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Abstract. The present paper aims to propose a new type of information-
theoretic method called “potential joint information maximization”. The
joint information maximization has an effect to reduce the number of
jointly fired neurons and then to stabilize the production of final repre-
sentations. Then, the final connection weights are collectively interpreted
by averaging weights produced by different data sets. The method was
applied to the data set of rebel participation among youths. The result
show that final weights could be collectively interpreted and only one fea-
ture could be extracted. In addition, generalization performance could
be improved.
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1 Introduction

Information-theoretic methods have had much influences on neural computing
in many aspects of neural learning [1], [2], [3], [4], [5], [6], [7]. Though the
information-theoretic methods have aimed to describe relations or dependen-
cies between neurons or between layers, due attention has not been paid to
those relations. They have even tried to reduce the strength of relations between
neurons [8], [9]. For example, they have tried to make individual neurons as
independent as possible. In addition, they have tried to make the distribution
of neurons’ firing as uniform as possible. This is simply because difficulty has
existed in taking into account neurons’ relations or dependencies.

The present paper aims to describe one of the main relations between neu-
rons, namely, relations between input and hidden neurons, because they play
critical roles in improving the performance of neural networks, for example, gen-
eralization performance. However, it has been few efforts to describe relations
between input and hidden neurons from the information-theoretic points of view.
To examine relations between input and hidden neurons, we introduce the joint
probability between input and hidden neurons. Then, the joint information con-
tained between input and hidden neurons is also introduced. When this joint
information increases, only a small number of joint input and hidden neurons
fire strongly, while all the others cease to do so.
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However, one of the major problems to realize the joint information lies in dif-
ficulty in computation. As has been well known, the majority of the information-
theoretic methods have this problem of difficulty in computation [7]. To overcome
the problem, we have introduced the potential learning [10], [11], [12], [13]. In
the method, information maximization can be translated into potentiality max-
imization where a specific neuron is forced to have the largest potentiality to
deal with many different situations. Applying the potentiality to joint neurons,
potentiality maximization corresponds to a situation where a small number of
joint neurons are forced to have larger potentiality.

In addition, the present method aims to propose a new method to inter-
pret final representations. As has been well known, the black-box property of
neural networks have prevented them from being applied to practical problem-
s, because in practical applications, the interpretation of final results can be
more important than the generalization performance. Usually, neural networks
produce completely different types of connection weights, depending on differ-
ent data sets and initial conditions. The joint information maximization can be
used to explain the final representations clearly. When the joint information in-
creases, the number of activated neurons diminishes, which constraints severally
the production of many different types of weights. Thus, a few typical connec-
tion weights are produced by the joint information maximization. Then, we can
interpret those connection weights by averaging them. This type of interpreta-
tion is called “collective interpretation” in the present paper. As generalization
performance is evaluated in terms of the average values, the interpretation per-
formance can be evaluated collectivity by taking into account all the connection
weights produced by diffident data sets and initial conditions.

2 Theory and Computational Methods

2.1 Concept of Joint Information Maximization

Figure 1 shows a concept of joint information maximization. For a data set,
when the joint information is maximized, only one joint hidden and input neu-
ron fire strongly with a strong connection weight in Figure 1(b). For another
data set, another joint hidden and input neuron strongly fire in Figure 1(c). For
interpretation, connection weights produced by all data sets are taken into ac-
count by averaging connection weights with due consideration for hidden-output
connection weights in Figure 1(e).

2.2 Potential Joint Information Maximization

Potential joint information is based on the potentiality so far defined for hidden
neurons [10], [11], [12], [13]. As shown in Figure 1(b), let wt

jk denote connection
weights from the kth input neuron to the jth hidden neuron for the tth data set,
then the potentiality vtjk is defined by

vtjk =
(
wt

jk − wt
)2
, (1)
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Fig. 1. Concept of joint information maximization with collective interpretation.

where wt denotes the average weight defined by

wt =
1

ML

M∑
j=1

L∑
k=1

wt
jk, (2)

where M and L denotes the number of hidden and input neurons. Then, the
potentiality is normalized as

p(j, k|t) =
vtjk∑M

m=1

∑L
l=1 v

t
ml

. (3)

Then, we have the potential joint information

PJI = −
M∑
j=1

L∑
k=1

p(j, k) log p(j, k) +

T∑
t=1

p(t)

M∑
j=1

L∑
k=1

p(j, k|t) log p(j, k|t), (4)
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where T is the number of data sets, p(t) is the probability with which the tth
data set is given and

p(j, k) =

T∑
t=1

p(t)p(j, k|t). (5)

2.3 Computing Pseudo-Potential Joint Information Maximization

It is possible to differentiate the joint information to have update rules, but
much simpler methods have been developed in the name of potential learn-
ing. In the method, potentiality maximization is replaced by pseudo-potentiality
maximization, which is easily maximized just by changing the parameter. Now,
the pseudo-potentiality is defined by

φt,rjk =

(
vtjk
vtmax

)r

, (6)

where r ≥ 0 deontes the potential parameter vmax is the maximum potentiality.
By normalizing this potentiality, we have the pseudo-firing probability

p(j, k|t; r) =
φt,rjk∑M

m=1

∑L
l=1 φ

t,r
ml

. (7)

Then, we have pseudo-information

PPJI = −
M∑
j=1

L∑
k=1

p(j, k; r) log p(j, k; r)

+

T∑
t=1

p(t)

M∑
j=1

L∑
k=1

p(j, k|t; r) log p(j, k|t; r). (8)

The pseudo-information can be increased just by increasing the parameter r,
and the joint information can be increased by assimilating pseudo-potentiality
φt,rjk repeatedly, while the potential parameter increased gradually. The new

weights newwt
jk are obtained by weighting the old weights oldwt

jk by the pseudo-
potentiality

newwt
jk = oldwt

jk φ
t,r
jk . (9)

Then, new learning starts with those connection weights as initial ones. This
process repeats itself for a fixed number of learning steps.

3 Results and Discussion

3.1 Experimental Outline

The data set was made to infer the probability of rebel participation among
youths in the Niger Delta [14]. The number of input patterns was 1,340, and 19
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Fig. 2. Potential joint information with 10 hidden neurons for the rebel data set.

input variables were used. The number of patterns for modeling neural networks
was 1000 and the remaining 340 was exclusively for testing. With less than
1000 patterns, improved generalization performance was not obtained by the
present and conventional methods. Of 1000 modeling data, 700 training data
were randomly and repeatedly taken and ten training sets were prepared. The
remaining 300 were used for the early stopping and checking the data sets. The
potential parameter r was gradually increased from zero in the first learning step
to one in the tenth learning step (final step).

3.2 Mutual Information

Figure 2 shows the joint information as a function of the number of steps. The
joint information was simplified by supposing the uniform distribution

PJI = logMN +
1

T

T∑
t=1

M∑
j=1

L∑
k=1

p(j, k|t) log p(j, k|t). (10)

The information increased gradually and close to 0.6. Though the joint informa-
tion could be further increased, generalization errors increased in direct propor-
tion to this information increase beyond this point. The results show that the
present method can increase the joint information sufficiently.

3.3 Connection Weights

Figure 3 shows connection weights for the rebel data set when the number of step-
s increased from one to ten. When the number of steps was one, almost random
weights could be seen in Figure 3(a). When the number of steps was increased
from two in Figure 3(b) to six in Figure 3(f), gradually the number of strong
connection weights decreased. Then, when the number of steps was increased
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Fig. 3. Connection weights from input to hidden neurons with 10 hidden neurons for
the rebel data set. Green and red weights represent positive and negative ones.

from seven in Figure 3(g) to ten in Figure 3(j), only one connection weight from
the eighth input neuron to sixth hidden neuron became the strongest, while all
the other weights became close to zero.

Figure 4 shows adjusted connection weights for the maximum potential hid-
den neurons j∗ by ten different data sets randomly taken from the modeling
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data set. Adusted weights for interpretation ctj∗k was computed by

ctj∗k = sign(W t
1j∗)wt

j∗k, (11)

where sign(W1j∗) denote the sign of the weight from the maximum potential
hidden neuron to the first output neuron, representing that the youths do not
want to participate in the rebel force. As shown in the figure, five out of ten
results showed that the input neuron No.8 had stronger weights than any other
ones. Thus, the input neuron No.8 was collectively considered to be important
by the present method.

Figure 5 shows the average connection weights. The average weights were
computed by

c̄j∗k =
1

T

T∑
t=1

ctj∗k (12)

As can be seen in the figure, the input neuron No.8 had the largest con-
nection weight. The variable No.8 represents the government’s presence in the
community in terms of the number of government establishments. Thus, when
the government’s presence becomes more visible, the youths do not want to
participate in the rebel force.

Figure 6 shows the regression coefficients by the logistic regression analysis.
In the original data set, a tricky variable was introduced, namely, the variable
No.16 (oil size) and No.17 (squared oil size), which were naturally correlat-
ed, because principally two variables were the same. Thus, they produced the
multi-collinearity where two variable responded completely differently to input
patterns. On other hand, the present method responded to the two variables
almost evenly. The results show that the present method is good at dealing with
this kind of data set with strong correlation between variables. Finally, the in-
teresting thing to note is that except the variables No.8, No.16 and No.17, quite
similar weights and coefficients were produced by both methods.

3.4 Generalization Performance

The present method produced the best performance of generalization, comparing
with that by the other two conventional methods. Table 1 shows generalization
performance by three methods. As can be seen in the table, the best generaliza-
tion error of 0.1662 on average was obtained by the present method. In addition,
the best minimum and maximum error of 0.1382 and 0.2 were obtained by the
present method. The second best one was obtained by the BP with the early
stopping. Finally, the worst one was obtained by the logistic regression analysis.

4 Conclusion

The present paper proposed a new information-theoretic method called “joint
information maximization”. The joint information represents relations between
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Fig. 4. Adjusted connection weights for ten different data sets from input to hidden
neurons with 10 hidden neurons for the rebel data set. Green and red weights denote
positive and negative ones.

input and hidden neurons. When the joint information increases, the number of
strongly connected hidden and input neurons decreases gradually. The method
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Fig. 5. Collective and average weights for the rebel data set.

Fig. 6. Regression coefficients for the rebel data set.

Table 1. Summary of experimental results on generalization performance for the rebel

data set. The BP(ES) represents the BP with early stopping. The bold face numbers

show the best values.

Method Step Hidden Average Std dev Min Max Inf

Joint 6 10 0.1662 0.0181 0.1382 0.2000 0.4647

BP(ES) 1 10 0.1788 0.0338 0.1382 0.2529 0.1262

Logistic 0.2106 0.0129 0.1853 0.2294

was applied to the rebel participation data set. The results show that the joint
information could be increased by the present method. Final results could be
interpreted collectively by averaging the connection weights. Finally, general-
ization performance was improved by the present method. The present method
was much simpler than any other conventional information-theoretic method-
s because of the potential learning. Thus, it can be applied to large-scale and
practical problems.
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