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Abstract. Recent advances in Information Technologies facilitate the increas-
ing capacity to collect and store data, being the Big Data term often mentioned.
In this context, many challenges need to be addressed, being Data Warehousing
one of them. In this sense, the main purpose of this work is to propose an archi-
tecture for Data Warehousing in Big Data, taking as input a data source stored
in a traditional Data Warehouse, which is transformed into a Data Warehouse in
Hive. Before proposing and implementing the architecture, a benchmark was
conducted to verify the processing times of Hive and Impala, understanding
how these technologies could be integrated in an architecture where Hive plays
the role of a Data Warehouse and Impala is the driving force for the analysis
and visualization of data. After the proposal of the architecture, it was imple-
mented using tools like the Hadoop ecosystem, Talend and Tableau, and vali-
dated using a data set with more than 100 million records, obtaining satisfactory
results in terms of processing times.
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1 Introduction

Nowadays, due to the high competitiveness that exists between organizations, they
need to invest more and more in technology. Usually, the cause of this need involves
the frequent change of the business trends as well as their customers’ habits [1]. Data
Warehouse and On-line Analytical Processing (OLAP) are technologies that have
been following this evolution to the present day [1], being a Data Warehouse a data-
base to support analytical processing and to assist in decision making process [2]. The
implementation of these systems usually occurs in relational databases that may not
be able to store and process large volumes of data [3].

With the recent technological advances, organizations are collecting more and
more data, with different types, formats and speeds. When used and analyzed in the
proper way these data have enormous potential, enabling organizations to completely
change their business systems for better results [4]. Transforming the potential of the
information, in this increasingly digital world, requires not only new data analysis
algorithms, but also a new generation of systems and distributed computing environ-
ments to deal with the sharp increase in the volume of data and its lack of structure
[5]. The challenge is to enhance the value of these data, as these are sometimes in



completely different formats [6]. Combining the large amounts of data with the need
to analyze them, there is a need to think the role of Data Warehousing in the context
of Big Data, being Big Data the ability to collect, store and process large volumes of
data [4]. Big Data refers mainly to the massive amounts of unstructured data produced
by high-performance applications [7], but also data that arrive in structured and semi-
structured formats [8]. The Big Data solutions are ideal for data analysis from a varie-
ty of sources [9], which characteristics (volume, velocity, variety) make Big Data a
major challenge for organizations that still use the traditional mechanisms for data
management.

Given this context, the question is where to store these massive amounts of data for
analytical purposes and the data models that must be used. Regarding storage, the
movement called NoSQL (Not Only SQL) promotes many innovative solutions for
the storage and processing of large volumes of data [10]. These databases, usually, do
not provide any guidelines on how to model and implement a Data Warehouse for Big
Data contexts. Regarding specific technologies, Hadoop Data File System (HDEFS)
and Hive [11] for storage and Impala [12] for processing are frequently mentioned.

So far, the development of Data Warehousing in Big Data was guided by use-case
driven approaches in which specific technologies and implementation contexts are
proposed and tested to solve some specific problems [13]. Although these relevant
works provide useful guidelines on how to proceed, they do not envisage the proposal
of a generic architecture that complement storage and processing technologies for the
efficient implementation of a Big Data Warehouse.

For achieving this aim, this work benchmarks Hive and Impala for data processing,
while Hive is used as the Big Data Warehouse repository [12], [14]. The knowledge
obtained from the performed benchmark is crucial for proposing an architecture for
the implementation of Big Data Warehouses, which was tested in a demonstration
case that stored and processed more that 100 million records.

This paper is organized as follows. Section 2 presents the related work. Section 3
summarizes the main findings in the benchmark performed to compare the perfor-
mance of Hive and Impala for data processing. Section 4 describes the proposed ar-
chitecture, while section 5 shows some results from its implementation. Section 6
concludes with some remarks and guidelines for future work.

2 Related Work

Being Big Data a recent research topic, there is no common approach on how to de-
sign and implement a Big Data Warehouse. Many authors discuss this need and pro-
pose works that are mainly guided by use-case driven approaches, where specific
solutions are recommended and tested, mainly giving non-structured guidelines on
how to design Big Data Warehouses and, mostly, revisiting traditional modeling tech-
niques. However, the traditional logical data models used in the implementation of
Data Warehouses do not fit into a featured environment of large amounts of data as in
Big Data and, so, repositories like NoSQL and Hadoop are the most recent bets in
data storage [2], providing infrastructures for implementing Data Warehouses and



multidimensional data structures in the form of OLAP data cubes [15]. In the work of
[4], the need for redesigning traditional Data Warehouses, in order to address new
challenges like data types, data volume, user requirements and performance is fo-
cused. Moreover, this author mentions that Big Data Warehouses need to include data
from several sources and must be implemented making use of multiple technologies
like relational database management systems, Hadoop, NoSQL databases, reporting
and visualization, among others.

From the technological point of view, many technologies have been proposed,
mainly in what concerns storage, being NoSQL databases the most noticeable exam-
ple, with more than 225 NoSQL databases already proposed, as reported in
http://nosql-database.org. From the data modeling point of view, very specific ap-
proaches have been followed, mainly driven by very specific data requirements sce-
narios. In NoSQL databases, as logical data models are schema-free, meaning that
different rows in a table may have different data columns (less rigid structures) or that
the defined schema may change on runtime, the definition of data schemas follows a
different approach [16]. Instead of reflecting the relevant entities in a particular do-
main and the relationships between those entities, data schemas are defined consider-
ing the queries that need to be answered, being data replicated as many times as need-
ed [17], given the importance of query performance when huge volumes of data are
being processed [18].

The transformation of traditional data models into data models for NoSQL data-
bases mainly follows two types of repositories, based on columns and on documents.
The authors in [2,3] propose an approach for mapping a conceptual model of a tradi-
tional data environment into a logical data model in HBase and MongoDB for data
storage in a distributed environment [19]. In these works, the authors use columns and
documents oriented databases as data storage areas without the integration of Hive. In
this sense, and as the Hive is considered the Data Warehouse in the context of Big
Data, because of its analytical operators, the databases used by those authors do not
make available different analytical perspectives on the data.

In another work, [18], the authors recognize that the design of big data warehouses
is very different from traditional data warehouses, as their schema should be based on
novel logical models allowing more flexibility than the relational model does. The
authors propose a design methodology for the representation of a multidimensional
schema at the logical level based on the key-value model. In this approach, a data-
driven approach design, using data repositories as main source of information, and a
requirements-driven approach design, using information of the decision makers, are
integrated.

Given this overall context, this work proposes an architecture that uses the Hadoop
Data File Systems (HDFS) as staging area and Hive as a Data Warehouse. For defin-
ing the Data Warehouse logical model, a set transformation rules are used [13], deriv-
ing a tabular data model for Hive, taking into consideration a multidimensional data
model with the data requirements for a specific data analytics scenario. These rules
[13] provide as output a set of tables with different analytical perspectives on data,
imitating the on-line analytical processing cubes normally used in traditional Business
Intelligence environments.



In order to improve the performance of the proposed architecture, both in the
ETL/ELT and in the analysis and visualization of data, a benchmark was performed to
verify how Hive and Impala perform. Impala is tested to verify how it performs when
analyzing data that is stored in Hive. According to [20], Impala is faster in querying
the data when compared to Hive, as it uses a query engine that does not need MapRe-
duce [20,21] and, as Hive uses MapReduce jobs, its performance is slower than the
performance of Impala [21].

However, in some of these scenarios, where Impala and Hive are compared, the
performance of Impala was not analyzed with the data stored in Hive, like this work
proposes, where Impala is only acting as a querying mechanism, and not as a data
storage repository with tables that enhance data analytics over different perspectives.
In this work, the performed benchmark does not use a simple table with columns in
the Hive, but organizes the data also using partitions and buckets, stored in the par-
quet format and using the snappy compression. In this sense, besides verifying the
performance of Hive and Impala, another objective was to verify if Impala is able to
use the same data types as Hive, if interprets the partitions and buckets correctly and,
also, if uses the compression formats. Summarizing, the objective of the benchmark
was not only to verify performance, but also the combination of these two technolo-
gies, as they can be used as complementary technologies instead of competitors in
querying data.

3 Benchmarking Hive and Impala

The study of technologies that can be integrated with Hive, allowing better querying
performance, is important in this work, and Impala emerged in this direction. Accord-
ing to [21], Impala emerged as an addition for querying Hive tables, which can be
faster than the Hive mechanism itself. Also, the authors mention that Hive is more
suitable for storing and processing large amounts of data in batch and Impala for pro-
cessing in real time. In this work, Hive remains as a data storage mechanism in the
form of Data Warehousing and uses its querying component for the creation, aggrega-
tion and transformation of data for the Hive tables itself, being more convenient for
ELT processes than Impala [20]. Once the tables are created and the data is stored,
Impala is used as a query engine to analyze the information in several dashboards.

The integration between Hive and Impala can be achieved through the use of the
metastore, where all metadata associated to the Hive tables is stored [22]. Given this
context, Fig. 1 shows how these two technologies can be integrated, having as im-
plementation environment the Hadoop ecosystem. Considering the benchmarks al-
ready mentioned, an appropriate solution suggests the integration these two technolo-
gies, taking advantage of their characteristics, compatibility and performance.
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Fig. 1. Integration between Hive and Impala (Source: Adapted from [22])
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In order to achieve better performance when processing Hive tables, those must be
stored in the parquet format [20]. This is a columnar format that best suits querying
either in Hive and Impala, taking into consideration CPU and memory consumption
[20]. Moreover, the snappy compression method can be used for reducing the size of
the data by half or more, relieving the IO pressure [20].

For understanding the contexts in which Impala querying processing is better than
Hive querying processing, for data stored in Hive, a set of queries were defined and
executed. The dataset used in this benchmark includes more than 100 million records
associated with flights in the USA [23]. The used technological infrastructure in-
cludes a virtual machine Intel Core 15-2430 CPU 240 GHz with the Centos 6.4 operat-
ing system, 6 GB of RAM and 100 GB SSD. This machine has Hadoop based on a
single node cluster.

Table 1 shows the five queries that were defined to test the performance of Impala
and Hive. Those are single queries over a table, including some aggregation functions
and selection or grouping conditions. The dataset used in this benchmark is better
explained in section 4.2.



Table 1. Defined queries for the benchmark

SELECT Carrier name, SUM (Total delay) as Total delays
FROM Delays
Query 1
WHERE Year = '2008'
GROUP BY Carrier name;
SELECT Carrier name, Year, SUM (Accomplished flight) as Number of
flights
Query 2 | FROM Delays
GROUP BY Carrier name, Year
ORDER BY Carrier name, Year;
SELECT Time interval, AVG (Delay in departure) as Minutes delay
departures
Query 3 | FROM Delays
WHERE Year = '2007'
GROUP BY Time interval;
SELECT State to, Month, COUNT (Accomplished flight) as Number of
flights
Query 4 | FROM Delays
WHERE Year = '2008'
GROUP BY State from, State to, Month;
SELECT DISTINCT Carrier name
Query 5
FROM Delays;

The obtained results, in terms of processing times, for the five queries presented in
Table 1, are shown in Fig. 2. As can be seen, Impala had better results when com-
pared with Hive in querying the data. The difference was more than 30 seconds in
each query, which represents a significant improvement. For setting the needed pro-
cessing time, each query was run three times, and the average of these three results
was taken as the time that is shown in Fig. 2.
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Fig. 2. Benchmark of Hive and Impala (time in seconds)

4 An Architecture for Big Data Warehousing

4.1 Overall Overview

The proposed architecture makes use of multiple technologies such as HDFS for stor-
ing facts and dimension tables in different files (staging area); Hive to act as a Data
Warehouse, containing the final data set for the data analytics and visualization tasks;
Impala for querying the Hive tables (giving the results of the performed benchmark);
Talend Open Studio for Big Data, which is responsible for all data flows and
ETL/ELT (Extract, Transform, Load)/(Extract, Load, Transform) processes; and,
finally, Tableau (www.tableau.com) as the tool for the implementation of analytical
dashboards.

As can be seen in Fig. 3, this architecture considers that an organization can have a
traditional Data Warehousing environment that needs to be migrated to a Big Data
environment, or that this Data Warehouse does not exist. In this case, the operational
data sources can be used to feed the Big Data Stating Area, which will support the
loading of the Big Data Warehouse.

In this work, we are considering that a traditional Data Warehouse exist, showing
how organizations can move to a Big Data context using the organizational
knowledge and the corresponding logical data models that guided the concretization
of an analytical environment. Although this is not mandatory, this approach helps in
setting the logical data model for the Big Data Warehouse, as all the data require-
ments are available in the multidimensional data model of the traditional Data Ware-
house.
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Fig. 3. An Architecture for Data Warehousing in Big Data

The analysis of Fig. 3 shows the several considered components, already men-
tioned, and the data flows among them. The 1* data flow consists in the ETL of oper-
ational data sources (that can be in different formats) to the traditional Data Ware-
house, considering the defined logical data model (with the dimension and fact ta-
bles). The 2"* data flow includes the ELT of dimension and facts tables, stored in the
traditional Data Warehouse, to HDFS (where each table is stored in a different file).

In case the traditional Data Warehouse does not exist, the operational data sources
can follow the same path, being stored in HDFS in different files. HDFS is used as a
staging area in the implementation of the Big Data Warehouse in Hive. The 3" data
flow is needed for feeding the Hive tables in an ELT process that stores each file pre-
sent in HDFS in a Hive table. In the scenario recommended in this work, each file
corresponds to a dimension or fact table. Once in Hive, these tables are used to per-
form a set of transformations that leads to new tables, optimized for query processing,
as they integrate dimension and fact tables in a way that imitate an analytical cube for
analysis and visualization tasks in decision making contexts. These transformations
are better explained in the following subsection.

The 4™ data flow is the querying engine that uses Impala for querying the Hive ta-
bles, feeding the analytical dashboards used in data analysis and visualization tasks.
In technological terms, Tableau is connected to Impala, which interacts with the Hive
metastore, querying the data available in the Big Data Warehouse.

4.2  Logical Data Model for a Big Data Warehouse

In Big Data Contexts, logical data models are usually defined attending to the queries
that need to be answered. In this work, we use the proposal of [13] for setting the
logical data model of a Big Data Warehouse, as the authors propose a set of rules that
automatically transform a multidimensional data model in a tabular model suited to be
implemented in Hive. This approach has as advantage the use of the data and analyti-



cal requirements identified in the multidimensional data model, guiding the process of
implementation of a Big Data Warehouse.

The approach proposed by [13] allows the identification of a complete set of tables
that imitate the way how analytical data cubes perform in traditional Business Intelli-
gence contexts. The approach combines different dimension and fact tables, integrat-
ing them in Hive tables, providing the different analytical perspectives.

As it is not possible (also, it is not the objective) in this paper to explain all these
rules in detail, and show all the transformations, this work uses two of the obtained
Hive tables for demonstration purposes. The transformation process was started tak-
ing into consideration a multidimensional model that includes 7 dimension tables
(Calendar, Time, Airport, Flight, Carrier, Airplane, Cancellation) and two fact tables
(Flights, Delays), for storing and analyzing data about commercial flights in the USA.
Following the rules in [13], a set of 127 different Hive tables can be identified, being
able to answer all possible questions for this dataset. These tables include different
data granularities, meaning different levels of detail, being possible to choose the
appropriate ones for specific analytical contexts or choose some of the more detailed
ones and use them to obtain more aggregated data. This is possible when analytical
tools like Tableau are used for analyzing the more detailed Hive tables, as the defined
aggregation functions will allow data summarization.

Without giving too much detail, Fig. 4 briefly shows how the combination of di-
mension and fact tables can be achieved in the transformation process to derive the
Hive tables. As can be understood, different combinations would lead to different
Hive tables, either in terms of the available attributes for data analysis, either in the

level of detail of each table.
-

Airplane ] [ Flight ] [ Airport ] [ Calendar

I Time ] [ Carrier

|
l J1 J1

T

Attribute 1

Cancellation Reason ]

| {
J1

Hive Table (derived from Delays)

Attribute 2 | Attribute 3 | Attribute 4 | Attribute 5 Attribute n

Fig. 4. Transformation process for driving the Hive tables

From this set of tables, Fig. 5 and Fig. 6 show how the two that were selected are
constituted, in terms of columns. The columns can be descriptive (those that are inher-
ited from dimension tables) and analytical (those that are inherited from fact tables).
Due to the extensive number of business indicators available in the multidimensional
data model used as source of the data and analytical requirements, both figures pre-
sent only a subset of the available metrics.

The aggDelays table characterizes the delays of the several flights, considering the
several locations in terms of airports of departure and arrival, the carrier, the calendar



dimension, and the time of the day in which the flight took place. As business indica-
tors, the total delay in minutes, the delay considering several reasons (security, com-
pany, weather, ...) and the number of delayed flights, among other metrics, are con-
sidered. The time component is divided in time intervals ([00:00 - 01:00[, [01:00 -
02:00[, and so on).

As can be seen in Fig. 5, the analytical columns derived from the fact table include,
for each attribute, an aggregation function that can allow the summarization of the
dataset (this will depend on the level of detail of each descriptive column regarding
the analytical columns).

(=] aggDelays
Airport Carrier Calendar Time Delays
Flight from Day AVG(Total delay)
Flight to Day of week - - AVG(Delay security)
Carrier name Time interval

[ ve NGOty company
CoUNTOety counten
- ]

Fig. 5. aggDelays Hive table of the Big Data Warehouse

The aggFlights table (Fig. 6) includes the information about all the flights, but here
aggregated attending to the airports (origin and destination), the carrier, the airplane
and the cancellation type (in case of flight cancellation). As business indicators the
duration of the flights, the traveled distance, the number of flights, among others at-
tributes, can be analyzed.

[=I aggFlights

Airport Carrier Airplane Cancellation Flights

Flight from AVG(Duration)

Flight to AVG(Traveled distance)

Carrier name Cancellation type

Model COUNT(Cancelled flight)
COUNT(Diverted flight)
COUNT(Flight counter)
N

Fig. 6. aggFlights Hive table of the Big Data Warehouse

The number of records in each table depends on the level of aggregation consid-
ered in the transformation process, which varies attending to the dimensions that are
combined for a specific fact table. More or less detailed tables can be obtained. In the
examples here considered, the first table (aggDelays) has 123 534 969 records, con-



taining all the available data as no summarization was here possible, while the second
table (aggFlights) has 3 774 583 records, accomplishing a significant summarization
of the available data.

5 Demonstration Case

In the implementation of the proposed architecture, the technologies previously
shown in Fig. 3 were used. In the demonstration case, a traditional Data Warehouse
containing more than 100 million records was used as the data source, related to data
about flights in the USA [23]. According to the architecture, the available data was
extracted from the traditional Data Warehouse and stored in HDFS, creating one file
per table. After this process, the data were transferred to Hive, where the logical data
model was identified and implemented, attending to the transformation rules specified
in [13]. Once the Big Data Warehouse was loaded, Impala was used as the query en-
gine, allowing data analytics over the available data.

Tableau was used as the front-end tool, where specific dashboards were imple-
mented. As an example of the analytical tools that can be provided to the users, Fig. 7
shows a dual-axis plot with the number of flights per time interval (blue bars) and the
average delay per flight in minutes (red line). In this plot, it is possible to see the
hours in which more flights were verified. Also, it calls our attention that it is at the
end of the day, late afternoon, that the highest average delay value is verified, around
30 minutes, in the time interval [19:00 - 20:00].
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Fig. 7. Number of flights and average delay per flight

Another example of the analytical capabilities that can be provided to the users is
shown in the map of Fig. 8, where a color scale highlights the states with higher inci-
dence of flights, with Texas (TX) and California (CA) each having more than 11% of
the total number of flights.



Fig. 8. Percentage of the number of flights per state

To verify if, using Tableau as front-end, the processing times are adequate for de-
cision support tasks, the time needed for processing several queries that integrate the
implemented dashboards, already presented in Table 1, was analyzed. Once again,
and although the architecture proposes Impala as the query engine, the processing
times needed by Hive and by Impala were compared. The results are shown in Fig. 9.
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Fig. 9. Benchmark of Hive and Impala through Tableau (time in seconds)

As can see in Fig. 9, Impala maintains the good performance shown before, for
processing the queries without Tableau as front-end, while Hive clearly decreases its



performance, obtaining processing times higher than 120 seconds, a scenario that is
not satisfactory in an iterative analytical context.

6 Conclusions

This paper presented an architecture for implementing Big Data Warehouses, which
uses HDFS as the staging area, Hive as the Data Warehouse, Impala as the query
engine and Tableau as the front-end analytical tool. For all extraction, loading and
transformation activities, Talend Open Studio for Big data was used. Using as data
source a traditional Data Warehouse, the concretization of a demonstration case al-
lowed the integration of all the proposed components and technologies, providing an
analytical environment where Impala ensures satisfactory processing times.

In this architecture, and for the specification of the data requirements, particular at-
tention was given to the Hive data model, which was derived considering a multidi-
mensional data model of a traditional Data Warehouse.

As future work, the architecture will be extended for considering real-time pro-
cessing needs, both in feeding the Big Data Warehouse and in the interactive analysis
and visualization of the data.
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