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Abstract. Behavioral contracts are abstract descriptions of the commu-
nications that clients and servers perform. Behavioral contracts come
naturally equipped with a notion of compliance: when a client and a server
follow compliant contracts, their interaction is guaranteed to progress
or successfully complete. We study two extensions of contracts, dealing
respectively with backtracking and with speculative execution. We show
that the two extensions give rise to the same notion of compliance. As a
consequence, they also give rise to the same subcontract relation, which
determines when one server can be replaced by another preserving compli-
ance. Moreover, compliance and subcontract relation are both decidable
in polynomial time.

1 Introduction

Binary behavioral contracts [14,27,15] and binary session types [22] are abstrac-
tions of programs used to statically ensure that a client and a server interact
successfully (see the survey in [24]). Along the years, the basic theory has been
extended to deal with many features of clients and servers, such as exceptions [12],
time [9], and so on. We consider here two new features: backtracking, allowing one
to go back to previous stages of the interaction, and speculative execution [30],
allowing one to try different alternatives concurrently. These two features have
quite different origin and aims. Backtracking is used to avoid failures due to wrong
past decisions in a wide range of settings, from the undo button in web browsers,
to the execution model of Prolog, to techniques for rollback-recovery [1]. Specula-
tive execution is used for efficiency reasons in different areas, from simulation [13],
to thread-level optimization [31], to web services [16].

We present two extensions of binary contracts (Section 2): retractable contracts
capturing backtracking, and speculative contracts capturing speculative execution.
The two extensions are based on the same syntax, but naturally have different
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semantics. Essentially, they add to the session contracts of [3,10] (called first-order
session behaviors in [3]) an operator of external choice among output operations.
The most interesting case is when an external choice among outputs and an
external choice among inputs interact. In the retractable semantics, the client
and the server agree on which option to explore, but they rollback and try a
different possibility if the computation gets stuck. In the speculative semantics
all the possibilities are explored concurrently, and it is enough for one of them to
succeed to guarentee the success of the whole computation.

This paper defines retractable and speculative contracts, and studies the
related theory, considering the notions of compliance (Section 3), guaranteeing
that the interaction progresses or successfully completes, subcontract relation
(Section 4), determining when a server (resp. client) can be replaced by another
server (resp. client) preserving compliance, and dual contract (Section 4), that is
the most general contract (in terms of the subcontract relation) compliant with
a given contract. Our analysis provides two main insights:

– Even if retractable contracts and speculative contracts have different se-
mantics and give rise to different client-server interactions, the relations of
compliance, subcontract and duality in the two settings do coincide. While
surprising at first sight, this can be explained by noticing that in both the
cases different alternatives are explored (sequentially for retractable contracts,
in parallel for speculative contracts) and the success of one of them guarantees
the success of the whole computation. In other terms, the two semantics
provide different implementations of angelic nondeterminism, first described
by Hoare [21].

– While retractable/speculative contracts are strictly more expressive than
session contracts (indeed they are a conservative extension, see Section 3.1),
their theory preserves the main good properties of the theory of session con-
tracts. In particular, compliance and subcontract relations are both decidable
(Section 3) in polynomial time (Section 5), and the dual of a contract always
exists and has a simple syntactic characterization (Section 4).

A natural way to ensure the existence of the dual contract is to introduce an
operator of internal choice among inputs. While this operator has limited practical
impact, it makes the model more symmetric and the mathematical treatment
simpler.

A few preliminary results on the topic of this paper have been presented in a
workshop paper [7], which considers retractable session contracts, i.e., retractable
contracts without internal choice among inputs. The main result of [7] is the
decidability of the compliance relation (while we study here also the complexity),
which was obtained via an algorithm that we now know to be exponential. Here
we present a more refined, polynomial one (Figure 7). In [7] the subcontract
relation and the dual contract were not studied, and indeed the dual contract
did not exist due to the absence of internal choice among inputs.

Proofs, additional examples and additional background material are available
in a companion technical report [8].
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2 Contracts for Retractable and Speculative Interactions

We present below a uniform syntax for retractable and speculative contracts,
with two semantics. It can be obtained from the syntax of session contracts
of [3,10] (called first-order session behaviors in [3]), that we dub here SC, just
adding external retractable/speculative choice among outputs and internal choice
among inputs. As a matter of fact our contracts can also be seen as an extension
of the retractable session contracts of [7], that we dub here rC, simply adding
internal choice among inputs. Basics of session contracts and retractable session
contracts are recalled in the companion technical report [8].

Definition 1 (Retractable/Speculative Contracts). Let N (set of names)
be some countable set of symbols and let N (set of conames) be {a | a ∈ N}, with
N ∩N = ∅. The set rsC of retractable/speculative contracts is defined as the
set of the closed expressions generated by the following grammar,

σ, ρ := | 1 success

|
∑
i∈I ai.σi external input choice

|
∑
i∈I ai.σi external output choice

|
⊕

i∈I ai.σi internal input choice

|
⊕

i∈I ai.σi internal output choice

| x variable

| recx.σ recursion

where I is non-empty and finite, the names and the conames in choices are
pairwise distinct and σ is not a variable in recx.σ.

Recursion in rsC is guarded and hence contractive in the usual sense. We take an
equi-recursive view of recursion by equating recx.σ with σ[recx.σ/x]. We use α
to range over N ∪N , with the convention α = a if α = a, and α = a if α = a. We
write α1.σ1 +α2.σ2 for binary external input/output choice and α1.σ1⊕α2.σ2 for
binary internal input/output choice. They are both commutative by definition.
Also, α.σ denotes both internal and external unary choice. This is not a source
of confusion since internal and external choices do coincide in the unary case.
We also write αk.σk + σ′ for

∑
i∈I αi.σi where k ∈ I and σ′ =

∑
i∈(I\{k}) αi.σi

(and similarly for internal choices). When no ambiguity can arise, we call just
contracts the expressions in rsC. They are written by omitting all trailing 1’s.

We discuss below the two interpretations and the two semantics for our
contracts: the retractable one, and the speculative one.

2.1 Retractable semantics

The main novelty of the retractable semantics is that when an external choice
among outputs and an external choice among inputs interact, the client and the
server agree on which option to explore, but they rollback and try a different
possibility if the computation gets stuck.
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In order to deal with rollbacks, we decorate contracts with their history, which
memorizes, for past choices, the alternatives that have been discharged and that
can be tried upon rollback. We use ‘◦’ to stand for no-remaining-alternatives.

Definition 2 (Contracts with History). Let Histories be the expressions gen-
erated by the grammar H ::= 〈 〉 | H :σ, where σ ∈ rsC∪{◦} and ◦ 6∈ rsC. Histories
are hence stacks of contracts and ◦. Then the set of contracts with history is
defined by: rsCH = {Hnσ | H ∈ Histories, σ ∈ rsC ∪ {◦} }.

We write just σ1 : · · · :σk for the stack (· · · (〈 〉 :σ1) : · · · ) :σk.

As standard for contracts, the definition of the retractable semantics is in
two stages: we first define a labeled transition system (LTS) for contracts with
history (Definition 3), and then we use it to define a reduction semantics for
pairs of contracts representing one client and one server (Definition 4).

Definition 3 (Semantics of Contracts with History).

(+) Hnα.σ + σ′
α−→ H :σ′nσ (⊕) Hnα.σ ⊕ σ′ τ−→ Hnα.σ

(α) Hnα.σ
α−→ H :◦nσ (rb) H :σ′nσ rb−→ Hnσ′

In the transition rule for external choice (+), the action α is executed, and the
discharged branches in σ′ are memorized. In internal choice (⊕), instead, the
selection of one branch is represented by a label τ , and the history H is unchanged.
When a single action is executed (α), a ‘◦’ is added to the history, meaning that
the only possible branch has been tried and no alternative is left. Rule (rb) pops
the contract at the top of the stack, replacing the current one with it.

The client/server interaction is modeled by the reduction of their parallel
composition, that can be either forward, consisting of CCS-style synchronizations
and single internal choices, or backward, only when there is no possible forward
reduction, and the client is not satisfied, i.e., it is different from 1.

Definition 4 (Semantics of Retractable Client/Server Pairs).
The following rules, plus the rule symmetric to (τ) w.r.t. ‖, define the relation
−→ over pairs of contracts with history:

(comm)

H1nρ
α−→ H′1nρ′ H2nσ

α−→ H′2nσ′

H1nρ ‖ H2nσ −→ H′1nρ′ ‖ H′2nσ′

(τ)

H1nρ
τ−→ H1nρ′

H1nρ ‖ H2nσ −→ H1nρ′ ‖ H2nσ
(rbk)

H1nρ
rb−→ H′1nρ′ H2nσ

rb−→ H′2nσ′ ρ 6= 1

H1nρ ‖ H2nσ −→ H′1nρ′ ‖ H′2nσ′

Rule (rbk) applies only if neither (comm) nor (τ) do.

The forward reduction −→f is the relation generated by rules (τ) and (comm).



5

Remark 1. The semantics defined above for retractable client/server pairs can
be seen as an instantiation on contracts of the standard reversible semantics
for process calculi, see, e.g., [17,29,25,26]. In particular, the semantics would
become a classic uncontrolled semantics (according to the terminology in [26])
by removing the four control mechanisms below:

1. the fact that only external choices are retractable;

2. the side condition ρ 6= 1 in rule (rbk), which disallows backtrack after success;

3. the fact that rule (rbk) can be applied only if no other rule applies, ensuring
that backtrack is enabled only when no forward reduction is possible;

4. the fact that in external choices the selected path is not stored in the history,
so that each path can be tried at most once.

These mechanisms provide a semantic control of reversibility [26], specifying
which rollback steps are allowed, and when. We discuss in Remark 2 the impact
that removing the above control mechanisms would have on retractable contracts
and on their theory.

Example 1. Retractable contracts allow one to first try a preferred alternative,
but to accept also another alternative if the first one proves to be impossible to
obtain. In cloud computing settings, companies may hire virtual machines and
storing facilities from cloud providers with some agreed Quality of Service (QoS).
A company is willing to hire at some medium or low price a certain amount of
machines for online elaboration during day time, but, if the price is too high, it
is also willing to switch to offline night elaboration. In this last case it is only
willing to pay a low price.

A retractable contract with this behavior may be written as:

cloudClient = QoSday.(priceMed.ok + priceLow.ok) + QoSnight.priceLow.ok

Notice that the contract does not specify which alternative the client prefers: this
aspect of the client behavior is abstracted away. A sample server is:

cloudServer =
∑

QoS∈{QoSday,QoSnight,... }QoS.priceQoS.ok

A sample interaction is described in Figure 1, where we assume that

priceQoSday = priceHigh and priceQoSnight = priceLow.

2.2 Speculative semantics

The main idea of the speculative semantics is that in an external output choice
all the options are tried concurrently: if at least one of them succeeds, then the
whole computation succeeds. In order to represent concurrent trials we need
runtime contracts featuring multiple threads.
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〈 〉n
QoSday.(priceMed.ok

+ priceLow.ok)
+ QoSnight.priceLow.ok

‖ 〈 〉n
∑

QoS QoS.priceQoS.ok

−→ 〈 〉 : QoSnight.priceLow.ok
npriceMed.ok + priceLow.ok

‖ 〈 〉 :
∑

QoS6=QoSday QoS.priceQoS.ok

n priceHigh.ok

−→ 〈 〉n QoSnight.priceLow.ok ‖ 〈 〉n
∑

QoS6=QoSday QoS.priceQoS.ok

−→ 〈 〉 : ◦n priceLow.ok ‖ 〈 〉 :
∑

QoS6=QoSday,QoSnight QoS.priceQoS.ok

n priceLow.ok

−→ 〈 〉: ◦ : ◦nok ‖ 〈 〉 :
∑

QoS6=QoSday,QoSnight QoS.priceQoS.ok : ◦
n ok

−→ 〈 〉: ◦ : ◦ : ◦n1 ‖ 〈 〉 :
∑

QoS6=QoSday,QoSnight QoS.priceQoS.ok: ◦ :◦
n 1

Fig. 1. An example of retractable interaction

Definition 5 (Contracts with Threads). Contracts with threads C, used
as runtime syntax for contracts, are parallel compositions of threads T. Each
thread is a contract prefixed by a sequence (possibly empty) of actions uniquely
identifying it.

C ::= T | (C | T) | (T | C) T ::= σ | α@T
We assume the operator ‘ |’ to be associative and commutative.

As for the retractable semantics, the definition of the speculative semantics is in
two stages: we first define an LTS for contracts with threads (Definition 6), and
then we use it to define a reduction semantics for pairs of contracts with threads
representing one client and one server (Definition 7).

Definition 6 (Semantics of Contracts with Threads).
In the LTS below, we use as labels actions α ::= a | a, sequences of actions
β ::= α | αβ, and complex labels βτ ::= τ | β | β,T.

(Fork)

α.σ + σ′
α,σ′

−−−→ α@σ
(⊕)
α.σ ⊕ σ′ τ−→ α.σ

(α)

α.σ
α−→ α@σ

(@-α)

T
β−→ T′

α@T
αβ−−→ α@T′

(@-α-T)

T
β,T′′

−−−→ T′

α@T
αβ,α@T′′

−−−−−−→ α@T′

(@-τ)

T
τ−→ T′

α@T
τ−→ α@T′

(ParL)

T
βτ−→ T′

T | C βτ−→ T′ | C

In the rule for external choice (Fork), when an action α is executed, its continu-
ation σ is prefixed by it. The other branches σ′ need to be executed in a freshly
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spawned thread. Since such thread needs to be installed at top level, σ′ is added
to the label, and the actual installation is performed at the level of speculative
client/server pairs (see rule (comm) in Definition 7). The rule for internal choice
(⊕) simply selects one of the available options. A unary choice (α) executes the
action α and prefixes with it the continuation σ.

Because of rules (@-α), (@-α-T ), and (@-τ), execution is allowed below an @
prefix. In rule (@-α), the prefix itself is added to the label β. Prefixes uniquely
identify threads, and ensure that each thread interacts only with the one with
dual prefix which is running on the communication partner. This is specified in
Definition 7 below. Rule (@-α-T ) is analogous to rule (@-α), but the label also
contains a thread T′′, and the prefix α is added to both β and T′′. No prefix
is added to τ actions, propagated by rule (@-τ). Rule (ParL) simply allows
components of a parallel composition to execute (a symmetric rule is not needed
thanks to the commutativity of |).

The interaction of a client with a server is modeled by the reduction of their
parallel composition.

Definition 7 (Semantics of Speculative Client/Server Pairs).
The following rules, plus the rule symmetric to (τ) w.r.t. ‖, define the relation
−→ over pairs of contracts with threads. In the LTS below, ?T denotes either the
thread T or nothing. Hence, β, ?T and C |?T are respectively β and C if ?T is
nothing, and β,T and C | T otherwise. Also, the duality operator extends from
actions to sequences: αβ = αβ.

(comm)

C
β,?T−−−→ C′ C′′

β,?T′′

−−−−→ C′′′

C ‖ C′′ −→ C′ |?T ‖ C′′′ |?T′′

(τ)

C
τ−→ C′

C ‖ C′′ −→ C′ ‖ C′′

Rule (comm) allows threads performing dual sequences of actions to interact. This
implies that both the actual actions and the prefixes of the threads performing
them should be dual. Threads in the labels, if present, are installed in parallel.
Rule (τ) simply propagates the τ action.

Example 2. A server provides access to multiple algorithms for SAT solving [35].
A client first sends the problem instance to be solved, then selects the algorithm,
and finally sends the relevant parameters. The server computes the solution
according to the received commands, and sends it back. Since the most efficient
technique depends on the problem instance [34], the server supports speculative
execution, to allow one to try different algorithms at the same time (this is called
the portfolio approach). The server contract is described by:

SATserver = inst.
∑
i algi.

∑
j parj .sol

A simple client that tries both the DPLL approach and the walksat approach
can be modeled as follows:

SATclient = inst.(DPLL.par.sol + walksat.par.sol)
A sample computation proceeds as described in Figure 2, assuming that the
server supports both DPLL and walksat. To keep the example simple we drop
the choice of parameters. Let us see in more details how the creation of threads
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inst.(DPLL.sol + walksat.sol) ‖ inst.
∑

i algi.sol

−→ inst@(DPLL.sol + walksat.sol) ‖ inst@
∑

i algi.sol

−→ inst@DPLL@sol

| inst@walksat.sol
‖ inst@DPLL@sol

| inst@
∑
{i|Ai 6=DPLL} algi.sol

−→ inst@DPLL@sol

| inst@walksat@sol
‖

inst@DPLL@sol

| inst@walksat@sol

| inst@
∑
{i|Ai 6=DPLL,walksat} algi.sol

−→ inst@DPLL@sol

| inst@walksat@sol@1
‖

inst@DPLL@sol

| inst@walksat@sol@1
| inst@

∑
{i|Ai 6=DPLL,walksat} algi.sol

Fig. 2. An example of speculative interaction

is managed. The first reduction in Figure 2 is due to rule (comm), since

inst.(DPLL.sol + walksat.sol)
inst−−→ inst@(DPLL.sol + walksat.sol)

and
inst.

∑
i algi.sol

inst−−→ inst@
∑

i algi.sol.

The second reduction is also due to rule (comm), since, on the client side
(Fork)

DPLL.sol + walksat.sol
DPLL, walksat.sol−−−−−−−−−−→ DPLL@sol

(@-α-T )

inst@(DPLL.sol + walksat.sol)
inst DPLL, inst@walksat.sol−−−−−−−−−−−−−−−−→ inst@DPLL@sol

whereas, on the server side,
(Fork)∑

i algi.sol
DPLL,

∑
{i|Ai 6=DPLL} algi.sol

−−−−−−−−−−−−−−−−→ DPLL@sol
(@-α-T )

inst@
∑

i algi.sol
inst DPLL, inst@

∑
{i|Ai 6=DPLL} algi.sol

−−−−−−−−−−−−−−−−−−−−−−−→ inst@DPLL@sol

3 Compliance

The compliance relation for session contracts [3,10] consists in requiring that,
whenever no reduction is possible, all client’s requests and offers have been
satisfied, i.e. the client is in the success state 1. For retractable contracts, thanks
to the retractable operational semantics taking care of forward and backward
reductions, we can adopt the same definition. We use

∗−→ to denote the reflexive
and transitive closure of −→, and 6−→ to specify that no −→ reduction exists.

Definition 8 (Retractable Compliance Relation




R ).

i) The relation




R on contracts with history is defined by:
H1nρ




R H2nσ if, for each H′1,H
′
2, ρ
′, σ′ such that

H1nρ ‖ H2nσ
∗−→ H′1nρ′ ‖ H′2nσ′ 6−→, we have ρ′ = 1

ii) The relation




R on contracts is defined by: ρ




R σ if 〈 〉nρ




R 〈 〉nσ.
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(Ax)
Γ B 1v|σ

(Hyp)
Γ, ρv|σ B ρv|σ

(+ ·+)

Γ, α.ρ+ ρ′ v|α.σ + σ′ B ρv|σ

Γ B α.ρ+ ρ′ v|α.σ + σ′

(⊕ ·+)

∀h ∈ I. Γ,
⊕

i∈Iαi.ρi v|
∑

j∈I∪Jαj .σj B ρh v|σh

Γ B
⊕

i∈Iαi.ρi v|
∑

j∈I∪Jαj .σj

(+ · ⊕)
∀h ∈ I. Γ,

∑
j∈I∪J αj .ρj v|

⊕
i∈I αi.σi B ρh v|σh

Γ B
∑

j∈I∪Jαj .ρj v|
⊕

i∈I αi.σi

Fig. 3. System B

For speculative contracts we need to take into account the fact that the whole
computation succeeds if at least one of its branches succeeds.

Definition 9 (Speculative Compliance Relation




S ).
The relation




S on contracts is defined by:

ρ




S σ if for each Cρ,Cσ such that ρ ‖ σ ∗−→ Cρ ‖ Cσ 6−→
there exist C, n, α1, . . . , αn such that Cρ = C | α1@...@αn@1

We now provide a formal system characterizing compliance on both retractable
and speculative contracts.

Definition 10 (Formal System for Compliance B ).
Judgments in the formal system B are expressions of the form Γ B ρv|σ,
where the environment Γ is a finite set of expressions of the form δ v| γ, with
ρ, σ, δ, γ ∈ rsC. Axioms and rules are as in Figure 3.

The only non standard rule of system B is (+ ·+), which ensures compliance
of two external choices when they contain respectively (at least) one α and the
corresponding α, followed by compliant contracts. This contrasts with the rules
(⊕ ·+) and (+ · ⊕), where each α in an internal choice must have a corresponding
α in the external choice, followed by compliant contracts. No rule is provided for
the case (⊕ · ⊕) since two internal choices are compliant only if both of them are
unary choices (otherwise they may always get stuck by choosing incompatible
actions). Since unary internal choice coincides with unary external choice, this
case is taken into account by the rules we already have. Notice that rule (+ ·+)
implicitly represents the fact that, in the decision procedure for two contracts
made of external choices, the possible synchronizing branches have to be tried,
until either a successful one is found or all fail. Looking at a derivation bottom-
up, at each application of a rule, the considered pair of contracts is added to
the environment Γ . In this way, if the same pair is reached again due to the
equi-recursive view of contracts, the derivation can be closed using rule (Hyp).
Rule (Ax) instead closes the derivation when the client reaches the success state
1. We write B ρv|σ instead of Γ B ρv|σ when Γ is empty.
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Derivability in system B is decidable, since it is syntax-directed and proof
reconstruction does terminate.

Theorem 1. Derivability in the formal system B is decidable.

We can prove the soundness and the completeness of the formal system B
w.r.t. both the retractable and the speculative semantics (see [8] for the proofs).

Theorem 2 (Retractable Soundness and Completeness).

B ρv|σ iff ρ




R σ

Theorem 3 (Speculative Soundness and Completeness).

B ρv|σ iff ρ




S σ

By the soundness and completeness of system B w.r.t. both the relations
of retractable and speculative compliance, we immediately get that the two
compliance relations do coincide.

Corollary 1 (Retractable and Speculative Compliances Coincide).




R =




S

By the above, from now on we write




instead of




R or




S . So the following
also easily follows.

Corollary 2 (Compliance Decidability). The relation




is decidable.

Remark 2. We now discuss the impact on the compliance relation of the four mech-
anisms for controlling reversibility in the semantics of retractable client/server
pairs (see Remark 1). In particular, we analyze what would happen by dropping
each one of them in isolation:

Drop “Not all reductions are retractable”: each reduction could be un-
done. From the compliance point of view, all the choices would be retractable.
Hence, retractable contracts would not be a conservative extension (see Sub-
sect. 3.1) of session contracts any more. The case we consider is strictly more
general, since we allow for both retractable and unretractable choices.

Drop the side condition ρ 6= 1 in rule (rbk) of Definition 4: any forward
finite interaction would be followed by a rollback. In particular, most of
the client/server pairs without recursion (except a few trivial ones, like
〈 〉n1 ‖ 〈 〉nσ) would end into 〈 〉n ◦ ‖ 〈 〉n◦. Thus all these pairs of contracts
would not be compliant.

Drop “rule (rbk) can be applied only if no other rule applies”: interac-
tions could rollback before succeeding. As in the case above, most client/server
pairs (except a few trivial ones, but including recursive ones) could reduce to
〈 〉n ◦ ‖ 〈 〉n◦. Again all these pairs of contracts would not be compliant.

Drop “in choices the chosen path is not memorized”: any client/server
pair that would not normally succeed with at least one retractable choice could
diverge by undoing and redoing the choice forever, thus trivially ensuring
compliance.

None of the last three scenarios provides a reasonable setting. The first one would
be reasonable, but the case we consider is strictly more general.
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3.1 Conservativity Results

It is possible to show that all the relations on our retractable and speculative
contracts (rsC) are conservative extensions of corresponding notions on (first-
order) session contracts (SC) as defined in [3,10], and on the retractable session
contracts (rC) as defined in [7].

As previously said, it is not difficult to check that session contracts SC are
a subset of retractable session contracts rC, which, in turn, are a subset of the
contracts rsC we are presently investigating, namely: SC ( rC ( rsC. Obviously
the strict inclusion SC ( rsC is not enough, by itself, to guarantee the retractable
and speculative operational semantics for rsC to be conservative extensions of the
operational semantics of SC. We prove that it is so in the following Proposition
1. Informally, it states that both the forward retractable semantics −→f and the
speculative semantics −→ of pairs of contracts in SC are annotated versions of
their semantics in SC (recalled in the companion technical report [8]).

Proposition 1 (Operational Semantics Conservativity). Let ρ, σ ∈ SC.

i) ρ ‖ σ ∗−→SC ρ
′ ‖ σ′ iff H1nρ ‖ H2nσ

∗−→f H′1nρ′ ‖ H′2nσ′
for some H1,H2,H

′
1 and H′2

ii) ρ ‖ σ ∗−→SC ρ
′ ‖ σ′ iff ρ ‖ σ ∗−→ α1@ . . . αn@ρ′ | Cρ ‖ α1@ . . . αn@σ′ | Cσ

for some n, α1, . . . , αn,Cρ and Cσ

where −→SC denotes the reduction relation on SC pairs in the theory of session
contracts.

We do not take into account conservativity of the retractable operational
semantics for rsC over the one for rC because it is quite trivial, since the rules
in the two semantics are essentially the same. A conservativity result of the
speculative operational semantics for rsC over the one for rC would instead
consist in a rather cumbersome and uninteresting statement.

The conservativity result for the operational semantics is not enough, in itself,
to guarantee the theory of retractable compliance for rsC to be a conservative
extension of both the theory of compliance for rC and for SC. Also in this case,
however, we can prove it to be so, that is, the compliance relation for session
contracts SC is the restriction of the compliance relation




for our contracts to
pairs of session contracts SC, and similarly for the restriction of




to retractable
session contracts rC.

Proposition 2 (Compliances Conservativity).

i) Let ρ, σ ∈ SC: ρ




SC σ iff ρ




σ

ii) Let ρ, σ ∈ rC: ρ




rC σ iff ρ




σ
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4 Duality and the Subcontract Relation

Unlike the retractable session contracts of [7], in the present setting it is possible
to get a natural notion of duality. The dual σ of an element σ of rsC is obtained,
as for session contracts, by interchanging any name a with a and + with ⊕.

The notion of dual contract allows one to combine pairs of contracts in the
compliance relation, as follows:

Proposition 3. For any ρ, σ, σ′ ∈ rsC, ρ




σ and σ




σ′ imply ρ




σ′

We will provide further properties of duality using the notion of subcontract
relation. Indeed, the notion of compliance naturally induces a substitutability
relation on servers, denoted 4s, that we call subcontract relation for servers. Such
a relation may be used for implementing contract-based query engines (see [28]
for a detailed discussion). An analogous subcontract relation, denoted 4c, can
be defined for clients.

Definition 11 (Subcontract Relations for Servers and for Clients).
Let σ, σ′ ∈ rsC . We define

i) σ 4s σ′ , ∀ρ ∈ rsC [ ρ




σ implies ρ




σ′ ]
ii) σ 4c σ′ , ∀ρ ∈ rsC [σ




ρ implies σ′




ρ ]

Using Proposition 3 we can characterize both 4s and 4c in terms of duality
and compliance, relate them and get their decidability.

Theorem 4. For any σ, σ′ ∈ rsC:

i) σ 4s σ′ iff σ



σ′

ii) σ 4c σ′ iff σ′




σ
iii) σ 4s σ′ iff σ′ 4c σ
iv) σ 4s σ′ and σ 4c σ′ are decidable.

By item iii) above, from now on we can simply concentrate on the relation 4s.
We can now characterize duality in terms of the subcontract relation for

servers: given a client ρ, its dual ρ is a least element among all its possible servers,
that is it is a possible server, and it is smaller than all the other possible servers.

Proposition 4 (Dual as a Least Element w.r.t. 4s).
Let ρ ∈ rsC. Then ρ is a server for ρ, namely ρ




ρ, and more precisely it is a
least element in the set of the servers of ρ, that is,

∀σ ∈ rsC: ρ




σ implies ρ 4s σ

Since we have not yet proved that the subcontract relation is a partial order,
we do not know yet whether ρ is also a minimal, i.e. there is no smaller element,
neither whether other least elements or minimal elements exist. These questions
will be answered by Prop. 5.

As done for the compliance relation, we characterize now the subcontract
relation for servers in terms of derivability in the following formal system, where
the symbol � is used as syntactical counterpart of the relation 4s.
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(Ax -4s)
Γ I 1� σ′

(Hyp -4s)
Γ, σ � σ′ I σ � σ′

(⊕ ·+ -4s)

Γ, α.σ1 ⊕ σ2 � α.σ′1 + σ′2 I σ1 � σ′1

Γ I α.σ1 ⊕ σ2 � α.σ′1 + σ′2
(+ ·+ -4s)

∀h ∈ I. Γ,
∑

i∈Iαi.σi �
∑

j∈I∪Jαj .σ
′
j I σh � σ′h

Γ I
∑

i∈Iαi.σi �
∑

j∈I∪Jαj .σ
′
j

(⊕ · ⊕ -4s)

∀h ∈ I. Γ,
⊕

j∈I∪Jαj .σj �
⊕

i∈Iαi.σ
′
i I σh � σ′h

Γ I
⊕

j∈I∪Jαj .σ
′
j �

⊕
i∈Iαi.σ

′
i

Fig. 4. The formal system I

a+ b+ c a+ b+ c

a+ b a+ c b+ c a+ b a+ c b+ c

a b c a b c

a⊕ b a⊕ c b⊕ c a⊕ b a⊕ c b⊕ c

a⊕ b⊕ c a⊕ b⊕ c

Fig. 5. Subcontract preorder: a sample

Definition 12 (Formal System for Subcontract I ). Judgments in the
formal system I are expressions of the form Γ I ρ� σ, where the environment
Γ is a finite set of expressions of the form δ � γ, with ρ, σ, δ, γ ∈ rsC. Axioms
and rules are as in Figure 4.

The rules in system I can be read as a translation of the rules in system
B via Theorem 4(i). As for B , in Γ I ρ� σ we may drop Γ if empty.

System I is sound and complete for the subcontract relation 4s.

Theorem 5 (Soundness and Completeness of I ). I σ�σ′ iff σ4sσ′

System I can be used to show that 4s is a partial order and hence, by
antisymmetry, ρ is also the minimum server of ρ: it is minimal, hence there is no
smaller server, and there is a unique minimal.

Proposition 5. 4s is a partial order ∧ ∀ρ∈rsC, ρ is the minimum server of ρ.

The structure of the partial order is shown in Figure 5, where the relations
between terms with a unique choice among actions a, b, c, a, b and c are pictured.

Remark 3. Analogously to what done in Subsect. 3.1, one can show the subcon-
tract relation 4s to be a conservative extension of the corresponding notion in SC.
Moreover, the restriction of 4s to rC provides a suitable notion of subcontract
for rC (which has never been studied before).
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(Ax∞)
B 1v|σ

(+ ·+∞)
ρv|σ

α.ρ+ ρ′ v|α.σ + σ′

(⊕ ·+∞)

∀h ∈ I. ρh v|σh⊕
i∈Iαi.ρi v|

∑
j∈I∪Jαj .σj

(+ · ⊕∞)

∀h ∈ I. ρh v|σh∑
j∈I∪Jαj .ρj v|

⊕
i∈I αi.σi

Fig. 6. The non-well founded system B∞

5 Complexity Issues

One can define a decision procedure for compliance as the recursive proof-search
algorithm obtained by reading bottom-up the rules of the formal system for
compliance in Figure 3. A similar algorithm is described in [7]. We show below
that such an algorithm is strictly exponential.

To show it, roughly, it is possible to adapt the example presented in [20](§11)
concerning the subtyping relation for recursive arrow and product types.

For each n ∈ N we define two contracts ρn and σn by induction, as follows.
ρ0 = a+ b ρn+1 = recx.a.x+ b.ρn
σ0 = recx.a.x σn+1 = a.σn ⊕ recx.b.x

As for the example in [20], the size of ρn and σn is linear in n, since ρn and σn
appear just once in the definitions of ρn+1 and σn+1, respectively. By complete
induction over n it is possible to prove that, for any n, ρn




σn. By recursive
breadth-first search, a derivation for B ρn v| σn is built in an actual exponential
number of calls. Given n, the first part of the recursive-call tree looks as follows
(where we denote by “Ps” the Proof-search algorithm)

Ps(∅ B ρn v| σn)

Ps(Γ1 B ρn v| σn−1) Ps(Γ2 B ρn−1 v| σn)

Ps(Γ3Bρnv|σn−2) Ps(Γ4Bρn−1 v| σn−1) Ps(Γ5Bρn−1 v| σn−1) Ps(Γ6Bρn−2 v| σn)

. . . . . . etc.

where Γ4 = {ρn v| σn, ρn v| σn−1} 6= {ρn v| σn, ρn−1 v| σn} = Γ5. So, any call
of the shape Ps(Γ B ρk v| σk) produces two calls Ps(Γ ′ B ρk−1 v| σk−1) and
Ps(Γ ′′ B ρk−1 v| σk−1) with Γ ′ 6= Γ ′′; overall there are at least 2n calls.

However, the complexity of the compliance decision procedure can be drasti-
cally reduced down to a polynomial complexity as detailed below.

A polynomial decision algorithm.
We first define a non-well founded, but equivalent version of system B .

Definition 13 (The non-well founded system B∞ ). We write B∞ ρv|σ
whenever there exists a finite or infinite derivation tree formed by the rules in
Figure 6 having ρv|σ as conclusion, and such that each finite branch ends with
an instance of axiom (Ax∞).

Lemma 1 (Systems B and B∞ are equivalent). B ρv|σ iff B∞ ρv|σ
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Decide 
(ρv|σ) = let (A,F, b) = P(∅, ∅, [ρv|σ],ok) in b = ok
where

P(A,F, [ ], b) = (A,F, b)

P(A,F, (ρv|σ):xs, b) =
-1- if ρ = 1 then P(A,F, xs, b)
-2- else if ρv|σ ∈ A then P(A,F, xs, b)

-3- else if ρv|σ ∈ F then (A,F, fail)

-4- else if ρ =
∑

i∈I αi.ρi and σ =
∑

j∈J αj .σj and I ∩ J = {i1, . . . , in}
-5- then let (A0,F0, b0) = P+(A∪{ρv|σ},F, [ρi1v|σi1 . . . ρinv|σin ], b)

-6- in if b0=fail then (A0,F0, fail)

-7- else P(A0,F0, xs, b0)

-8- else if ρ =
⊕

i∈I αi.ρi and σ =
∑

j∈J αj .σj and I ⊆ J and I = {i1, . . . , in}
-9- then let (A0,F0, b0) = P(A∪{ρv|σ},F, [ρi1 v| σi1 . . . ρin v| σin ], b)

-10- in if b0=fail then (A0,F0, fail)

-11- else P(A0,F0, xs, b0)

-12- else if ρ =
∑

i∈I αi.ρi and σ =
⊕

j∈J αj .σj and I ⊇ J and J = {j1, . . . , jn}

-13- then let (A0,F0, b0) = P(A∪{ρv|σ},F, [ρi1 v| σi1 . . . ρjn v| σjn ], b)

-14- in if b0=fail then (A0,F0, fail)

-15- else P(A0,F0, xs, b0)

-16- else if ρ = recx.ρ′ then P(A,F, ({recx.ρ′/x}ρ′ v|σ):xs, b)

-17- else if σ = recx.σ′ then P(A,F, (ρv| {recx.σ′/x}σ′):xs, b)

-18- else (A,F ∪ {ρv|σ}, fail)

and where

P+(A,F, [ρv|σ], b) = P(A,F, [ρv|σ], b)

P+(A,F, (ρv|σ):xs, b)=

-19- let (A0,F0, b0) = P(A,F, [ρv|σ], b) in

-20- if b0 = fail then P+(A ∪ A0,F ∪ F0, xs,ok) else (A0,F0, b0)

Fig. 7. The polynomial decision procedure for compliance

In Figure 7 we present a decision algorithm Decide 
, based on the procedures
P and P+. A run of the algorithm resembles a computation tree of an alternating
Turing machine, where nodes corresponding to rules (⊕ · +∞) and (+ · ⊕∞)
are universal, and nodes corresponding to (+ ·+∞) are existential; P(A,F, L, b)
attempts to prove all statements in its goal list L, while P+(A,F, L, b) succeeds if
at least one goal in L is satisfiable.

The Provability procedure P is an adaptation of the concrete subtyping
algorithm for recursive arrow and product types of [20](§10) to the present, more
complex context. It consists of a proof reconstruction procedure for B∞ using a
depth-first technique. P accumulates in its first argument A all the judgments it
encounters during the search, in order to avoid looping over the same judgments
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(a role similar to Γ in system B ). With respect to the algorithm in [20](§10)
we have two further parameters, F and b. The argument F accumulates the
judgments for which it has been found that no derivation exists. When a rule
(+ ·+) is encountered, the algorithm proceeds by calling the procedure P+ which,
in case a premise is unprovable, goes on checking the other premises. The negative
information inferred about unprovable judgments is stored in F and it is carried
along by the procedure P+ (as well as the positive information stored in A) in
order not to duplicate work. The argument b, that can be either ok or fail, is
used to record whether the last call was successful or not, and it is used by P+

to know whether it has to stop with success, or to check a new premise.
Let us note that, contrary to the previous treatment, while studying the

algorithm Decide 
, we abandon the equi-recursive view of recursion, and we
represent a contract by a particular explicit (possibly) recursive expression.

Proposition 6 (Complexity of Deciding Compliance/Subcontract).
Given two contracts ρ, σ ∈ rsC, deciding whether ρ




σ (or ρ 4s σ) holds has a
complexity O(n5), where n is the maximum size of ρ and σ.

Remark 4. It is worth noticing that the polynomial decision procedure Decide 


applies also to the formalism of retractable session contracts of [7] (in this case
clauses at lines -8- and -12- are never used) and to the formalism of sessions
contracts (some more clauses are never used).

6 Related Work and Conclusion

We have presented two conservative extensions of the session contracts of [2,3,10],
a formalism interpreting session types [22] into a subset of contracts [14,27,15].
One extension deals with backtracking and one with speculative execution. We
have shown that they both give rise to the same compliance relation, and, as a
consequence, to the same subcontract (both for servers and for clients) and duality
relations. For each of these relations we provided syntactic characterizations of
the semantic concepts, allowing for efficient ways of checking them.

We discussed in the Introduction the improvements w.r.t. the preliminary
results about retractable session contracts in [7]. Another closely related work
is [5,6], where a different form of contracts with rollback is presented. Our
retractable contracts depart from that model on three main aspects: (1) we use
rollback in a disciplined way to tolerate failures in the interaction (in [5,6] it is
an internal decision of a participant), thus improving compliance; (2) we embed
checkpoints in the structure of contracts, avoiding explicit checkpoints; (3) we
keep a stack of “pasts”, instead of just a single past as in [5,6].

Reversibility, generalizing backtracking by allowing one to go back to any
past state, has also been studied in the setting of binary session types [32,33].
There however the emphasis is on defining the reversible engine, based on causal-
consistent reversibility [26], and not on studying compliance or subtyping (which
would correspond to our subcontract relation).
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Similarly to our retractable contracts, long running transactions with com-
pensations, and in particular interacting transactions [18], allow one to undo past
agreements. In interacting transactions, however, abort (which corresponds to
our backtracking) can occur at any time, not only when an agreement cannot be
found as in our case. Also, each transaction offers just two possibilities, and they
are sorted: first the normal execution, then the compensation. Finally, compliance
of interacting transactions has never been studied.

In [4] a game-theoretical interpretation of the retractable session contracts of
[7] has been provided. Such an interpretation is likely to extend to the retractable
contracts presented here.

We plan also to investigate whether our approach can be extended to multi-
party sessions [23]. An investigation of multi-party sessions with rollbacks and
named checkpoints has been already undertaken in [19]. In such a paper, however,
the cause of a rollback is not a synchronization failure, but it is completely
transparent to the calculus. Moreover, chosen branches are not discarded and
can be retried upon rollback.

Because of the relevance of higher-order features in type systems, and of
session delegation in type systems with sessions in particular, also higher-order
session contracts, i.e. session contracts with delegation, have been investigated
[3,11]. It is hence worth studying the integration of backtracking (or speculative
execution) and session delegation.

A last line of future work is the study of how to extract retractable or
speculative contracts from actual software based on backtracking or on speculative
parallelism, and how to propagate the results on contracts to the original software.
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31. C. G. Quiñones et al. Mitosis compiler: An infrastructure for speculative threading
based on pre-computation slices. In PLDI, pages 269–279. ACM, 2005.

32. F. Tiezzi and N. Yoshida. Towards reversible sessions. In PLACES, volume 155 of
EPTCS, pages 17–24, 2014.

33. F. Tiezzi and N. Yoshida. Reversible session-based pi-calculus. J. Log. Algebr.
Meth. Program., 84(5):684–707, 2015.



19

34. L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla: Portfolio-based
algorithm selection for SAT. J. Artif. Intell. Res. (JAIR), 32:565–606, 2008.

35. L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In
CAV, volume 2404 of LNCS, pages 17–36. Springer, 2002.


