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Abstract. Due to semantic gap, some image annotation models are not ideal in 

semantic learning. In order to bridge the gap between cross-modal data and 

improve the performance of image annotation, automatic image annotation has 

became an important research hotspots. In this paper, a hybrid approach is 

proposed to learn automatically semantic concepts of images, which is called 

Deep-CC. First we utilize the convolutional neural network for feature learning, 

instead of traditional methods of feature learning. Secondly, the ensembles of 

classifier chains (ECC) is trained based on obtained visual feature for semantic 

learning. The Deep-CC corresponds to generative model and discriminative 

model, respectively, which are trained individually. Deep-CC not only can learn 

better visual features, but also integrates correlations between labels, when it 

classifies images. The experimental results show that this approach performs for 

image semantic annotation more effectively and accurately. 

Keywords: semantic learning; image auto-annotation; convolutional neural 

network 

1 Introduction 

In the past decades, several state-of-the-art approaches have been proposed to solve the 

problems of automatic image annotation, which can be roughly categorized into two 

different models. The first one is based on generative model. The auto-annotation is 

first defined as a traditional supervised classification problem [8] and [7], which 

mainly depends on similarity between visual features and predefined tags to model the 

classifier, then a unknown image is annotated relevant tags by computing similarity of 

visual level. The other is based on discriminative model, which are treat image and 

text as equivalent data. These methods try to mine the correlation between visual 

features and labels on an unsupervised basis by estimating the joint distribution of 

multi-instance features and words of each image [8] and [17]. In brief, these methods 
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extract various low-level visual features. These approaches greatly reduces the ability 

of feature presentation, therefore it makes the semantic gap become more serious 

between image and semantic.  

Furthermore, the performances of image annotation are highly dependent on the 

representation of visual feature and semantic mapping. In view of the fact that deep 

convolutional neural networks (CNNs) has been demonstrated a outstanding performa- 

nce in computer vision recently. Besides, Mahendran and Vedaldi [4], [5], [10] and [12] 

have demonstrated that CNN has a better effect over existing methods of hand-crafted 

features in many applications, such as object classification, face recognition, and 

image annotation. Inspired these articles, this paper proposes a hybrid architecture 

based on CNN for image semantic annotation to improve the performances of image 

annotation. 

In this paper, our main contributions are the following. Firstly, we use redesigned 

CNN model to learn high-level visual features. Secondly, we employ the ensembles of 

classifier chains (ECC) to train model on visual features and predefined tags. Finally, 

we propose a hybrid framework to learn semantic concepts of images based CNN 

(Deep-CC). Deep-CC not only can learn better visual features, but also integrates 

correlations between labels when it classifies images. The experimental results show 

that our approach performs more effectively and accurately. 

2 CNN visual feature extraction 

In the past few years, some recent articles [15] and [18] have demonstrated that the 

CNN models pre-trained on large datasets with data diversity, e.g., AlexNet [5] which 

can be directly transferred to extract CNN visual features for various visual recognition 

tasks such as image classification and object detection. CNN is a special form of 

neural network that consists of different types of layers, such as convolutional layers, 

spatial pooling layers, local response normalization layers and fully connected layers. 

Different network structures will show different ability of visual features 

representation. Krizhev et al. [5] have proved that the Rectified Linear Units (ReLUs) 

not only saves the computing time, but also implements the features of sparse 

representation, and ReLU also increases the sample characteristic diversity. So in 

order to improve the generalization ability of the feature representation, we extract fc7 

visual vectors after ReLU. As shown in the top of the Fig. 1, our CNN model has the 

similar network structure to the AlexNet. As reflected in Fig. 1, which contains five 

convolutional layers (short as conv) and three fully-connected layers (short as fc). The 

CNN model is pre-trained in 1.2 million images of 1000 categories from ImageNet 

[15]. 

2.1 Extracting Visual Features From pre-trained CNN Model  

G Li et al. [6] and Razavian et al. [13] have demonstrated the outstanding performance 

of the off-the-shelf CNN visual features in various recognition tasks, so we utilize the 

pre-trained CNN model to extract visual features. Particularly, each image is resized to 

http://xueshu.baidu.com/s?wd=author%3A%28Aravindh%20Mahendran%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Andrea%20Vedaldi%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson


 

 

227 * 227 and fed into the CNN model. As shown in Fig. 1, it represents the feature 

flow extracted from the convolutional neural network. The fc7 features are extracted 

from the secondly convolution layer after ReLU. The fc7 denote the 4096 dimensional 

features of the last two fully-connected layers after the rectified linear units (ReLU) 

[5]. 

2.2 Exacting visual feature from fine-tuned CNN model 

Taking into account the different categories (and the number of categories) between the 

target dataset and ImageNet, if we directly utilize the pre-trained model on the 

ImageNet to exact image visual features, it may not be the optimum strategy. To make 

the model fit the parameters better, we redesign the last hidden layer for visual feature 

learning task, later re-designed CNN model by fine-tuning parameters with each of 

images in the target dataset. Considering the rationality of the design of the 

convolutional neural networks, our CNN model has the similar network structure to 

the AlexNet. As show in the mid of Fig. 1, the overall architecture of our CNN model 

still contains five conv layers , followed by a pooling layer and three fully-connected 

layers. We redesign the last hidden layer for feature learning task. The number of neural 

units of the last fully-connected layer is modified from 1000 to m, where m is the 

number of the target dataset's categories. The output of the last fully-connected layer is 

then fed into a m-way softmax which produces a probability distribution over m 

categories. 

Given one training sample x, the network extracts layer-wise representations from 

the first conv layer to the output of the last fully connected layer fc8 ∈ m
, which can be 

viewed as high level features of the input image. Followed by a softmax layer, fc8 is 

transformed into a probability distribution p∈ m
 for objects of m categories, and cross 

entropy is used to measure the prediction loss of the network. Specifically, we define 

the following formula. 
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In formula (1), L is the loss of cross entropy. The gradients of the deep convolutional 

neural network is calculated via back propagation 
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In formula (2), t = {ti|ti∈{0, 1}, i = 1, . . . , m, ∑
m 

k=1 ti = 1} denotes the true label of the 

sample xj, where the {xj|j=1,2,..., n}is a bag of instances. t = {ti|ti∈{0, 1}, i = 1, . . . ,m} 

is the label of the bag; Convolutional neural network extracts representations of the bag, 



 

 

it can get a feature vector v = {vij}∈
m×n

, in which each column is the representation of 

an instance. The aggregated representation of the bag for visual vectors are defined as 

follows. 
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In the training phase, similarly back propagation algorithm is used to optimize the 

loss function L. Suppose that we have a set of training images I = {Mi}. The trained 

instances of traditional supervised learning in which training instances are given as 

pairs {(mi , li)}, where mi∈
m
 is a feature vector and li∈{0,1} is the corresponding 

label. In visual feature learning, trained sample is regarded as bags {Ii}, and there are a 

number of instances xij in each bag. Finally, the network extracts layer-wise 

representations from the first conv layer to the output of the last fully connected layer 

visual vectors vi , which can be viewed as high level features of the input image. By 

fine-tuning like this, the parameters can better adapt to the target dataset by rectifing 

the transferred parameters. For the task of visual feature learning, we first employ 

existing model to fine-tune the parameters in the target dataset, then we apply the 

fine-tuned CNN model to learn image visual features. Similarly, the FT-fc7 denotes the 

4096 dimensional features of the last two fully-connected layers after the rectified 

linear units (ReLU). 

3 Ensembles of classification classifiers for semantic learning 

In the discriminative learning phase, the ensemble of classification classifiers (ECC) 

[14] are used to accomplish the task of multi label classification, and each of the binary 

classifier is implemented by SVM. Taking into account the semantic correlations 

between tags, ECC can classify images into multiple semantic classes, with a high 

degree of confidence and acceptable computational complexity. Furthermore, by 

learning the semantic relevance between labels, classifier chain can effectively 

overcome the problems of label independence in image binary classification. 

The classifier chain model consists of |L| binary classifiers, where L denotes the 

truth label set. Classifiers are linked along a chain where each classifier deals with the 

binary relevance problem associated with label lj∈L. The feature space of each linked 

in the chain is extended with the {0,1} label associations of all previous links. The 

training procedure is outlined in Algorithm 1 in the left of Table 1. Lastly, we can note 

the notation for a training example (x, S), where S⊆L and x is an instance feature 

vector.  

Hence a chain C1,C2,...,Ci of binary classifier is formed. Each classifier Cj in the 

chain is responsible for learning and predicting the binary association of label lj, which 

is given in the feature space and is augmented by all prior binary relevance predictions 

in the chain {l1, l2,..., lj-1}. The classification procedure begins at C1 and propagates 

along the chain C1 determines Pr(l1|x) and every following classifier C2,...,Cj predicts 



 

 

Pr(lj|xi,l1,l2,...,lj-1). This classification procedure is described in Algorithm 2 in the right 

of Table 1.  

Tabel 1. Training and prediction procedures of ensembles of                   

classifier chains for multi-label learning 

          

Processing  

Algorithm 1.                        
Training steps of classifier chain 

Algorithm 2.             

Classifying procedure ECC 

Input Training set I = {(x1,S1),(x2,S2),...,(xn,Sn)} Test example x. 

Output Classifier chains {C1,C2,...,C|L|} Y ={l1,l2,...,l|L|}. 

procedures   

1 For i∈1,2,...|L| Y←{} 

2 Semantic learning For i∈1,2,...,|L|   

3 I′←{} Do Y← Y ∪ (li←Ci:(xi,l1, l2,...lj-1)) 

4 For (x,S)∈I Return (x,Y) 

5 Do I′←I′∪((x,l1,l2,...,li-1),li)  

6 Train Ci to predict binary relevance of li  

7 Ci : I′→li ∈{0,1}  

This training method passes label information between classifiers, with classifier 

chain taken into account label correlations, so it overcomes the label independence 

problem of binary relevance method. However, classifier chain still remains 

advantages of binary relevance method including low memory and runtime 

complexity. Although |L|/2 features are added to each instance on an average, this item 

is negligible in computational complexity because |L| is invariably limited in practice. 

Different order of the chain clearly has a different effect on accuracy. This problem 

can be solved by using an ensemble framework with a different random train ordering 

for each iteration. Ensembles of classifier chains train m classifier chains C1, C2,...,Cm. 

Each Ck model is trained with a random chain which can order the L outputs and get a 

random subset of D. Hence each Ck model is likely to be unique and able to give 

different multi-label predictions. These predictions are summed by label so that each 

label receives a number of votes. A threshold is used to select the most popular labels 

which form the final predicted multi-label set. These predictions are summed by label 

so that each label receives a number of votes. A threshold is used to select the most 

popular labels which form the final predicted multi-label set. 

Each kth individual model predicts vector yk = (l1,l2,...,l|L|)∈{0,1}
|L|

. The sums are 

stored in a vector W = (λ1,λ2,...,λ|L|)∈
|L| 

,where λj is defined as λj = Σm  

k = 1lj∈yk. Hence 

each λj∈W represents the sum of the votes for label lj∈L. We then normalize W to 

Wnorm, which represents a distribution of scores for each label in [0,1]. A threshold is 

used to choose the final multi-label set Y such that lj∈Y where λj≥t for threshold t. 

Hence the relevant labels in Y represent the final multi-label prediction. 

4 Hybrid framework for image annotation 

On the deep model and ensembles of classifier chains, we propose a hybrid learning 

framework to address cross-modal semantic annotation problem between images and 

text with Multi-label. Fig. 2 shows two setups of the hybrid architecture approach for 



 

 

semantic learning based on deep learning. The first path (generative learning) feeds 

training image to the fine-tune pre-trained CNN step which is also called the feature 

learning phase, then in the discriminative learning phase, we utilize ensemble of 

classifier chains to model the visual vectors which are co-occurrence matrix consisting 

of texture and exacted visual features by pre-trained CNN model. This hybrid pipeline 

model is called Deep-CC image annotation system. 
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Fig. 1. The Pipeline of Image Annotation 

Bases on the learning feature, the trained CNN model output visual features after 

ReLU. Suppose that we have a set of images M = {m1,m2,...,mi}, this model extracts 

visual vectors by pre-trained CNN model and we denote the space of visual vectors as 

V={v1,v2,...,vi}, where vi denotes the visual vector of ith image. Noting the notation for 

a training example (vi,S), where S∈L, L denotes the label set and v is a feature vector. 

Then, by making use of the aspect distribution and original labels of each training 

image, we build a series of classifiers in which every word in the vocabulary is treated 

as an independent class. The classifier chain model implements the feature 

classification task and it can effectively learn the semantic correlation between labels 

in discriminative step. Finally, given a test image, the Deep-CC system will return a 

correlative label subset l∈L.  

As a comparison, we evaluate the deep feature’s performance from the AlexNet 

CNN on those same benchmarks. Following by [11], we choose 5 words with highest 

confidence as annotations of the test image. After each image in the database is 

annotated, the retrieval algorithm ranks the images labeled with the query word by 

decreasing confidence. 

5 Experiments and results 



 

 

In this section, we conduct experiments of our Deep-CC learning framework on both 

image classification and image auto-annotation. We choose a dataset Corel5K which 

is widely used in image classification and annotation. In order to make the experim- 

ental result more convinced, we simultaneously compare the experimental results with 

the existing traditional model and deep model

5.1 Datasets and Evaluation measures 

In order to test the effectiveness and accuracy of the proposed approach, we conduct 

our experiments on a baseline annotated image datasets Corel5K [3]. Corel5k is a 

basic comparative dataset for recent research works on image annotation. The dataset 

contains 5000 images from 50 Corel Stock Photo cds. We divided this dataset into 3 

parts: a training set of 4000 images, a validation set of 500 images and a test set of 

500 images. Like the Duygulu et al. [3], We divide separately the training set of 4500 

images and the test set of 500 images.  

Image annotation performance is evaluated by comparing the captions automatica- 

lly generated for the test set with the human-produced ground truth. It is essential to 

include several evaluation measures in multi-label evaluation. Similar to Monay et al. 

[11], we use mAP as evaluation measures. Naturally, we define the automatic 

annotation as the top 5 semantic words of largest posterior probability, and compute 

the recall and precision of every word in the test set.    

Table 2. Performance (mAP in %) comparison in terms of different methods and visual    

features algorithms on Corel5k. (The "-" means to use their method) 

Method 
Visual 

features 

Result on all words 
mAP 

Precision   Recall 

 

PLSA-WORDs 

- 

Fc7 

FT-fc7 

22.1     12.1 

27.5     21.7 

29.3     22.6 

19.1 

26.9 

27.3 

 

HGDM 

- 

Fc7 

FT-fc7 

32.1     29.3 

36.4     30.5 

37.6     32.9 

26.3 

29.7 

30.9 

DNN - 37.5     40.5 32.7 

Deep-CC(our) - 39.7     37.6   35.2 

5.2 Results for image annotation on Corel5K   

In this section, we demonstrate the performance of our model on the corel5k data set for 

image multi-label annotation, and compare the results with some existing image 

annotation methods, e.g. PLSA-WORDS [11], HGMD [9] and DNN [16]. We evaluate 

the returned keywords in a class-wise manner. The performance of image annotation is 

evaluated by comparing the captions automatically generated with the original manual 

annotations. Similar to Monay F et al. [11], we compute the recall and precision of 



 

 

every word in the test set and use the mean of these values to summarize the system 

performance.  
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Fig. 2. Comparison of annotations made by HGDM and Deep-CC on Corel5k  

Table 2 reports results of several models on the set of all 260 words which occur in 

the training set. Data in precision and recall columns denotes mean precision and mean 

recall of each word. The off-the-shelf CNN features (i.e. fc7 and FT-fc7 ) obtain 

significant improvements ( 7.8% based on PLSA-WORDS, 3.4% based on HGDM ) 

compared with these traditional feature learning methods. After fine-tuning, a further 

improvement (8.2% based on PLSA-WORDS, 4.6% based on HGDM) can be 

achieved with the best performance of the CNN visual features FT-fc7. 

Annotations of several images obtained by our Deep-CC annotation system are 

show in Fig. 2. We can see that annotations generated by Deep-CC are more accurate 

than HGDM in most cases. In order to be more intuitive to observe different 

precision-recall in various methods, the Fig. 3 presents the precision-recall curves of 

several annotation models on the Corel5k data set. As is shown in Fig. 3, Deep-CC 

performs consistently better than other models. Where the precision and recall values 

are the mean values calculated over all words.  

 

Fig. 3. Precision–recall curves of several models for image annotation on Corel5K 



 

 

5.3 Result analysis 

In summary, the experimental results on Corel5k show that Deep-CC outperforms 

many state-of-the-art approaches, which proves that the redesigned CNN and the 

hybrid framework is effective in learning visual features and semantic concepts of 

images. We compare the CNN visual features with traditional visual features for 

learning semantic concepts of images over two traditional learning approaches and a 

deep model. Especially, the comparison in terms of rigid and articulated visual features 

among Corel5k is shown in Table 2, from which it can be seen that CNN feature 

outperforms almost all the original hand-crafted features. To verify this assumption, 

different visual features between traditional models (also from the authors of this paper) 

and CNN mode, and FT-fc7 is executed to make an enhanced prediction for Corel5k . 

Incredibly, the mAP score on Corel5k can surge to 35.2% as shown in Table 2, which 

demonstrates the great dominance in the deep networks. To sum up, based on the above 

reported experimental results, we can see that CNN visual features are very effective 

for semantic image annotation. 

6 Conclusion 

In this paper, we utilize CNN model to learn deep visual features, and we redesign the 

last hidden layer for feature learning task, and in order to obtain high performance of 

feature representation, we first train our deep model on ImageNet, then the pre-trained 

parameters are fine-tuned on target dataset. We showed under what conditions each 

visual feature can perform better, and propose a hybrid architecture. We demonstrated 

that re-designed CNN model and ensembles of classifier chains can effectively 

improve annotation accuracy.  

In comparison to many state-of-the-art approaches, experimental results show that 

our method achieves superior results in the tasks of image classification and annotation 

on Corel5K. However, in the process of learning visual features, Deep-CC only 

employ single convolution neural network not fully understanding multiple instance 

in the image, and how to excavate the high-level semantic relevance between the tags, 

it can be deeply studied. In future research, we aim to take semi-supervised learning 

based on a large number of unlabeled data to improve its effectiveness. 
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