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Abstract. Various algorithmic differentiation tools have been developed
and applied to large-scale simulation software for physical phenomena.
Until now, two strictly disconnected approaches have been used to im-
plement algorithmic differentiation (AD), namely, source transformation
and operator overloading. This separation was motivated by different
features of the programming languages such as Fortran and C++. In
this work we have for the first time combined the two approaches to
implement AD for C++ codes. Source transformation is used for core
routines that are repetitive, where the transformed source can be op-
timized much better by modern compilers, and operator overloading is
used to interconnect at the upper level, where source transformation is
not possible because of complex language constructs of C++. We have
also devised a method to apply the mixed approach in the same appli-
cation semi-automatically. We demonstrate the benefit of this approach
using some real-world applications.

Keywords: algorithmic differentiation, adjoint computation

1 Introduction

Solution techniques for optimal control and optimal design problems rely on
the correct and efficient computation of the adjoint state. Various analytical and
numerical techniques have been devised to compute these derivatives in the past.
One of the emerging techniques for the computation of derivatives on modern
computers is algorithmic differentiation (AD) [?]. Despite differentiation being a
badly conditioned operation in general, research has shown [?] that the process
of algorithmic differentiation is well behaved and the derivatives obtained are
accurate to within round-off errors. This situation is in contrast to numerical
derivatives computed by using finite-differencing techniques, where the difference
step size is of critical importance.

Algorithmic differentiation assumes that functions are evaluated by using a
finitely terminating evaluation procedure consisting of simple arithmetic opera-
tions {+,−, /, ∗} and elementary function evaluations {

√
, sin, cos, exp, log, . . .}.

Since the analytical derivatives of such arithmetic operations and elementary
functions are well known, these can be introduced in the evaluation procedure
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almost mechanically, and the chain rule of differentiation can be applied to prop-
agate the derivatives from one variable to another in the evaluation. In [?] various
modes of propagation of derivatives as well as methods to implement tools are
discussed in great detail. Here we present two techniques of AD, namely, source
transformation and operator overloading.

Source transformation: Source transformation AD tools generate a new source
code that computes the derivatives of an input source code. The output code
must be compiled and executed in order to compute the derivatives. Tools such as
ADIFOR [?], Tapenade [?], and OpenAD [?] can be used to generate derivative
code for functions written in Fortran. Tapenade and ADIC [?] are examples of
source transformation AD tools for C. In this work, we use ADIC to differentiate
input source code portions written in C. In the output code, active variables are
declared as objects of DERIV TYPE, and runtime functions are used to propagate
derivatives between them. When the output code is compiled with an appropri-
ate driver and runtime library provided by ADIC, the Jacobian matrix can be
computed.

Because such tools perform source code analysis, they can identify algorith-
mically active and passive variables and portions of the code. Furthermore, com-
pilers can optimize the output code, resulting in high performance. However, no
tool can generate derivative code for complete C++ input. C++ contains fea-
tures such as polymorphism, inheritance, and templates that cannot be resolved
statically, precluding the generation of correct derivative code.

Operator overloading: In an object-oriented language such as C++ the concept
of operator overloading is well known. Several tools have been developed in recent
years for AD using C++ operator overloading. ADOL-C [?] is a well-known open
source AD tool with many features and high flexibility and has been successfully
used to compute derivatives in a large number of simulation codes. The most
important manual change required for using ADOL-C in any simulation is to
convert the datatype of the real values to the special datatype adouble defined
in the ADOL-C library. All operations executed after a call to trace_on() and
before a call to trace_off() are recorded in an internal representation called the
trace. Before the actual computation takes place, the independent variables are
marked by assigning them values using the special <<= operator. Similarly the
final dependent variables are marked by extracting their values using the special
>>= operator. The trace can then be used in any mode of AD (i.e., forward
or reverse) in order to compute first or higher derivatives. Several easy-to-use
drivers for computing the derivative information from the trace are available.
The most-used drivers are gradient(), jacobian(), and hessian(). For further
usage details see [?].

The creation of the trace is the most crucial part of the whole program; and
depending on the complexity of the functions being traced, the trace can become
large and thus has the most impact on the memory consumption of the program.
Where the trace does not fit into a prescribed amount of memory (RAM), it spills
over automatically to the disk as trace files, thereby reducing the performance of



A mixed approach to adjoints with AD 333

the implementation severely. Past attempts at reducing the memory requirement
for certain applications include using checkpointing strategies [?,?]. For a number
of problems, however, checkpointing is not applicable.

We propose a mixed approach that uses both operator overloading and source
transformation to differentiate an input code that is largely written in C++ but
whose computationally intensive portions are written in a C-like manner. Our
approach employs operator overloading for most of the application and source
transformation for the C-like portions. Because the computationally intensive
portions contribute most to the trace, using source transformation instead for
these portions leads to a smaller trace and better performance. We have made
changes to both ADIC and ADOL-C and written a preprocessor that enables
the approach to be semi-automated. The rest of the paper is organized as fol-
lows. Section 2 presents the details of the mixed approach. Section 3 presents
experimental results on two applications and, Section 4 discusses future work.

2 Mixed approach

The process of converting an ADOL-C instrumented application to use ADIC in
certain parts is the following: (1) The user identifies a computationally intensive
and C-like function from the input based on performance analysis or experience.
(2) This function must be treated as an externally differentiated function (EDF)
by ADOL-C. For this purpose, annotations are added to the input to support
extraction of the EDF and its callees for differentiation by ADIC. Additional
annotations are used to generate wrappers functions and files to copy data be-
tween ADOL-C data structures and the EDF. (3) ADIC is used to differentiate
the EDF and provide forward- and reverse-mode differentiated code for it. (4)
The EDF input, output, wrapper files, and original ADOL-C code are then built
together. The rest of this section elaborates on the concepts of the EDF and the
changes we made to ADOL-C and ADIC to support the mixed approach.

Externally differentiated functions in ADOL-C: The individual arithmetic op-
erations and mathematical function evaluations of an EDF are not recorded
on the ADOL-C trace. Instead the actual implementation of the differentiated
EDF is provided via user defined function pointers that implement a certain
predefined signature. As one can see in Fig. 1 the EDF replaces a large part of
the trace by repeated calls to itself, which reduces the size of the trace. When
ADOL-C processes the trace and arrives at a call to the EDF, ADOL-C calls the
corresponding user-provided forward mode- or reverse mode- derivative code to
obtain the derivatives.

ADOL-C previously maintained the EDF interface using a special structure
struct ext_diff_fct that is registered to the ADOL-C core on a per function
basis. Implementations for the forward- and reverse-mode first-order derivative
computations are set up in this structure as function pointers that have a partic-
ular signature as defined in the header file <adolc/externfcts.h>. The limitation
of this interface is that it expects all inputs as well as all outputs to the EDF to
be passed as two contiguously allocated arrays.
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Part A Part B Part C

ADOL-C trace (basic)

Part A

Part B

Part C

ADOL-C trace (with external function)

Fig. 1. ADOL-C trace of a simple and externally differentiated function (left). Re-
peated evaluation of an external function in forward and reverse mode (right)

The design of the adouble type in ADOL-C creates an internal representation
of the executed code at runtime. In order to do so most efficiently, adouble
objects are allocated in a memory pool whereever there is unused space. Unless
the pool is exhausted, new memory is not allocated. This design makes the
allocation of large contiguous arrays an expensive operation, because of the need
for finding a suitable chunk of unused space in the memory pool. Several smaller
contiguous arrays, on the other hand, can be allocated more easily. Therefore we
designed a second version of the EDF interface structure struct ext_diff_fct_v2
that supports providing several input arrays and several output arrays, each not
necessarily of the same size. We also added extra integer-valued input parameters
and an opaque object-valued input/output parameter that do not have an effect
on the differentiation process outside the EDF. These changes required adjusting
the signatures of the forward- and reverse-mode implementations for the EDF.
The signatures now contain the number of input and output vectors, the sizes of
each of these, their values, the corresponding tangents or adjoints, extra integer-
valued input arrays, and an opaque context object if needed (see Fig. 2(a)).
However, the process of registration and setup of the function pointers stays the
same as in the original EDF interface and can even be encapsulated in a separate
routine (see Fig. 2(b)), which is called once before the function is required to
be evaluated. The ADOL-C evaluation of the complete structure would then
look something like the code in Fig. 2(c). The user-provided functions edf->
fov_forward() or edf->fov_reverse() are called during the evaluation of the
jacobian() at the appropriate point.

Runtime support for ADIC generated code: To support the mixed approach’s
use of forward-and-reverse mode AD in a single execution instance, we recoded
ADIC’s runtime library in C++ and used namespaces to separate forward-
and reverse-mode derivative manipulation routines. The namespace usage is in-
serted into the ADIC-generated code by using simple postprocessing scripts. The
DERIV_TYPE structure was rewritten to be a class that supports both dynamic and
static allocation of the grad array within DERIV_TYPE. Because dynamic alloca-
tion for every DERIV_TYPE object can be expensive, we created a memory manager
that allocates a large amount of memory from the heap and then allocates the
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// primal function signature
int myfunc_v2 (int iArrLen, int *iArr, int nin, int nout, int *insz, double **x, int *outsz,

double **y, void* ctx);
// first order forward implemetation signature
int myfunc_forward_v2(int iArrLen, int* iArr, int nin, int nout, int *insz, double **x, int

ndir, double ***Xp, int *outsz, double **y, double ***Yp, void* ctx);
// first order reverse implementation signature
int myfunc_reverse_v2(int iArrLen, int* iArr, int nout, int nin, int *outsz, int dir, double

***Up, int *insz, double ***Zp, double **x, double **y, void* ctx);

(a)

ext_diff_fct_v2 * reg_ext_fct_myfunc(){
ext_diff_fct_v2 *edf

= reg_ext_fct(myfunc_v2);
edf->zos_forward = myfunc_v2;
edf->fov_forward = myfunc_forward_v2;
edf->fov_reverse = myfunc_reverse_v2;
// similar for scalar modes
...
return edf;

}

(b)

trace_on(tag);
... // evaluations
if (firsttime) edf = reg_ext_fct_myfunc();
call_ext_fct(edf,...);
... // further evaluations
trace_off();
...
jacobian(tag,...); // when required

(c)

Fig. 2. (a) Signatures of the forward- and reverse-mode wrapper routines; (b) per-
routine registration of EDF; (c) calling an EDF in ADOL-C instrumented code

grad array of an object from this pool. We matched ADIC’s layout of grad array
to ADOL-C’s layout of tangents and adjoints for the input and output vectors.
Therefore only pointers are copied, and ADIC reuses memory already allocated
in ADOL-C.

User annotations and preprocessing: User annotations have two purposes: First,
they identify an EDF and its callees for extraction and subsequent differenti-
ation by ADIC. The annotations surround the EDF and its callees, as shown
in Fig. 3(a). The extraction of code is necessary because ADIC requires the C
code to be isolated from the C++ code that it does not differentiate. Additional
user editing may be required to obtain code that is appropriate for differen-
tiation by ADIC. Second, annotations are used to generate the interface code
for arguments of the EDF. The annotation identifies inputs, outputs, and their
respective sizes or extra integers required for the computation, as well as the
position of each formal parameter in the argument list of the EDF. This in-
formation helps generate wrapper code to transfer data between ADOL-C data
structures and ADIC-generated code. These annotations are written directly as
Python tuples, as seen in Fig. 3(b). Each tuple contains the name of the for-
mal argument, followed by its size and the position in the formal argument list.
The size itself is a list of length 0, 1, or 2, depending on whether the argument
represents a scalar, a vector, or a matrix. Integer arguments are always scalars.
The size may also contain references to values stored in the integers list. Several
interface definitions, and thus multiple EDF structures, may also be used in any
application.
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/*@ declare doubletype=adouble @*/
// since ADIC doesn’t know adouble

/*@ begin adic_extract global @*/
... // global defines, variables etc.

// required by ADIC routines
/*@ end adic_extract @*/

/*@ begin adic_extract @*/
... // lower level computational routines

// differentiated by ADIC
/*@ end adic_extract @*/

/*@ begin adic_extract replace=rk_iter
type=void @*/

... // top level interface routine
// differentiated by ADIC

/*@ end adic_extract @*/

(a)

void rk_iter(double h, adouble *y, adouble
**k, adouble *rhs, int n, adouble *u,
int m, adouble *yt, adouble *ynew)

{
/*@ begin adic_export interface
name = ’rk iter’
iarr = [ (’n’,5), (’m’,7) ]
input = [ (’h’, [], 1),

(’y’, [’2∗nDe+5’], 2),
(’u’, [’5’],6) ]

output = [ (’k’, [’stage’,’2∗nDe+5’], 3),
(’rhs’, [’2∗nDe+5’], 4),
(’yt’, [’2∗nDe+5’], 8),
(’ynew’,[’2∗nDe+5’], 9)]

@*/
... // original ADOL-C computation code
/*@ end adic_export @*/
}

(b)

Fig. 3. (a) Annotations for extracting code for ADIC processing; (b) annotations de-
scribing the interface routine to generate wrapper code

Table 1. Sizes of trace files created on disk in a purely ADOL-C implementation of
periodic adsorbtion process that are not present in a mixed approach

Nspace

Ntime 2000 3000 5000

20 576 MB 863 MB 2511 MB
30 856 MB 2240 MB 3734 MB
50 2472 MB 3707 MB 7146 MB

3 Applications

We have tested the mixed approach on two applications. The following describes
each application briefly and provides the results obtained by using the mixed
approach.

Periodic adsorption process: The periodic adsorption process was studied from
an optimization point of view in [?,?]. A system of PDAEs in time and space with
periodic boundary conditions models the cyclic steady state of a process, where a
fluid is preferentially absorbed on the surface of a sorbent bed. This leads to dense
Jacobians that dominate the computation time (see [?]). Therefore, previous
works have used inexact Jacobians (for example, [?]). Using AD, however, we
compute the equality and inequality constraint Jacobians as well as the objective
gradient exactly up to machine precision.

The PDAE system is discretized in space by using a finite-volume approach,
and the resulting system of ODEs is then integrated in time by using a Runge-
Kutta method. This Runge-Kutta iteration in the implementation was deter-
mined to be a suitable EDF for differentiation by ADIC, particularly because
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Fig. 4. Time required (in seconds) to compute (a) Jacobian of equality constraints
in forward mode; (b) Jacobian of inequality constraints and gradient of objective in
reverse mode

this routine is repeatedly called at each time step of the simulation and has
a C-like implementation. The annotations for declaring this interface routine
are shown in Fig. 3(b). Two other lower-level routines for computing the right-
hand side of the ODE system are also processed by ADIC. The overall problem
size depends on the spatial and temporal discretization (Nspace and Ntime). In
Table 1 we show the memory required by the trace files created on disk in a
purely ADOL-C implementation for various problem sizes, which are absent in
the mixed approach. Both approaches preallocate memory of size 2.3 GB in all
cases. The absence of trace files on disk in the mixed approach shows that the
trace was small enough in all cases to fit into the preallocated memory. Ad-
ditionally, the runtimes of the mixed approach show improvement over a pure
ADOL-C implementation. In Fig. 4(a) the runtimes required in the computation
of a equality constraint Jacobian with forward mode are plotted in the left fig-
ure for certain problem sizes. In the right side is the time required in the mixed
approach is divided into the time required in the wrapper code of the EDF and
the ADIC-processed part of the EDF. The same runtimes for the computation



338 Kshitij Kulshreshtha, Sri Hari Krishna Narayanan, and Tim Albring

of the inequality constraint Jacobian and the objective gradient are shown in
Fig. 4(b).

Fluid dynamics – airfoil simulation: Recently, AD was successfully applied to
the open source multiphysics suite SU2 [?], which uses a highly modular C++
code structure, to design an efficient adjoint solver [?] for optimization. The
implementation is based on the fixed-point formulation of the underlying solver
and requires only the recording of one iteration using the converged flow solution.
Therefore, at least for steady-state problems, the necessity for checkpointing is
eliminated. Still, because of the nature of operator overloading, the memory
requirements increase by approximately a factor of 10 compared with the direct
flow solver.

SU2 is based on a finite-volume method and offers several well-established
combinations of spatial and temporal methods for discretizing the flow equations.
Either the steady Euler or the Navier-Stokes equation can be used as the physical
model. For this work we have used a second-order central discretization plus
an artificial dissipation term (Jameson-Schmidt-Turkel scheme, JST) for the
convective terms and a least-squares method for evaluating the gradients needed
for the viscous terms. The explicit Euler method is used to advance in pseudo-
time until convergence. The following two routines were identified as promising
use cases for the mixed approach:
1. CCentJST_Flow::ComputeResidual(su2double*val_residual):

per edge convective residual, projects convective flux on the cell-face normal.
2. CEulerSolver::SetPrimitive_Gradient_LS(CGeometry *geometry):

per node gradient of non-conservative variables using least-squares (only Navier-Stokes).

Both routines contain mainly C-like code, which can be processed by ADIC.
A potential drawback, however, is that they use mainly class member variables
as input. Another difficulty is posed by calls of routines that return variables
from other class objects. In such cases we manually copy the data back and forth
into simple arrays and define interface routines that take extra inputs.

Figure 5(a) shows the runtime and memory requirements for the Euler solver
with a 2D airfoil in transonic flow with 10,216 elements. While the time for
tracing is clearly reduced, the evaluation time has significantly increased. This
indicates that ADIC-generated derivative code is slower for that case compared
with ADOL-C. However there is a decrease of disk usage, solely due to trace
files, and an increase in the used RAM. For a 3D airfoil with 582,752 elements
the workload for each element is much higher. In that case the total runtime for
tracing plus evaluation decreases in the mixed approach as shown in Fig. 5(b).
Still, a large fraction of the evaluation time is in the ADIC-generated code. Disk
usage reduces by approximately 10% while the used RAM increases insignifi-
cantly. For the Navier-Stokes solver with a 2D airfoil with 13937 elements, as
shown in Fig. 5(c), the time for tracing reduces by 36%, and the evaluation time
increases slightly, resulting in a total reduction by 16%. Furthermore, the total
memory usage decreases by 15%.
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Fig. 5. Runtime and memory requirements for a 2D Euler case (a), 3D Euler case (b)
and 2D Navier-Stokes case (c).

4 Conclusions and future work

We have implemented a mixed approach to AD that uses the operator overload-
ing approach to differentiate most of an application and source transformation
to differentiate just the computationally intensive portions. The user identifies
these portions to be processed by ADIC and uses annotations and a preprocessor
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to generate code that interfaces ADOL-C’s internal data structures with ADIC
generated code. The mixed approach has been applied successfully to medium-
sized and large-sized applications, resulting in lower memory usage. We plan to
apply the mixed approach to more applications. We will also study the benefit
of differentiating most of an application using source transformation and only
some C++ portions using ADOL-C.
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