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Abstract. A vision for the Operator 4.0 is presented in this paper in the context 

of human cyber-physical systems and adaptive automation towards human-

automation symbiosis work systems for a socially sustainable manufacturing 

workforce. Discussions include base concepts and enabling technologies for              

the development of human-automation symbiosis work systems in Industry 4.0. 
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1 Introduction 

Industry 4.0 enables new types of interactions between operators and machines [1],   

interactions that will transform the industrial workforce and will have significant 

implications for the nature of work, in order to accommodate the ever-increasing 

variability of production. An important part of this transformation is the emphasis on 

human-centricity of the Factories of the Future [2], allowing for a paradigm shift from 

independent automated and human activities towards a human-automation symbiosis 

(or ‘human cyber-physical systems’) characterised by the cooperation of machines with 

humans in work systems and designed not to replace the skills and abilities of humans, 

but rather to co-exist with and assist humans in being more efficient and effective [3]. 

In this sense, the history of the interaction of operators with various industrial            

and digital production technologies can be summarised as a generational evolution. 

Thus, Operator 1.0 generation is defined as humans conducting ‘manual and dextrous 

work’ with some support from mechanical tools and manually operated machine tools. 

Operator 2.0 generation represents a human entity who performs ‘assisted work’ with 

the support of computer tools, ranging from CAx tools to NC operating systems (e.g. 

CNC machine tools), as well as enterprise information systems. The Operator 3.0 

generation embodies a human entity involved in ‘cooperative work’ with robots and 

other machines and computer tools, also known as - human-robot collaboration. The 

Operator 4.0 generation represents the ‘operator of the future’, a smart and skilled 

operator who performs ‘work aided’ by machines if and as needed. It represents a new 

design and engineering philosophy for adaptive production systems where the focus is 

on treating automation as a further enhancement of the human’s physical, sensorial and 

cognitive capabilities by means of human cyber-physical system integration (see Fig 1). 
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Fig. 1. Operator Generations (R)Evolution 

 

This paper explores a vision for the Operator 4.0 in the context of human cyber-

physical systems and adaptive automation towards human-automation symbiosis work 

systems for a socially sustainable manufacturing workforce. The discussions within the 

following sections include base concepts and enabling technologies for the development 

of the proposed human-automation symbiosis work systems in Industry 4.0. 
                                                      

2 Base Concepts 

The concept of Balanced Automation Systems (BAS) [4] was introduced in the early                  

90’s as an attempt to achieve the right combination of automation and manual operations 

(cf. Operator 2.0 & 3.0) in production systems, taking into account economic and socio- 

organisational aspects for the (re-)engineering of competitive and socially sustainable 

production systems. BAS implementations have mainly been based on the principles    

of ‘anthropocentric production systems’ [5] and the advantages offered by flexible 

automation as an extension of programmable automation in manufacturing systems.           

In [6], it has been previously defined a Next Generation BAS concept with the aim of 

stepping beyond the ‘right balance’ between automated and manual tasks in production 

systems, so as to the achieve ‘human-automation symbiosis’ for enhancing workforce 

capabilities (cf. Operator 4.0) and increasing manufacturing flexibility (cf. Factory 4.0) 

of production systems. The vision of Next Generation BASs is that while they will              

still rely on the guidelines of ‘anthropocentric production systems’ [5], they will 

moreover  feature ‘adaptive automation’ [7-9] for the dynamic allocation of control 

over manufacturing and assembly tasks to a human operator and/or a machine for                  

the purpose of optimising overall production system performance. This will be                             

done considering [10-11]: (a) sustainable technical and economic benefits for the 

manufacturing enterprise (e.g. improved quality, increased responsiveness, shorter 

throughput times, easier planning and control of production processes, increased 

capacity for innovation and continual improvement) and (b) social-human benefits for 

the workforce (e.g. increasing quality of working life, higher job satisfaction through 

meaningful tasks, greater personal flexibility and adaptation, improved ability and skills 

of shop-floor personnel). 



Based on the previous context, we define Human Cyber-Physical Systems (H-CPS) 

as systems engineered to: (a) improve human abilities to dynamically interact with 

machines in the cyber- and physical- worlds by means of ‘intelligent’ human-machine 

interfaces, using human-computer interaction techniques designed to fit the operators’ 

cognitive and physical needs, and (b) improve human physical-, sensing- and cognitive- 

capabilities, by means of various enriched and enhanced technologies (e.g. using 

wearable devices). Both H-CPS aims are to be achieved through computational and 

communication techniques, akin to adaptive control systems with the human-in-the-loop.  

The Adaptive Automation (AA) movement [7-8] [12-13] aims at optimising human-

machine cooperation to efficiently allocate labour (cognitive & physical) and distribute 

tasks between the automated part and the humans in the workstations of an adaptive 

production system [13]. AA allows the human and/or the machine to modify the level 

of automation by shifting the control of specific functions whenever predefined 

conditions (e.g. critical-event, measure-based and/or modelling-based) are met [14].             

The ultimate AA goal is the achievement of human-automation symbiosis by means of 

adaptation of automation & control across all workstations of a human-centred and 

adaptive production system in order to allow a dynamic and seamless transition of 

functions (tasks) allocation between humans and machines that optimally leverages 

human skills to provide inclusiveness and job satisfaction while also achieving 

production objectives. 

Human-in-the-loop (HITL) feedback control systems are defined as systems that 

require human interaction [15]. HITL control models offer interesting opportunities to 

a broad range of H-CPS applications, such as the ‘Operator 4.0’. HITL control models 

can help to supervise an operator’s performance in a human-machine interaction,                   

and (a) let the operator directly control the operation under supervisory control,                          

(b) let automation monitor the operator and take appropriate actions, or (c) an hybrid of 

‘a’ and ‘b’, where automation monitors the operator, takes human inputs for the control, 

and takes appropriate actions [15]. HITL control models, although being challenging 

due to the complex physiological, sensorial and cognitive nature of human beings,                   

are an important enabler for ‘human-automation symbiosis’ achievement. 

 

3 Human-Automation Symbiosis: Intelligent Hybrid Agents 

In this section, the strategy to attain human-automation symbiosis in manufacturing         

work systems is explored through a discourse of ‘adaptive automation’ and ‘intelligent 

multi-agent systems’ as the bases for a sharing and trading of control strategy [14].  

An intelligent agent is an entity (human, artificial or hybrid) with the following 

characteristics [16]: (a) purposeful - displays goal-seeking behaviour, (b) perceptive               

- can observe information about the surrounding world and filter it according to 

relevance for orientation, (c) aware - can develop situational awareness that is relevant 

for the agent’s purpose, (d) autonomous - can decide a course of action (plan) to achieve 

the goal, (e) able to act - can mobilise its resources to act on its plan; these resources 

may include parts of the self or tools at the autonomous disposal of the agent, and 

resources for physical action or information gathering/processing, (f) reflective - can 

represent and reason about the abilities and goals of self and those of other agents,                  

(g) adaptable and learning - can recognise inadequacy of its plan and modify it, or 

change its goal, and (h) conversational and cooperative - can negotiate with other 



agents to enhance perception, develop common orientation, decide on joint goals,  

plans, and action; essentially participate in maintaining the ‘emergent agent’ created 

through joint actions of agents. Note that this classification of agent functions may                  

be interpreted as the ability to perform the Observe, Orient, Decide and Act (OODA)    

Loop of Boyd [17] [18], developed as a theory to explain the conditions and functions   

of successful operation, and therefore this classification may be used to direct the 

engineering and development of intelligent agents [16], which, as we shall see below, 

are expected to be ‘adaptive’ and ‘hybrid’ in nature. 

Human agents, under certain circumstances, and in defined domains of activity,     

are able to act as intelligent agents (e.g. able to perform complex assembly sequences 

and operations in a flexible production line). However, once the assumptions are                

no longer true (e.g. due to a heavy physical, sensorial and/or cognitive workload),                     

the quality of agenthood deteriorates; thus the human does no longer have the ability to 

perform one or several functions that are normally attributed to an intelligent agent. 

Consequently, the question is: how to restitute human agenthood by extending human 

capabilities (physical, sensorial and/or cognitive) through automation-aided means? 

Similarly, artificial (machine) agents, under certain circumstances and in defined 

domains of activity can act as intelligent agents (e.g. they are able to perform repetitive 

and routine tasks in a high volume production line, make decisions based on learnt 

patterns, etc.). Nevertheless, once the assumptions are no longer true (e.g. the need 

(ability) to improvise and use flexible processes to reduce production downtime due        

to an error), the quality of agenthood deteriorates; thus the machine does no longer              

have the ability to perform one or several functions that are normally attributed                            

to an intelligent agent. Therefore, the question is: how to restore machine agenthood   

by extending the machine’s capabilities through human-aided means? 

Hybrid agents are intelligent agents established as a symbiotic relationship (human-

automation symbiosis) between the human and the machine, so that in situations where 

neither would display agenthood in isolation, the symbiotic hybrid agent does. In this 

research, the vision is that at any time a human (the ‘Operator 4.0’) lacks some of these 

agenthood abilities, such as due to heavy physical, sensorial and/or cognitive workload, 

automation will extend the human’s abilities as much as necessary to help the operator 

to perform the tasks at hand, according to the expected quality of performance criteria. 

Thus, it is proposed to implement hybrid agents, as a form of ‘adaptive automation’,               

in order to sustain agenthood by determining whenever and wherever the operator 

requires augmentation (e.g. using advanced trained classifiers to recognise this need 

[19]), and prompting the appropriate type and level of automation to facilitate optimal 

operator performance. An important objective is that the level of this extension need 

not be a ‘design time’ decision, but should be able to be dynamically configured                       

as needed. Furthermore, the ‘hybrid agents’ view of the Operator 4.0 is a component       

of the solution to preserve the operator’s situation awareness [20], as the status, 

experience and information processing capability of the operator can cause loss of 

agenthood and consequent decision-making errors, thus the need for ‘symbiotic 

technical support’. Work on affective computing [21] showed that the task allocation 

and adaptation between humans and machines/computers supporting them is not a 

trivial task and should involve sensory assessments of humans’ physical and cognitive 

states in order to be efficient. 

 



For the purpose of comparison, in the case of an Operator 3.0 (cf. human-robot 

collaboration), the design time decision would be determined by the required capability 

of the manufacturing or assembly operation (e.g. speed, accuracy, capacity, reliability, 

etc.), which then would decide (based on technical, economic, social and human 

benefits) the level of automation of the process, as well as the accompanying skills and 

abilities required by the human role. In contrast, in the case of an Operator 4.0, 

automation level would be determined in less detail at design time, allowing an initial 

detailed procedure and much automated support (e.g. in case of a novice or new-to-             

the-task operator), while providing ‘on the fly’ solutions that develop together with                

the individual operator’s skills. Apart from achieving job satisfaction and a variety                   

of desired process ‘ilities’ [22], such dynamic allocation of different levels/extent                  

of automation fosters the use of human skills and abilities. This includes the creation  

of favourable conditions for workforce development and learning, the improvement of 

human-robot collaboration and tacit knowledge development, as it is well known that 

in many (although not all) tasks acting based on tacit knowledge are much more 

efficient and effective than following predetermined procedures. 

Emergent agents are virtual entities, who exist as a cooperative and negotiated 

arrangement between multiple agents of either kind above (sometimes on multiple 

levels of static or dynamic aggregation), whereupon two human agents, or a human and 

a machine/robot, or two machine/robot agents, or more than two agents of any of these 

types, form a ‘join entity agent’ that from the external observer’s viewpoint acts as a 

single intelligent agent. It is expected that an Operator 4.0 will have the ability to be 

part of an intelligent group of agents with appropriate functionality for the formation, 

operation, transformation and dissolution of these groups. Note that it is not necessary 

for every agent to have the same level of contribution to such self-organising ability; 

agents may specialise in certain tasks and assume different roles in the lifecycle of                

the emergent agent. 

4 The Operator 4.0: Aiding for Enhanced Workers Capabilities 

A capability is the “measure of the ability of an entity (e.g. department, organisation, 

person, system) to achieve its objectives, especially in relation to its overall mission” 

[23]. In the case of human beings, this involves having the resources and the ability                 

to deploy their capabilities for a purpose. 

4.1 Automation Aiding for Enhanced Physical Capabilities  

A physical activity is any bodily movement produced by skeletal muscles that requires 

energy expenditure. We define physical capability as the operator’s capacity and ability 

to undertake physical activities needed for daily work, and can be characterised by 

multiple attributes, including the description of the physical function (e.g. ability to lift, 

walk, manipulate and assemble) together with its non-functional properties (e.g. speed, 

strength, precision and dexterity), as well as the description of the ability in terms of 

maturity- and expertise- level. The agent’s activity supported is that of (physically) 

acting, i.e. the ‘A’ in the OODA loop. 

 

 



For example, the operator may be: (a) ‘procedure following - novice’ with no 

autonomy over the details of the operation and under supervision along the whole 

procedure, (b) ‘procedure following - advanced’ with limited operational autonomy       

and less supervision across the procedure, or (c) ‘expert’ - featuring internalised tacit 

knowledge (know-how) and autonomy towards improving the operation, where only    

the operation’s outcome is supervised. The vision of Operator 4.0 acknowledges that 

capabilities are not static, but they evolve over time, as well as change depending on 

context (e.g. the operator may be tired or rested, new- or accustomed- to-the-task), 

therefore physically aiding an Operator 4.0 assumes that one can assess the physical 

capabilities in a dynamic and timely fashion, preferably in real-time. Some assessment 

tools for testing an operator’s physical capabilities may include: (a) Physical Abilities 

Tests (PATs) [24] [25] capable of matching the physical abilities of an operator with 

the physical demands of a job (or operation) up-front to its allocation (e.g. such methods 

are getting increased attention in the defence community); and (b) Advanced Trained 

Classifiers (ATCs) [26], based on a variety of machine learning techniques, to measure 

(test) in real-time the operator’s physical performance and dynamically identify when 

an assisted/enhanced operation is necessary in an unobtrusive manner, relying on 

physiological measures (cf. ergonomics [27]). This is done in order to actively determine 

when an operator actually requires assistance and subsequently prompt the appropriate 

type and level of physical (aided) capability to facilitate optimal physical performance 

by the operator. Moreover, PATs may be useful for job role allocation and/or for 

determining training needs (e.g. how to handle lifting, posture correction, etc.), while 

ATCs may be advantageous for reducing the chances of accidents due to tiredness or 

of injuries due to repetitive strain, or to improve product quality by reducing errors and 

re-work. 

4.2 Automation Aiding for Enhanced Sensing Capabilities  

A sensorial capability is the operator’s capacity and ability to acquire data from the 

environment, as a first step towards creating information necessary for orientation and 

decision-making in the operator’s daily work [28]. There are two components to sensing: 

(a) the physical ability to collect data from the environment (by vision, smell, sound, 

touch, vibration), and (b) the ability to selectively perceive it (as we know that a very 

low percentage of the data generated by the physical sense of an operator enters the 

short-term memory and is made available for processing). It is known that an operator 

is selectively filtering out what he/she does not consider important: “of the entire 

amount of new information generated by our environment, our senses filter out >99% 

of signals before they reach our consciousness” [29]. It is also known that this filtering 

is not a conscious process. Therefore, OODA is not a simple loop; there is information 

that flows to make an operator perceive selectively what his/her brain considers 

important (i.e. what data are useful for analysis and decision-making). This selectivity 

is acquired by the operator through learning. As a consequence, there are two points 

where the operator’s sensing abilities are subject to assessment and where these abilities 

may need improvement, as further described.  

 

 



The first potential sensory improvement is the creation of new- or augmentation-               

of existing senses (e.g. by way of using sensor devices to collect, convert, aggregate 

signals that would not be accessible for the operator, either due to physical accessibility 

of the data source, general human limitations, or due to individual personal limitations). 

Also, due to the different levels of sensitivity of humans across senses, transforming 

one signal to another form may increase the ability of the human to identify information 

within the data (e.g. transforming temperature to visible colour, vibration to audible 

spectrum sound, or using data aggregation, can enable the human to make use of 

otherwise inaccessible data). The second type of sensory limitation is more difficult to 

overcome if it is to be done exclusively at sensor level. This is because information 

feedback produced by analysis (orientation) and decision-making must be used to filter 

out unwanted data (i.e. containing irrelevant information) and to sensitise selective 

perception to smaller signals, which may carry relevant information. 

Some assessment tools for testing an operator’s sensorial capabilities may include: 

(a) Sensorial Abilities Tests (SATs) [30] capable of matching the sensorial abilities of    

an operator with the sensorial demands of a job (or operation) up-front to its allocation. 

This is not a trivial tasks, because even though the sensorial abilities of an operator                

can be tested (such as by using simple vision and hearing tests), sensing successfully in 

the situation (i.e. registering/perceiving signals necessary for analysis and orientation) 

is also dependent on the nature and level of prior experience of the operator as previously 

explained.  

It is therefore expected that the solution to selective perception deficits is not simply 

providing operators with ‘bionic ears and eyes’ (even though in some situations that 

may be sufficient), but in using the ‘emergent agent’ model, where the machine agent 

has its own intelligence in terms of analysis and orientation, and the ability to reason 

about the human agent’s needs and decision what data to present for the human’s needs 

and when. 

The traditional limitation for decision-making has been scarcity of information, 

requiring human (and machine) agents to make decisions in light of insufficient data 

about the operations. With the proliferation of sensor devices (the so-called ‘Internet of 

Things’) this situation could change, but only if sensor agents are made intelligent                   

in terms of what data to register and transmit to other agents.  

New algorithms are needed for cooperative and collaborative learning of situations 

for collective sense-making and decision-making by sensor agents (including agent 

networks). This is so that the situational knowledge base of participating agents can                

be utilised to adaptively filter unwanted data and to ‘zoom-in’ to enhance faint but 

relevant signals, as well as negotiate signal bandwidth for priority communication.               

Part of  this situation recognition may be implemented by machine learning techniques, 

such as (b) Advanced Trained Classifiers (ATCs) [26], where part of an intelligent 

sensor agent may use machine learning to support human-automation symbiosis and     

to learn about the individual operator and that operator’s behaviour in action, to actively 

determine when an operator actually requires assistance, and to subsequently prompt              

the appropriate type and level of sensing (aided) capabilities to facilitate optimal 

sensing performance by the operator.  



4.3 Automation Aiding for Enhanced Cognitive Capabilities 

A cognitive capability is the operator’s capacity and ability to undertake the mental 

tasks (e.g. perception, memory, reasoning, decision, motor response, etc.) needed for 

the job and under certain operational settings [31]. In the OODA model, these cognitive 

tasks are to ‘Orient’ and to ‘Decide’, together amounting to a mental workload, decision-

making, skilled performance, human-computer interaction, maintaining reliability in 

performance, dealing with work stress whether in training or in the job.  

As the Factories of the Future become increasingly dynamic working environments 

(cf. Industry 4.0) due to the upsurge in the need for flexibility and adaptability of 

production systems, the upgraded shop-floors (cf. Factory 4.0) call for cognitive aids 

that help the operator perform these mental tasks, such as those provided by augmented 

reality (AR) technologies or ‘intelligent’ Human-Machine Interfaces (HMI) to support 

the new/increased cognitive workload (e.g. diagnosis, situational awareness, decision-

making, planning, etc.) of the Operator 4.0. It can be expected that this aid would 

increase human reliability in the job, considering both the operator’s well-being and      

the production system’s performance. 

Some assessment tools for testing an operator’s cognitive capabilities may include: 

(a) Cognitive Abilities Tests (CATs) [32] capable of matching the cognitive abilities of 

an operator with the mental demands and cognitive skills needed for performing a job 

(or operation) up-front to its allocation; and (b) Advanced Trained Classifiers (ATCs) 

[26] based on various machine learning techniques, to measure (test) in real-time                 

the operator’s cognitive performance and dynamically identify when an assisted/ 

enhanced action is necessary, and do so in an unobtrusive manner, relying on cognitive 

load measurements (cf. cognitive ergonomics [33]). 

 

5 Conclusions and Further Work 

Industry 4.0 would be inconceivable without human beings. Hence, human-automation 

symbiosis by means of H-CPS and AA aims to take into account established principles 

of the design of operator-friendly working conditions [34] for aiding the workforce [35], 

such as: (a) practicability, considering compliance with ‘anthropometric’ and physical, 

sensorial and cognitive norms in the design of a work system; (b) safety, bearing in 

mind in the design of work systems embedded security and safety measures to avoid 

accidents; (c) freedom from impairment, by providing automation-aided means to 

compensate various individual (human) limitations and thus keep with the physical, 

sensorial and cognitive quality performance of the job; and (d) individualisation and 

personalisation of the working environment thanks to adaptive systems (cf. AA) that 

support the operator as an individual and promote learning (e.g. by means of sharing 

and trading of control strategy [14]).  

The development of ‘human-automation symbiosis’ in work systems [6] [36] offers 

advantages for the social sustainability of the manufacturing workforce in Industry               

4.0, in terms of improving operational excellence, safety and health, satisfaction and 

motivation, inclusiveness, and continuous learning. Hence, the purpose of H-CPS                 

and AA in this research is to support the Operator 4.0 to excel in the job by means of 

automation-aided systems that aim to provide a sustainable relief of physical and  



mental stress and contribute to the development of workforce creativity, innovation and 

improvisational skills, without compromising production objectives. 
Further work aims to explore ‘intelligent’ human-machine interfaces and interaction 

technologies, and adaptive and human-in-the-loop (HITL) control systems to support 

the development of ‘human-automation symbiosis’ work systems for the Operator 4.0 

in the Factory of the Future. 
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