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Abstract. When dealing with events in moving vehicles, which can occur over 

widespread areas, it is difficult to identify sources that do not derive from 

material fatigue, but from situations that occur in specific spots. Considering a 

railway system, problems could occur in trains, not because of train’s 

equipment failure, but because the train is crossing a specific location. This 

paper presents a new smart system being developed that is able to generate geo-

located sensor-data; transmit it for smart processing and fusing to the inference 

engine being built to correlate the data, and drill-down the information. Using a 

statistical approach within the inference engine, it is possible to combine results 

collected over long periods of time in a “heat-map” of frequent fault areas, 

mapping faulty events to detect hazardous locations using georeferenced sensor 

data, collected from several trains that will be integrated in these maps to infer 

high probability risk areas.  

Keywords: Data-fusing, Smart System, Industry 4.0, IoT, Event Geographic 

position, Data Correlation, Forecast. 

1   Introduction 

The association of faults to geographic locations can be used to alert and provide 

support to incident intervention crews to deal with current issues and, especially to 

prevent forecast events in a specific location in a nation-wide (or trans-national) 

railway network.  

Deciding on whether a location is faulty or not depends on the quotient between 

the number of trains that crossed the railway and how much breakdowns occurred 

around that location. A statistical approach is used where data is be auto correlated 

based on past events. To get the information needed to feed the system’s databases it 

uses a sensor fusing system, where it combines and study the data collected from the 

trains that populate the railway network. 

This system will be integrated in a multi-agent architecture [1] used in a distributed 

surveillance system (DVA1), where events, sensors and human resources are 

georeferenced. New features will be added to the system such as reasoning in terms of 

                                                           
1 Advanced Surveillance System, for more information see: dva.holos.pt 
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what should be considered a correlated event (geographically speaking) and forecast 

of events using the knowledge acquired from previous events and data.  

This paper starts by presenting a state of the art in data fusion architectures, 

Geolocation sensing, data correlation, event forecasting and finally presenting the 

foreseen method to integrate this system in the DVA for providing data correlation 

and forecasting functionalities.  

2   Contribution to Smart Systems 

The work described in this paper will encompass the collection of real-time raw data 

from sensors, which are then sent to a central processing unit that will perform 

reasoning and prediction based on the knowledge acquired data along a large period 

of time. In this paper a third-generation smart system [2], is presented, that performs 

human-like perception and acts autonomously, i.e without any human decision. 

Moreover, it is equipped with the capability to predict and adapt according to this 

readings.  

In practice, one could argue that the current system encompasses all the 

components that are the base for the concept of “Industry 4.0”, although applied to 

mobility: the cyber-physical systems that is achieved by the monitoring of the trains 

and the availability of the data through Internet protocols; the “IoTization” of trains 

allowing them to be remotely sensed and monitored, and finally the application of 

Cloud Computing and Big Data technologies and methodologies to both gather and 

process the high volumes of information that each train produces every second. 

3   State of the Art 

3.1   Data Fusion Architectures 

Nowadays sensor nodes integrate multiple capabilities that include sensing, global 

positioning system (GPS), computing and communication. Fusing multiple simple 

sensor nodes, one can deliver scalable, reliable and more complex sensor based 

systems. 

Multiple Architectures have been proposed for sensor fusing. First example is the 

one proposed in Fig 1 (a) where static sensors nodes are wired to a central gateway 

that handles all the requests and processing. An implementation of this type is [3] 

where all the equipment in an office (printers, thermometers, ventilation, etc..) are 

connected to a central gateway. All the clients that require information connect to the 

gateway that proceeds to service the requests. Fig 1 (b) is used when the data 

collected volume is large and therefore needs some local processing before sending 

the compressed/processed version to the server. Finally, when different layers of 

processing are responsible for different aspects of data manipulation there is a 

hierarchical processing as presented in Fig 1 (c), in which the collected data passes 
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through several layers of data processing and manipulation before reaching the central 

server. 

 

Fig. 1. Typical Sensor Fusing Architectures. [4]. 

Recently there has been a more hybrid approach where mobile agents are used in 

combination with static nodes [5]. An example of this is the Interoperable-agent-mode 

for sensor network [4] that is FIPA standards compliant[6], [7], which considers static 

wireless nodes distributed in an area and a mobile agent that goes physically to the 

sensor nodes to collect the data. The mobile agent is responsible for making his own 

itinerary around the sensor nodes and when the battery runs low he returns to the 

central station.  

As another example, the DVA surveillance system [8] is a human-machine 

collaborative distributed system where static nodes are in place and in case of alert the 

mobile agents (be it policeman, security, firefighter or civil protection) are called in to 

deal with the occurrence.  

3.2   Geolocation Relation 

The next question that arises is how one should relate events, since the goal is to 

associate locations to breakdowns. It makes sense to define a radius around said 

events so that it is possible to search for previous nearby occurrences (since location 

is not 100% accurate). Speed (Velocity) of the train is an important aspect to consider 

in defining said radius since the faster the train goes the more difficult it is to track 

down the exact location of the breakdown, therefore, the radius should be wider.  

Several approaches have been developed in terms of geolocation radius but in 

different contexts such as [9] where automatic safety envelopes (that can be both 

dynamic or static) are defined around different construction equipment based on their 

width, length and velocity, the goal here is to alert the workers that can, without their 

knowledge, be putting their safety in jeopardy by going too near dangerous 

equipment. These envelopes radius are created according to the equation (1). 

 where     (1) 

Where L,W,v are the length, width and velocity (both in X and Y axis) respectively 

of the moving equipment.. The r represents the Safe distance of the equipment (which 

means the distance it will go before completely stopping), t represents the time it will 

take to break. 
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3.3   Event Processing 

To make the system reliable and robust it is very important not to have false positives 

that can mislead the analysis. Therefore, there is a need to implement a layer between 

the sensors and the interface, so that it can analyze the raw sensor data and do the 

reasoning so to differentiate between false alarms and real events. Model-Based 

approaches have been proposed in [10] applied to supply chains where the authors 

propose a set of resources, orders, specifications and a set of milestones throughout 

the supply chain. The milestones are then monitored and agents actively look for 

deviations of the expected models. Fuzzy logic has also been widely used in the 

literature to solve these kinds of problems.  

In [11] the authors define multiple arrays of input variables (Vi), their domains 

(DDV), and their constraints (Φ) the values that the system receives from each 

individual set of input variables are classified in terms of “normality” (Ncn) which is 

a scalar between [0,1] being 1 the most normal situation and the 0 the most abnormal. 

Several solutions have been proposed to make decisions towards this “normality 

factor”. One simple solution as presented in [11] is finding the minimum value of 

normality (Ncn) and consider only this value to classify the situation, however, this is 

limiting because it is only considered one set of input variables while the others are 

discarded, which means that there is the possibility that values with information 

important for the classification are being ignored. Choquet Integral, as defined in [11] 

proposed, to define specific weights (μ(Ai)) to normality concepts and correlate them. 

Equation (2) it is shows how Choquet Integral correlates the normality factors. 

      
(2) 

This means that once the normality concepts are defined (Nc1, Nc2…Ncn), it is 

needed to relate them by defining weights. The conclusions are made based on the 

final value of the equation. The OWA aggregation operators presented in [12], use the 

normality factors times a weight this makes a junction between different criteria 

(normality factors) using weights. In (3) is presented how the OWA aggregators are 

calculated. 

      
(3) 

Where (a1,a2,…,an) represents the values that are collected to make the decision, 

wj represents the weights and bj is the ordered set of (a1,a2,..an). 

3.4   Event Prediction (Forecasting) 

In [12] it is presented a way to predict events in real time streams of data. The authors 

look for event signatures (what happened before the event) and make sequences of 

readings that lead to the event. The readings are then compared with the sequences in 

the database that are known to cause breakdown events. Since there can be a lot of 

events signatures in the database it is not feasible to compare every sensor reading 

with the values in the database, the authors, propose to look for triggers. These 

triggers are then used in forward rules which means, for example, that If Trigger 1 
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and Trigger 2 are found THEN event C will happen. In the paper it is also proposed to 

once a new signature is found to generate readings (real or unreal) that lead to this 

event. The idea is to have a model of the event. 

4   Architecture 

The DVA system as explained in [13] is “is a Geo-referenced multi-agent surveillance 

system, composed by several agents: Sensor agent – provides sensor information; 

Processor agent – transforms sensor information into parameters; Inference agent – 

uses parameters in rules for event detection; Action agent – executes predefined 

actions for each event; Backup agent - stores all the system information; Interface 

agent – shows (in maps) the values of the sensors, events, actions and system status; 

Mobile agent – Associated with a human, equipped with a mobile device who is 

responsible to perform events’ actions, such as confirming the event or handling the 

event; Monitor agent – monitors all system’s agents, ensuring correct system 

performance.” In this paper, two new agents to be added to this architecture are 

presented: “correlate agent” (that makes links between events) and the “forecast 

agent” (that looks for current sensor readings and predicts problems that might arise 

in the near future).  

4.1 Proposed Architecture  

The Fig 2 represents the proposed changes (in red) to the DVA architecture. The 

“Correlate” Agent will be activated every time a new event is detected. It will look for 

previously events nearby (stored in the Backup Agent) and if it detects a similar event 

in the area, it will create a new type of event (Correlated Event) that will be shown on 

the interface. The Forecast Agent is receiving the data from the processor and 

previously readings stored in the Backup Agent to make predictions about potential 

problems.   

 

Fig. 2. Architecture Proposed. 
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It will also generate a new event type (Forecasted Event) in the system so it can 

make decisions to prevent damage. 

4.2  Proposed Changes to the Architecture 

Correlated Event: The correlated event, links separate events to geographical areas. 

It is described by: location of the center of the event (since the goal is to map these 

events, it is need a geographical center given by the center of mass of the composing 

events), a geographical radius (distance between the center of mass and the further 

away event), a time of occurrence (when it was detected), number of occurrences 

(how many events it is linking) and a vector with the events correlated.  

To link the geographical events an adaptation is made from the equation (1) 

considering that the width as well as the breaking time (time to full stop) of the train 

are irrelevant since the events will be detected while the train is still moving.  

  where     
(4) 

Where L represents the length of the train, and the v (composed by its X and Y 

component) represents the velocity of the train at the time of the fault detection. Delta 

( ) is a parameter, between 0 and 1 that allows the adjustment of the radius according 

to what is verified in practice. For the time being it is considered to be 0.25s which at 

a standard train speed of 100km/h will produce a length of roughly 110m which is 

half the usual length of a train. Events are therefore correlated if the circumferences 

centered at the location of each event with their respective radius (R) intersect within 

a timeframe (the timeframe being a parameter that will be adjusted as more and more 

information is collected). 

Forecasted Event: The Forecast Agent is actively looking for readings that can 

lead to breakdown, for example, if the value of a variable has been steadily rising to a 

point that if its growing rate continues soon it will become a problem, the agent, 

generates an Forecasted event with a description of the of the predicted event as well 

as the readings relevant and finally the measures that train should do to avoid 

damage. These are the “triggers” that were previously presented in section 3.4. 

Correlation Agent: In the next figure it is shown the correlation agent’s flow chart 

(Fig. 3.) where it is explained in more detail its operation. The agent is activated once 

a new fault event is detected. It’s assumed that it is not dealing with false positives 

since it is already filtered using the techniques described in section 3.3. Afterwards 

it’s defined a geolocation radius around the event as presented in section 4.2. Once 

the area is defined the agent looks in the event database for previous occurrences in 

the vicinities. Subsequently two things can happen: either it finds no other events in 

the area therefore the agent shuts down until another fault event occurs or it finds 

other events (at least 2) and generates a new Correlation Event. If the new Correlation 

is defined it is then sent to the Interface Agent that flags this area in a form of heat 

map that has the warm colors to show the areas of found malfunctioning. 
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Fig. 3. Flow Chart Correlation Agent. 

Forecast Agent: The Forecast Agent looks for patterns in the readings before 

breakdown events (called event signatures), in brief, every time a fault is detected it 

will make a history of readings just before the event. These readings will then be used 

as comparison for the active trains and if a pattern that previously led to breakdown is 

a found in an active train this agent will generate Forecasted Events. 

There are critical points in the railway grid where power sub-stations are changed, 

these points usually are associated with high voltage differences (more than 5kV). 

These variations tend to cause peeks of currents/voltage in the trains’ electrical 

systems, this can eventually become a source of malfunctioning or breakdown.  

The forecasting needs to be done on multiple active trains in the grid, this means 

that it needs threads to take care of these multiple tasks. Due to the high volume of 

data that it is collected and sent (at a rate of 3000bps), the Apache Hadoop’s Map-

Reduce Paradigm (from big data analysis) is used. This gives the ability to separate 

trains into different parallel tasks. The Hadoop then processes all the information sent 

by the trains and looks for patters that can be known to be troublesome.  The results 

are shown in the interface with a delay associated with the receiving the information, 

the processing and the actual writing in the interface, however, this delay is not 

critical since the goal of this system its not to control the train in real time, but to give 

insight to the maintenance crews of potential problems within the electrical grid 

and/or with the trains. Every time there is a forecasted event of breakdown this agent 

produces a report of how many critical points did the train endure before. The idea is 

to give an average of the number of how many critical points the trains can endure 

before needing a maintenance team to check its electrical protections. More detailed 

information about Apache Hadoop can be found in [14]. To extract knowledge the 

data mining techniques presented in section 3.4 are used. 

5   Conclusion 

DVA is a developed and tested system that protects both people and goods from all 

sorts of dangers (both natural and human caused) using statically nodes spread out 

across vast areas. In the presented approach, some of its behavior had to be adapted 

because we are now considering moving trains, which makes the sensors’ positions 

change over time. So, no static location relations to identify events are now available. 

And this was a cornerstone for the inference engine of DVA. 

In this new adaptation, the DVA architecture had to be adjusted so that it could 

correspond to the specific needs of the current problem, one of these was to link 
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multiple events to specific geographical areas. The other big need was to embed the 

DVA with the capability of predicting, this brings an advantage since the protection 

of the trains starts even before the incidents occur giving more time to warn the right 

mobile agents (Maintenance crews) and the right measures. The correlation brings an 

advantage in detection of specific dangerous locations, for example, areas that are 

problematic (i.e. areas where often events are triggered) that require more attention 

from the involved agents and be more often checked. The correlation also has an 

impact in how the maintenance crews are spread across their working, for example, 

after a careful study of the common problem areas of the agents (maintenance crews) 

should be closer to where the problems usually appear. This architecture is currently 

under implementation and results are expected to be presented soon. 
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