (A)} .

We can use the well-known graph-theoretic notion of a connected graph to
define connected arrays. Let W be a non-empty finite subset of Zd. We associate
a graph g(W ) to W with vertex set W and an edge between v, w ∈W if and only
if ‖v − w‖ = 1, where the norm ‖u‖ of a vector u ∈ Zd, u = (u (1) , ..., u (d)),
is defined by ‖u‖ = max {|u (i)| | 1 ≤ i ≤ d} . Then W is said to be connected if
g(W ) is connected. There is a natural bijection between the (equivalence classes
of) 1-dimensional connected arrays and strings: for any equivalence class of 1-
dimensional arrays A = [{((i− 1), ai) | 1 ≤ i ≤ n}] we define its string image
as str(A) = a1 . . . an; the string w = a1 . . . an can be interpreted as the array
arr (w) = {{((i− 1), ai)} | 1 ≤ i ≤ n}. In the standard way, these notions are
extended from strings and arrays to sets of strings and arrays.

Example 1. Consider the language L1 of connected 2-dimensional arrays

L1 =

{{
((0, i) , a) | 0 ≤ i ≤ n

}
∪
{

((j, 0) , a) | 1 ≤ j ≤ m
} ∣∣∣∣ n,m ∈ N

}
.

a
a
a
a a a a a

An example of these L-shaped arrays (for n = 3 and
m = 4) from [L1] can be depicted as shown on the left.
Observe that both arms of these arrays can have arbi-
trary lengths. ut

Definition 1. A regular d-dimensional array grammar is specified as G =
(d,N, T,#, P, {(vS , S})) where N is the alphabet of non-terminal symbols, T
is the alphabet of terminal symbols, N ∩ T = ∅, # /∈ N ∪ T ; P is a finite
non-empty set of regular d-dimensional array productions over N ∪T, as well as
vS ∈ Zd and S ∈ N is the start symbol. A regular d -dimensional array produc-
tion either is of the form A→ b, A ∈ N , b ∈ T , or Av#→ bC, A,C ∈ N , b ∈ T ,
v ∈ Zd with ‖v‖ = 1. The application of A→ b means replacing A by b in a given
array. Av# → bC can be applied if in the underlying array we find a position
u occupied by A and a blank symbol at position u + v; A then is replaced by b,
and # by C. The array language generated by G is the set of all d-dimensional
arrays derivable from the initial array {(vS , S)}. The family of Λ-free d-dimen-
sional array languages (of equivalence classes) of arrays over a k-letter alphabet
generated by regular d-dimensional array grammars is denoted by L

(
d-REGAk

)
(
[
L
(
d-REGAk

)]
). For arbitrary alphabets, we omit the superscript k.

The following results for 1-dimensional array languages are folklore:

Theorem 1. For all k ≥ 1,
[
L
(
1-REGAk

)]
=

[
arr

(
L
(
REGk

))]
and

str
([
L
(
1-REGAk

)])
= L

(
REGk

)
.

Let us mention the close similarities of the work of 1-dimensional regular
array grammars and Lindenmayer systems with apical growth [21]. Another
similar development can be found within Watson-Crick systems [15].



4 H. Fernau, R. Freund, R. Siromoney, K. G Subramanian

3 Contextual Array Grammars

We now turn our attention to the main variants of contextual array grammars
considered in this paper.

Definition 2. A d-dimensional contextual array grammar (d ∈ N) is a con-
struct G = (d, V,#, P,A) where V is an alphabet not containing the blank symbol
#, A is a finite set of axioms, i. e., of d-dimensional arrays in V +d, and P is a
finite set of rules of the form (Uα, α, Uβ , β) where

(i) Uα, Uβ ⊆ Zd, Uα ∩ Uβ = ∅, and Uα, Uβ are finite and non-empty;
(ii) α : Uα → V and β : Uβ → V.

(Uα, α) corresponds with the selector and (Uβ , β) with the context of the produc-
tion (Uα, α, Uβ , β) ; Uα is called the selector area, and Uβ is the context area. As
the sets Uα and Uβ are uniquely determined by α and β, we will also represent
(Uα, α, Uβ , β) by (α, β) only.

For C1, C2 ∈ V +d we say that C2 is directly derivable from C1 by the contextual
array production p ∈ P , p = (Uα, α, Uβ , β) (we write C1 =⇒p C2), if there exists
a vector v ∈ Zd such that

– C1 (w) = C2 (w) = α (τ−v (w)) for all w ∈ τv (Uα) ,
– C1 (w) = # for all w ∈ τv (Uβ) ,
– C2 (w) = β (τ−v (w)) for all w ∈ τv (Uβ) ,
– C1 (w) = C2 (w) for all w ∈ Zd \ τv (Uα ∪ Uβ) .

Hence, if in C1 we find a subpattern that corresponds with the selector α and
only blank symbols at the places corresponding with β, we can add the context β
thus obtaining C2. For every B1,B2 ∈

[
V +d

]
we say that B2 is directly derivable

from B1 by the contextual array production p ∈ P , p = (Uα, α, Uβ , β), denoted
B1 =⇒p B2, if and only if C1 =⇒p C2 for some C1 ∈ B1 and C2 ∈ B2. C1 =⇒G C2
(B1 =⇒G B2) means that C1 =⇒p C2 (B1 =⇒p B2) for some p ∈ P .

The array language generated by G is defined as

L (G) =
{
C ∈ V +d | A =⇒∗G C for some A ∈ A

}
.

The special type of d-dimensional contextual array grammars where axioms are
connected and rule applications preserve connectedness is denoted by d-ContA,
the corresponding family of d-dimensional array languages by L (d-ContA); by
L
(
d-ContAk

)
we denote the corresponding family of d-dimensional array lan-

guages over a k-letter alphabet.

Remark 1. As we mostly are interested in (families of) equivalence classes of
arrays, a d-dimensional contextual array grammar [G] for generating [L] for
L ∈ L (d-ContA) being generated by a d-dimensional contextual array grammar
G = (d, V,#, P,A) with A = {Ai | 1 ≤ i ≤ n} will be specified by writing [G] =
(d, V,#, P,A′) where A′ = {A′i | 1 ≤ i ≤ n} such that A′i ∈ [Ai] , 1 ≤ i ≤ n,
which means specifying an axiom Ai by one array from [Ai].



Contextual Array Grammars with Matrix and Regular Control 5

Example 2. Any finite d-dimensional array language of connected arrays L ⊂
T+d is in L (d-ContA) as L = L (GL) where GL = (d, T,#, ∅, L). ut

Example 3. We now show how the language L1 from Example 1 can be gen-
erated by the contextual array grammar G1, i.e., L1 ∈ L

(
2-ContA1

)
: G1 =

(2, {a} ,#, P1, {A1}) where A1 = {((0, 0) , a) , ((0, 1) , a) , ((1, 0) , a)} is the only
axiom and P1 consists of the two productions pu and pr:

pu = ({(0, 0) , (0, 1)} , {((0, 0) , a) , ((0, 1) , a)} , {(0, 2)} , {((0, 2) , a)}) ,
pr = ({(0, 0) , (1, 0)} , {((0, 0) , a) , ((1, 0) , a)} , {(2, 0)} , {((2, 0) , a)}) .

As the selector area Uα and the context area Uβ in a contextual array production
of the form (Uα, α, Uβ , β) are disjoint, both α and β can be
represented within only one pattern,
i. e., pu and pr can be represented in
a more depictive way by the patterns
shown on the right (the symbols of the
selector are enclosed in boxes).

pu =
a
a
a
, pr = a a a .

The example of the L-shaped array for n = 3 and m = 4 then is generated
by twice applying rule pu and three times applying rule pr, in any order. We
also observe that every intermediate array obtained by applying these rules is
in L1, too. Obviously, by the definition of equivalence classes of arrays, we also
have [L (G1)] = [L1] ∈

[
L
(
2-ContA1

)]
.

[A1] can be described in a more depictive way by a
a a

, i.e., the contextual array

grammar [G1] for [L (G1)] can also be written as [G1] =

(
2, {a} ,#, P1,

{
a
a a

})
(see Remark 1). In the following, the axiom(s) often will just be given in such a
pictorial variant. ut

Example 4. For the singleton language L⊥ =

 a
a

a a a a a

 ⊂
[
{a}+2

]
, we have

L⊥ ∈ [L (2-ContA)]\ [L (2-REGA)]. As we can take L⊥ (as any finite language)
as a set of axioms, containment in [L (2-ContA)] is clear. Conversely, any regular
array grammar has to scan the non-blank symbols of the array A, which is
impossible, as the underlying graph g(shape(A)) is not Hamiltonian. ut

Theorem 2.
[
L
(
1-REGA1

)]
⊆
[
L
(
1-ContA1

)]
.

Proof. Due to the results from Theorem 1, it only remains to show that[
arr

(
L
(
REG1

))]
⊆
[
L
(
1-ContA1

)]
.

From [1, Theorem 4.4], we deduce that any infinite language L ⊆ {a}+ in
L
(
REG1

)
can be written in the form L = {as1 , as2 , . . . , ast}∪

⋃m
i=1{ak·n+di | n ≥

0} for some numbers k, k ≤ d1 < d2 < ... < dm < 2k, 0 ≤ s1 < s2 < ... < st < k.
The 1-dimensional contextual array grammar now is constructed using a context
of length k and putting the words asj , 1 ≤ j ≤ t, and adi , 1 ≤ i ≤ m, into the set
of axioms, i.e., we define the 1-dimensional contextual array grammar G (L) =
(1, {a} ,#, P,A) with A = {arr (asj ) | 1 ≤ j ≤ t} ∪

{
arr

(
adi
)
| 1 ≤ i ≤ m

}
and



6 H. Fernau, R. Freund, R. Siromoney, K. G Subramanian

P =
{
a
k
ak
}

. Obviously, [L (G (L))] = [arr (L)]. The 1-dimensional contex-

tual array grammar [G (L)] for [L (G (L))] can also be written as [G (L)] =
(1, {a} ,#, P,A′) with A′ = {asj | 1 ≤ j ≤ t}∪

{
adi | 1 ≤ i ≤ m

}
(compare with

Remark 1).
For the sake of completeness we mention that every finite array language

A = {arr (asj ) | 1 ≤ j ≤ t} is generated by the 1-dimensional contextual array
grammar G (L) = (1, {a} ,#, P,A) with P = ∅. ut
Remark 2. Following the definition already given in [11], our d-dimensional ex-
tension of (external) contextual grammars only appends at one location, while
external contextual string grammars as originally defined by Solomon Marcus,
see [14], append to both ends of a string at the same time. This design decision
has two main reasons. First, it is not quite clear what the d-dimensional counter-
part of external contextual grammars would really mean: for instance, for d = 2,
should we allow appending on both ends of a row or column at the same time,
as we did in [8] for the case of non-isometric contextual array grammars? Or,
should we rather append on ‘all ends’? Obviously, this situation becomes even
more intricate for higher dimensions. Yet second and even more important, ap-
pending at both sides of a string, i.e., a 1-dimensional array, in parallel can easily
be simulated sequentially by a matrix with two components. It is therefore easy
to see that in the 1-dimensional case, the string images of the arrays generated
by contextual array grammars with matrix control exactly correspond with the
string languages generated by external contextual string grammars. This means
that for the regulated variants discussed in the following, any variant that can be
conceivably defined for the d-dimensional analogue of external contextual gram-
mars, in the 1-dimensional case should lead to the same results as the original
variant of contextual array grammars defined in [11] and taken as the basis in
this paper, too.

3.1 Matrix Contextual Array Grammars

Definition 3. A d-dimensional matrix contextual array grammar is a pair
GM = (G,M) where G = (d, V,#, P,A) is a d-dimensional contextual array
grammar and M is a finite set of sequences, called matrices, of rules from P ,
i.e., each element of M is of the form 〈p1, · · · , pn〉 , n ≥ 1, where pi ∈ P for
1 ≤ i ≤ n. Derivations in a matrix contextual array grammar are defined as in
a contextual array grammar except that a single derivation step now consists of
the sequential application of the rules of one of the matrices in M, in the or-
der in which the rules are given in the matrix. The array language generated by
GM is the set of all d-dimensional arrays which can be derived from any of the
axioms in A. The family of d-dimensional array languages of arrays generated
by d-dimensional matrix contextual array grammars (over a k-letter alphabet) is
denoted by L (d-MContA) (L

(
d-MContAk

)
).

Example 5. Consider the language L2 of connected arrays given by

L2 =

{{
((0, 0) , a)

}
∪
{

((0, i) , a) , ((i, 0) , a) | 1 ≤ i ≤ n
} ∣∣∣∣ n ∈ N

}
,



Contextual Array Grammars with Matrix and Regular Control 7

which contains L-shaped arrays as L1 from Example 1, but now with both arms
having the same length. L2 ∈ L

(
2-MContA1

)
, as it can be generated by the

2-dimensional matrix contextual array grammar GM = (G1,M) where G1 is the
2-dimensional contextual array grammar from Example 3 and M = {〈pu, pr〉}.
The only derivations possible in G′M for [L2] ∈

[
L
(
2-MContA1

)]
(see Remark 1)

are:

a
a a

=⇒G′
M

a
a
a a a

=⇒G′
M

a
a
a
a a a a

=⇒G′
M
· · ·

The single matrix 〈pu, pr〉, pu =
a
a
a

, pr = a a a , guarantees that both arms of

the array grow in a synchronized way. ut

Theorem 3. For any d ≥ 2 and any k ≥ 1, we have L
(
d-ContAk

)
$

L
(
d-MContAk

)
and

[
L
(
d-ContAk

)]
$
[
L
(
d-MContAk

)]
.

Proof. The inclusion L
(
d-ContAk

)
⊆ L

(
d-MContAk

)
and therefore also[

L
(
d-ContAk

)]
⊆
[
L
(
d-MContAk

)]
is obvious from general results for gram-

mars working on various kinds of objects and with specific regulating mecha-
nisms, see [10].

For showing the strictness of the inclusion, we prove that the array language
L2 from Example 5 cannot be generated by a 2-dimensional contextual array
grammar; for dimensions d > 2, we just take [i2,d (L2)] .

Now assume we could find a 2-dimensional contextual array grammar
[G = (2, {a} ,#, P,A)] that generates [L2]. As contextual grammars are pure
grammars, [A] is a finite subset of [L (G)]. As [L (G)] is infinite, we would need
an infinite number of rules to get [L2] which resembles the case of external con-
textual string grammars; in fact, as soon as the arms get long enough, we have
to apply a rule which only grows the arm going up or only grows the arm going
to the right, resulting in an array which contradicts the definition of [L2]. It is
obvious that we also have [i2,d (L2)] ∈

[
L
(
d-MContAk

)]
\
[
L
(
d-ContAk

)]
; this

observation completes the proof. ut

In the 1-dimensional case, the situation is different: as we shall prove later,
see Theorem 6,

[
L
(
1-ContA1

)]
=
[
L
(
1-MContA1

)]
, but for k ≥ 2, we still

have
[
L
(
1-ContAk

)]
$
[
L
(
1-MContAk

)]
, as the following example shows.

Example 6. Consider the non-regular language Ln = {anban | n ≥ 1}. By The-
orem 1, there cannot exist an array grammar G of type 1-REGA2 such that
[L (G)] = [arr (Ln)]. Even more, there is no 1-dimensional contextual array
grammar for Ln. Namely, if this would be the case, then first observe that there
must be rules that append something to the right, as well as to the left of the
array, and this should be possible infinitely often. Otherwise, the sequence of con-
text additions would happen (finally) only on one side, which means that this
behavior can again be simulated by some regular array grammar, contradicting
our previous reasoning. Hence, there must be a rule that contains a sequence of



8 H. Fernau, R. Freund, R. Siromoney, K. G Subramanian

a’s as its selector, say, arr(ars), and also a sequence of a’s, say, arr(arc) as its
context in order to append arc to the right of the current array, and likewise,
there must be a rule that contains a sequence of a’s as its selector, say, arr(a`s),
and also a sequence of a’s, say, arr(a`c) as its context in order to append alc to
the left of the current array. For sufficiently long arrays arr(anban), both rules
can be applied, and arrays like arr(anban+rc) can generated that do not belong
to Ln. Hence, Ln /∈ L(1-ContA).

Yet for the 1-dimensional matrix contextual array grammar [GM ] = (Gn,Mn)
with [Gn] = (1, {a, b} ,#, P, {aba}) where pl = a a , pr = a a , and Mn =
{〈pl, pr〉}, we have [L (Gn)] = [arr (Ln)]. The single matrix 〈pl, pr〉 guarantees
that the number of symbols a grows to the left and to the right in a synchronized
way. ut

In addition, the following example even yields that for any k ≥ 2,[
L
(
1-MContAk

)]
is incomparable with

[
L
(
1-REGAk

)]
.

Example 7. Consider the regular string language Lr = {banb | n ≥ 1}. Due to
Theorem 1, there exists an array grammar of type 1-REGA2 Gr such that
[L (Gr)] = [arr (Lr)]. Yet on the other hand, there cannot exist an array gram-
mar of type 1-MContA2 [G] such that L ([G]) = [arr (Lr)], which can be proved
by a simple pumping argument: The number of symbols a between the two sym-
bols b can become arbitrarily large, but we only have a finite set of axioms A;
as [G] is a pure grammar, [A] ⊂ [L]; yet [G] can only grow these arrays in an
external way, i.e., by adding symbols on the left or on the right, but in this way
we are not able to grow the number of symbols a in the middle. ut

3.2 Contextual Array Grammars with Regular Control

Definition 4. A d-dimensional contextual array grammar with regular control
is a pair GC = (G,L) where G = (d, V,#, P,A) is a d-dimensional contextual
array grammar and L is a regular string language over P . Derivations in a
d-dimensional contextual array grammar with regular control are defined as in
the contextual array grammar G except that in a successful derivation the se-
quence of applied rules has to be a word from L. The array language generated
by GC is the set of all d-dimensional arrays which can be derived from any of
the axioms in A following a control word from L. The family of d-dimensional
array languages of arrays generated by d-dimensional contextual array grammars
over a k-letter alphabet with regular control is denoted by L ((d-ContA,REG)).
The corresponding family of array languages of equivalence classes of arrays is
denoted by using brackets in the notations.

As a general result (following [10]) we can state:

Theorem 4. For any d ≥ 1 and any k ≥ 1,[
L
(
d-ContAk

)]
⊆
[
L
(
d-MContAk

)]
⊆
[
L
((
d-ContAk, REG

))]
.



Contextual Array Grammars with Matrix and Regular Control 9

Example 8. Consider the regular string language Lr = {banb | n ≥ 1} from Ex-
ample 7. We have shown that [arr (Lr)] ∈

[
L
(
1-REGA2

)]
\
[
L
(
1-MContA2

)]
.

Moreover, [arr (Lr)] ∈
[
L
((

1-ContA1, REG
))]
\
[
L
(
1-MContA2

)]
: Consider

G′r = (Gr, Cr) with Gr = (1, {a, b} ,#, P, {arr (ba)}) and P = {paa, pab} with
paa = a a , and pab = a b , as well as Cr = {paa}∗ {pab}. It is easy to see that
[L (G′r)] = [arr (Lr)]. ut

Theorem 5. For any d ≥ 1 and any k ≥ 2, we have:[
L
(
d-ContAk

)]
&
[
L
(
d-MContAk

)]
&
[
L
((
d-ContAk, REG

))]
.

Proof. The inclusions directly follow from Theorem 4. The strictness of the first
inclusion follows from Example 6 by taking the non-regular string language Ln =
{anban | n ≥ 1}. Then [i1,d (arr (Ln))] ∈

[
L
(
d-MContA2

)]
\
[
L
(
d-ContAk

)]
.

The strictness of the second inclusion follows from Example 8 by taking
[i1,d (arr (Lr))]. ut

On the other hand, in the 1-dimensional case, the following theorem says
that even with the regulating mechanisms of matrix control or regular control
languages, with 1-dimensional contextual array grammars over a one-letter al-
phabet we cannot go beyond regularity, i.e., beyond

[
L
(
1-REGA1

)]
.

Theorem 6.
[
L
(
1-REGA1

)]
=[

L
(
1-ContA1, REG

)]
=
[
L
(
1-MContA1

)]
=
[
L
(
1-ContA1

)]
.

Proof. (Sketch) According to Theorems 4 and 2, we only have to show that[
L
(
1-REGA1

)]
⊇
[
L
((

1-ContA1, REG
))]

. The main ideas of the correspond-
ing technically non-trivial proof can be described as follows:

– Without loss of generality, right-hand sides of rules have the form a
m
an.

– Context information is irrelevant for the unary 1-dimensional case, assuming
that the set of axioms collects all arrays of sufficient size.

– The state information of the regular control is then encoded in the nonter-
minals of the regular array grammar. ut

Allowing for more than one symbol, 1-dimensional contextual array gram-
mars can generate exactly the array images of linear languages. The proof is
based on the following normal form:

Lemma 1. For any 1-dimensional contextual array grammar with regular con-
trol GC = (G,L), where G = (1, V,#, P,A), L ⊆ P ∗, we can construct an equiv-
alent 1-dimensional contextual array grammar with regular control G′C = (G′, L′)
with G′ = (1, V,#, P ′, A′), L′ ⊆ P ′∗, such that for P ′ we have:

– All rules in P ′ are of the form a b or b a for some a, b ∈ V , i.e., we only
have the minimal non-empty size of selectors and minimal contexts of size
1.

– If there is a rule of the form a b / b a in P ′, then also all rules of the
form c b or b c are in P ′, for any c ∈ V , i.e., the selector contents is
irrelevant, only direction of growth of the array is important.



10 H. Fernau, R. Freund, R. Siromoney, K. G Subramanian

The rules in this normal form nicely correspond with the operations of left and
right insertions for strings, which operations together with regular control lan-
guages also characterize the family of linear languages.

Theorem 7. [L (1-ContA,REG)] = arr (L (LIN)).

Proof. (Sketch) The main ideas of the proof can be described as follows:

– Adding strings in a controlled way “on both ends” corresponds to applying
linear rules, but in reverse order.

– The information about the finitely many selectors possible can be stored in
the nonterminal; on the other hand, the nonterminal can be stored in the
state of the finite automaton of the control language. ut

For d ≥ 2, i.e., in the case of at least two symbols, we can prove the in-
comparability of the families of array languages generated by contextual array
grammars and those equipped with control mechanisms:

Theorem 8. For any d ≥ 2 and any k ≥ 1, all the three families[
L
(
d-ContAk

)]
,
[
L
(
d-MContAk

)]
, and

[
L
((
d-ContAk, REG

))]
are incomparable with

[
L
(
d-REGAk

)]
.

Proof. For the singleton language L⊥ from Example 4, we have i2,d (L⊥) ∈([
L
(
d-ContA1

)]
∩
[
L
(
d-MContA1

)]
∩

[
L
((
d-ContA1, REG

))])
\
[
L
(
d-REGA1

)]
.

On the other hand, for Lr from Example 7 we have i2,d ([arr (Lr)]) ∈[
L
(
1-REGA2

)]
\
([
L
(
d-ContA1

)]
∪

[
L
(
d-MContA1

)]
∪
[
L
((
d-ContA1, REG

))])
.

Yet even for the case of one-letter alphabets we can find an array language of
2-dimensional arrays in

[
L
(
2-REGA1

)]
\
[
L
((

2-ContA1, REG
))]

: we consider⊔
-shaped arrays with the left vertical line having a length being a multiple of 3

and the right vertical line having a length being a multiple of 5. These arrays can
easily be generated by a regular array grammar by first generating the left ver-
tical line from up to down, followed by the horizontal line, finally generating the
right vertical line upwards. On the other hand, this set of 2-dimensional arrays
cannot be generated by a contextual array grammar even when using regular
control: as soon as the vertical lines have become long enough, we cannot dis-
tinguish any more between the left and the right one, so either the lengths will
not necessarily fulfill the constraints of being a multiple of 3 and 5, respectively,
any more, or even worse, the lines might even be prolonged below the horizontal
line yielding arrays of the shape of an H. ut

4 Decidability Questions

As the size of the arrays generated by contextual array grammars (even with any
control mechanism) increases with every derivation step, the generated array
languages are computable (i.e., recursive).

As an immediate consequence of Theorem 7, we obtain:

Corollary 1. Emptiness is decidable for L (1-ContA,REG).



Contextual Array Grammars with Matrix and Regular Control 11

Yet for higher dimensions, we obtain a completely different situation:

Theorem 9. Emptiness is not decidable for L
(
d-ContAk, REG

)
for d ≥ 2,

even for k = 1.

Proof. (Sketch) As, for example, described in [5], the derivation carpet of a Tur-
ing machine can be described using 2-dimensional contextual array productions
in the t-mode of derivation, i.e., a derivation only stops if no rule can be applied
any more. The goal of only halting with specific conditions being fulfilled can
also be obtained using suitable regular control languages, as we can require spe-
cific final rules to be applied. Hence, we will obtain a non-empty array language
if and only if there is a derivation simulating the acceptance of a string by the
given Turing machine. The proof given in [5] does not bound the number of
symbols used. Yet m symbols can be encoded by 2×m rectangles with the k-th
of these m symbols being encoded by leaving the k-th position in the second
vertical line free, which then can be checked by the selector in the contextual
array productions. Hence, simulating successful computations of the given Tur-
ing machine will result in the generation of 2k × mn rectangles for accepting
computations. ut

5 Picture Generation

Another interesting topic is to consider the generation of geometric objects such
as solid rectangles and squares, which has been used to exhibit the generative
power of various array grammar variants. Both of them, i.e., the 2-dimensio-
nal array language Lrect of all solid rectangles of size m × n, m, n ≥ 2, made
of a single symbol a and the 2-dimensional array language Lsquare of all solid
squares of side length n, n ≥ 2, made of a single symbol a are well-known
to be in

[
L
(
2-REGA1

)]
, see [23], but as we are able to show they can also be

generated by 2-dimensional contextual array grammars with regular control, i.e.,
{Lrect, Lsquare} ⊂

[
L
((

2-ContA1, REG
))]

. We now only exhibit the contextual
array grammar with regular control for the squares.

Example 9. Lsquare is generated by the 2-dimensional contextual array gram-
mar with regular control GsquareRC = (Gsquare, Csquare) with Gsquare =
({a}, Psquare, Asquare), where Asquare collects the 2× 2 and 3× 3 squares,

Psquare = {sul, sdr, sur, sdl, rul, ruu, rdr, rdd} , and

Csquare = ({sulsdr} {rulrdr}∗ {ruurdd}∗ {sursdl})+ .

The rules are listed in the following:

sul =

a a
a a a

a , sdr =

a
a a a

a a , sur =

a a a
a a a

a a , sdl =

a a
a a a
a a a ,

rul =
a a
a a a , ruu =

a a
a a

a , rdr =
a a a

a a , rdd =

a
a a
a a .



12 H. Fernau, R. Freund, R. Siromoney, K. G Subramanian

How to derive a 4× 4 square is shown below:

a a
a a
⇒sul

a a
a a a
a a
⇒sdr

a a
a a a
a a a
a a

⇒sur

a a a a
a a a a
a a a
a a

⇒sdl

a a a a
a a a a
a a a a
a a a a

Notice that the rules sur and sdl check if a complete new border layer was
actually generated, so they provide “keystones” as used in architecture, and it
somehow replaces the t-mode of derivation, e.g., see [6]. ut

As already with the t-mode of derivation, e.g., see [6], only eight contextual
array rules were needed in Example 9 to generate the squares. This shows that
the ability of contextual array grammars to insert new parts on different positions
in the current array allows for a significantly smaller number of rules when
using specific control mechanisms as the t-mode of derivation or regular control
languages, in comparison with the construction of an extended regular array
grammar as described in [23], where the construction has to be carried out along
a Hamiltonian path. The inserted pieces used in [23] in fact could also be used as
arrays inserted by a contextual array grammar with regular control, yet even for
the subset of squares of side lengths 5k+ 16, k ≥ 0, as exhibited in [23], 27 rules
(arrays) were used. As these are in fact a kind of macro-rules, a complete list of
regular array rules based on [23] would correspond to about one thousand rules.
This is an example showing that contextual array grammars may allow for a
succinct description of specific picture languages with rather small descriptional
complexity.

References

1. Chrobak, M.: Finite automata and unary languages. Theoretical Computer Science
47, 149–158 (1986)

2. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory, EATCS
Monographs in Theoretical Computer Science, vol. 18. Springer (1989)

3. Ehrenfeucht, A., Păun, Gh., Rozenberg, G.: Contextual grammars and formal lan-
guages. In: [20], vol. 2, pp. 237–293 (1997)

4. Fernau, H., Freund, R.: Bounded parallelism in array grammars used for character
recognition. In: Perner, P., Wang, P., Rosenfeld, A. (eds.) Advances in Structural
and Syntactical Pattern Recognition (SSPR’96). Lecture Notes in Computer Sci-
ence, vol. 1121, pp. 40–49. Springer (1996)

5. Fernau, H., Freund, R., Holzer, M.: Representations of recursively enumerable array
languages by contextual array grammars. Fundamenta Informaticae 64, 159–170
(2005)

6. Fernau, H., Freund, R., Schmid, M.L., Subramanian, K.G., Wiederhold, P.: Con-
textual array grammars and array P systems. Annals of Mathematics and Artificial
Intelligence 75(1-2), 5–26 (2015)

7. Fernau, H., Freund, R., Siromoney, R., Subramanian, K.G.: Contextual array gram-
mars with matrix and regular control. Annals of the University of Bucharest (Seria
Informatica) LXII(3), 63–78 (2015)



Contextual Array Grammars with Matrix and Regular Control 13

8. Fernau, H., Freund, R., Siromoney, R., Subramanian, K.G.: Non-isometric contex-
tual array grammars with regular control and local selectors. In: Durand-Lose, J.,
Nagy, B. (eds.) Machines, Computations, and Universality, MCU. Lecture Notes
in Computer Science, vol. 9288, pp. 61–78. Springer (2015)

9. Freund, R., Kogler, M., Oswald, M.: Control mechanisms on #−context-free ar-
ray grammars. In: Păun, Gh. (ed.) Mathematical Aspects of Natural and Formal
Languages, pp. 97–136. World Scientific Publ., Singapore (1994)

10. Freund, R., Kogler, M., Oswald, M.: A general framework for regulated rewriting
based on the applicability of rules. In: Kelemen, J., Kelemenovà, A. (eds.) Compu-
tation, Cooperation, and Life, Lecture Notes in Computer Science, vol. 6610, pp.
35–53. Springer (2011)

11. Freund, R., Păun, Gh., Rozenberg, G.: Contextual array grammars. In: Subrama-
nian, K., Rangarajan, K., Mukund, M. (eds.) Formal Models, Languages and Ap-
plications, Series in Machine Perception and Articial Intelligence, vol. 66, chap. 8,
pp. 112–136. World Scientific (2007)

12. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Sa-
lomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer
(1997)

13. Krithivasan, K., Balan, M., Rama, R.: Array contextual grammars. In: Mart́ın-
Vide, C., Păun, Gh. (eds.) Recent Topics in Mathematical and Computational
Linguistics, pp. 154–168. Editura Academiei Române, Bucureşti (2000)

14. Marcus, S.: Contextual grammars. Revue Roumaine de Mathématiques Pures et
Appliquées 14, 1525–1534 (1969)

15. Nagy, B.: On a hierarchy of 5′ → 3′ sensing Watson-Crick finite automata lan-
guages. Journal of Logic and Computation 23(4), 855–872 (2013)

16. Pradella, M., Cherubini, A., Crespi-Reghizzi, S.: A unifying approach to picture
grammars. Information and Computation 209, 1246–1267 (2011)

17. Păun, Gh.: Marcus contextual grammars, Studies in Linguistics and Philosophy,
vol. 67. Springer, Dordrecht (1997)

18. Rosenfeld, A.: Picture Languages. Academic Press, Reading, MA (1979)
19. Rosenfeld, A., Siromoney, R.: Picture languages – a survey. Languages of Design

1(3), 229–245 (1993)
20. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3.

Springer (1997)
21. Subramanian, K.G.: A note on regular controlled apical growth filamentous sys-

tems. International Journal of Computer and Information Sciences 14, 235–242
(1985)

22. Wang, P.S.-P.: Some new results on isotonic array grammars. Information Process-
ing Letters 10, 129–131 (1980)

23. Yamamoto, Y., Morita, K., Sugata, K.: Context-sensitivity of two-dimensional reg-
ular array grammars. International Journal of Pattern Recognition and Artificial
Intelligence 3, 295–319 (1989)


