
HAL Id: hal-01614618
https://inria.hal.science/hal-01614618

Submitted on 11 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Validating Policies for Dynamic and Heterogeneous
Cloud Environments

Simeon Veloudis, Iraklis Paraskakis, Christos Petsos

To cite this version:
Simeon Veloudis, Iraklis Paraskakis, Christos Petsos. Validating Policies for Dynamic and Heteroge-
neous Cloud Environments. 17th Working Conference on Virtual Enterprises (PRO-VE), Oct 2016,
Porto, Portugal. pp.506-517, �10.1007/978-3-319-45390-3_43�. �hal-01614618�

https://inria.hal.science/hal-01614618
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

© Springer-Verlag Berlin Heidelberg

Validating Policies for Dynamic and Heterogeneous

Cloud Environments

Simeon Veloudis, Iraklis Paraskakis, and Christos Petsos

South East European Research Centre (SEERC), International Faculty of the University of

Sheffield, CITY College, 24 Proxenou Koromila St, 54622, Thessaloniki, Greece

{sveloudis, iparaskakis, chrpetsos}@seerc.org

Abstract. With the pervasion of cloud computing, virtual enterprises (VEs) are

anticipated to increasingly rely on ecosystems of highly distributed, task-

oriented, and collaborative cloud services for their operations. In order to man-

age the complexity inherent in such ecosystems, VEs are expected to increas-

ingly depend upon policies that regulate the deployment and delivery of these

services. Nevertheless, the heterogeneity inherent in cloud services hinders the

formulation of effective and interoperable such policies. This calls for a policy

validation mechanism that is able to automatically evaluate the correctness of

these policies. This paper proposes such a validation mechanism, one which is

underpinned by a generic representation of the knowledge that lurks behind pol-

icies and thus is orthogonal to any particular cloud service delivery platform.

Keywords: Virtual enterprises; cloud computing; policies; ontologies; Linked

USDL

1 Introduction

Cloud computing introduces a paradigm whereby infrastructure, platform, and appli-

cation resources are abstracted as services and delivered remotely over the Internet by

a multitude of providers [1], [2]. These services allow enterprises to realise significant

savings while accelerating, at the same time, the development and deployment of new

applications. Naturally, cloud computing is expected to impact the manner in which

enterprises cooperate in a distributed collaborative network [3]. In particular, activi-

ties accomplished in the frame of a virtual enterprise (VE) may include utilisation of

cloud services spanning different administrative domains and levels of capability

(IaaS, PaaS and SaaS). For example, consider the scenario (adapted from [4]) where-

by a scientific consortium is formed in order to collaboratively run a large cascade of

meteorological and hydrological computational models for flood forecasting. Such

processing utilises SaaS components offered by different consortium participants.

Each such component may be deployed on a participant’s proprietary infrastructure,

or on infrastructure provisioned as a cloud service (IaaS offering). The computation

also requires new specialised software that is developed on a software platform that is

too provisioned as a service (PaaS offering).

504 S. Veloudis et al.

Cloud-based VEs are therefore rapidly being transformed into complex ecosystems

of heterogeneous, externally-sourced services. As the number of these services in-

creases, keeping track of when and how they evolve over time, e.g. as a result of in-

tentional or unintentional changes, becomes an increasingly challenging process. The

situation is further perplexed by the dynamic nature of VEs as new enterprises may be

added or existing ones leave.

In order to deal with this complexity, VEs are anticipated to rely on policies that

regulate the deployment and delivery of cloud services. This calls for mechanisms

that are able to generically evaluate the conformance of services with these policies,

as well as to validate the correctness of the policies. We argue that, in order to deal

with the dynamic nature of cloud-based VEs, as well as with the heterogeneity of the

cloud services that they employ, these mechanisms must advocate a clear separation

of concerns whereby policies are expressed orthogonally to the code used for enforc-

ing them. This brings about a number of positive effects: (i) it keeps the mechanisms

independent of any particular cloud delivery platform; (ii) it enables them to deal with

a wide range of heterogeneous policies and services; (iii) it allows reasoning about

policy interrelations (e.g. conflicting or overlapping policies).

In this respect, in [5] we proposed SC
3
: a mechanism for automatically evaluating

the compliance of cloud services with preset policies concerning their business as-

pects of delivery. In this paper, we go a step further and propose a policy validation

mechanism for evaluating the correctness of the policies themselves. The mechanism

is underpinned by an ontology able to accurately capture the seminal characteristics of

the policies. By shifting the locus of effort from software development to the creation

of knowledge structures, our ontology introduces an extra layer of abstraction which

enables the formal representation of the concepts that lurk behind business policies. It

thereby disentangles the definition of policies from the code employed for enforcing

them. The proposed ontology draws upon Linked USDL [6] – an ontological frame-

work which readily provides the necessary structures for accommodating the required

concepts. Finally, it is to be noted that the proposed mechanism forms part of a broad-

er mechanism that is being developed as part of the PaaSword project [7] and which

aims at validating a wide range of policies, including security policies, in heterogene-

ous and dynamic cloud environments.

The rest of this paper is structured as follows. Section 2 presents related work. Sec-

tion 3 outlines a motivating usage scenario and presents a particular categorisation of

policies, namely state-oriented policies. Section 4 outlines an ontological model for

state-oriented policies and presents the policy validation mechanism. Section 5 pre-

sents conclusions and future work.

2 Related Work

Several works have attempted to address the shortcomings entailed by the lack of

separation of concerns between policy specification on the one hand, and policy

enforcement on the other [8,9,10,11,12,13,14]. These works generally utilise custom

languages, and ontologies, for capturing policies which are subsequently enforced at

Validating Policies for Dynamic and Heterogeneous Cloud Environments 505

run-time through a reference monitor. In [8], the authors propose PONDER – a

purpose-made domain specific language for modelling security and management

policies; [9,10,11] advocate the use of markup languages for the specification of

access control policies. However, such syntactic descriptions fail to capture the

knowledge that lurks behind policies: they are simply data models that lack semantic

interoperability.

Closer to our work are the approaches reported in [12,13,14]. These are based on

Semantic Web representations for representing the knowledge lurking behind action-

oriented policies, i.e. policies that regulate when an actor can perform a particular

action on a particular resource (see Section 3). In [12], the authors present KAoS – a

policy enforcement and governance framework which advocates a 3-layered

architecture consisting of: i) a human interface layer; ii) a policy management layer,

which captures policies in OWL; iii) a policy monitoring and enforcement layer,

which converts policies expressed in OWL to a programmatic format suitable for

policy enforcement. The work reported in [13] proposes Rei – a rule-based policy

framework that permits the declarative specification of heterogeneous policies. Rei

policies specify those actions that can be performed, and those actions that should be

performed, by a named entity. It therefore allows the specification of a desirable set of

behaviours which are understandable – and enforceable – by autonomous entities in

dynamic cloud environments. The work in [14], proposes POLICYTAB for

supporting trust negotiation in dynamic Web environments. POLICYTAB embraces

an ontology-based approach for capturing policies that guide a trust negotiation

process for providing regulated access to Web resources.

Although they do achieve, to different extents, a separation of concerns between

policy representation and policy enforcement, the approaches above rely on custom

ontologies for modelling policies. Despite the fact that such ontologies may be

suitable for capturing action-oriented policies, they generally lack the expressivity for

addressing the state-oriented business policies on which this work reports (see

Section 3). In this respect, instead of extending – or adapting – the ontologies defined

in [12,13,14], we opt for Linked USDL: an easily extensible and diffused vocabulary

of concepts and their associations that readily provides the necessary constructs for

capturing the seminal characteristics of state-oriented policies. In addition, the

reliance of the approaches in [12,13,14] on OWL [15], raises concerns about

performance when they are used for checking the compliance of increasing loads of

cloud services. Our work alleviates these concerns through the use of the lightweight

RDF-based [16] vocabulary offered by Linked USDL.

3 Policies For Cloud Service Quality Assurance

We are interested in determining, in a generic manner, a set of business constraints

that any service aspiring to be used by a VE must satisfy. In our framework, these

constraints take the form of business policies. Next we demonstrate such policies

through the example of Section 1. Let CPMeteo be a cloud delivery platform that

hosts various services for the flood forecasting computation. These services are

506 S. Veloudis et al.

developed either by the scientific consortium that performs these computations, or by

third-party providers. Suppose that an ecosystem partner, or third-party provider,

offers a new service to CPMeteo, call it Meteo@Cloud, which encrypts, stores and

provides access to intermediate results of the various phases of the flood forecasting

computation. For the new service to become available on CPMeteo, certain criteria

must be satisfied. These essentially represent a set of service-level objectives (SLOs)

that are expressed in terms of constraints on relevant service-level attributes; Table 1

summarises the service-level attributes, and their corresponding SLOs, considered for

the purposes of this example. These SLOs form CPMeteo’s business policy (BP) with

respect to deploying Meteo@Cloud. The BP additionally incorporates a set of service-

level profiles (SLPs). These are essentially sets of SLOs that formulate different

‘deployment schemes’ offered by CPMeteo. For instance, a ‘gold’ SLP may group

together the ‘gold’ SLOs of each of the service-level attributes of Table 1
1
.

Table 1. Entry-level criteria

Service-level

Attribute
Acceptable Values SLO Comments

storage

[100,1000) Gold storage

Size in TB [10,100) Silver storage

[1,10) Bronze storage

encryption

256 Gold encryption

Key-length in bits 192 Silver encryption

128 Bronze encryption

We assume that the service provider who offers Meteo@Cloud provides a service

description (SD) that specifies the manner in which Meteo@Cloud is to be offered

through CPMeteo. This SD must be compliant with CPMeteo’s business policy. For

instance, an SD which fails to specify a value for the storage attribute, or one

which specifies a value lesser than 1 TB, cannot be considered compliant with the BP.

3.1 State-oriented Policies vs Action-oriented Policies

The works in [11,12,13] focus on action-oriented policies, i.e. policies that control the

conditions under which an actor can perform an action on a particular resource.

Clearly, an indispensible ingredient of action-oriented policies is the specification of

the actor who initiates the action, as well as of the action itself. The ontologies

proposed in [11,12,13] naturally provide constructs for the specification of these in-

gredients. In contrast, as it becomes evident from Section 3.1, the kind of policies that

1 Of course, the number of SLPs offered by CPMeteo, and the SLOs that these comprise, is an

application-specific issue determined by CPMeteo itself. For instance, CPMeteo may choose

to define a ‘gold’ SLP as an SLP that comprises either ‘gold’-only SLOs, or two ‘gold’ and a

‘silver’ SLO; alternatively, it may choose to define the latter grouping as a ‘silver’ SLP.

Validating Policies for Dynamic and Heterogeneous Cloud Environments 507

our framework focuses on does not place any emphasis on specifying the actor that

potentially initiates a particular action, or on the nature of the action itself: the actor

may be any service provider, whereas the action is invariably the on-boarding of a

service on a cloud service delivery platform. Our business policies predominantly

focus on the conditions that must be met for a service to be on-boarded on such a

platform. These conditions entail a set of artefacts that an SD must encompass. In this

respect, they essentially formulate a set of guaranteed states which are represented

through the SLOs and the SLPs that the business policies comprise. We shall term

such policies state-oriented. Clearly, such a shift in focus from action-oriented to

state-oriented business policies calls for a novel approach to the ontological modelling

of policies, one which provides the necessary constructs for representing the artefacts

that an SD must encompass. In this paper we propose such an approach based on

Linked USDL [6]: an ontology framework which provides the necessary concepts for

capturing SLPs and SLOs. In the following section we provide an outline of our

approach. A brief account of the reasons that lead us to opt for Linked USDL is first

in order.

3.2 Linked USDL

Linked USDL is a re-modelled version of USDL [17]. It draws upon the experience

gained with USDL, as well as with other research efforts in the realm of Semantic

Web Services and business ontologies [18], [19]. It builds upon the principles of

Linked Data in order to endorse its use in a ‘web of data’. In this respect, it models

specifications in an RDF vocabulary that better supports the generic representation of

web and cloud services. The adoption of Linked USDL brings about the following

advantages [19]. Firstly, its reliance on existing widely-used RDF vocabularies, such

as GoodRelations [21] the Simple Knowledge Organization System (SKOS) ontology

[22], and FOAF [23]. In this respect, it promotes knowledge sharing whilst it increas-

es the interoperability, and thus the reusability and generality, of our security policies.

Secondly, by offering a number of different profiles, Linked USDL provides a holistic

and generic solution able to adequately capture a wide range of business details. In

addition, Linked USDL is designed to be easily extensible through linking to further

existing, or new, ontologies.

4 Representation and Validation of State-oriented Policies

Linked USDL comprises a Core schema which in our model encodes certain invaria-

ble characteristics of a BP. From this Core schema a number of extension schemata

hinge addressing diverse business aspects of a BP, such as pricing, SLA, security, and

IPR; for the purposes of this paper, we focus on the SLA schema. Sections 4.1 and 4.3

below describe, with reference to the scenario of Section 3.1, how state-oriented

policies are modelled within the Core and SLA schemata respectively. Sections 4.2

and 4.4 describe how the correctness of state-oriented policies is evaluated by the

policy validation mechanism.

508 S. Veloudis et al.

4.1 Linked USDL Core

We use Linked USDL’s Core schema in order to formally capture the following two

facts about a BP: (i) the identity of the business entity which is responsible for defin-

ing the BP (i.e. CPMeteo, in the case of the scenario of Section 3.1); (ii) the role in

the capacity of which this business entity acts when defining the BP. To this end, we

utilise the USDL Core classes and properties depicted in Figure 1
2
.

Fig. 1. Linked USDL Core classes, interrelations and instances

More specifically, a BP is identified by an instance of the USDL Core class Ser-

viceModel. For example, in the scenario of Section 3.1, the BP is identified by the

instance BP-CPMeteo depicted in Figure 1. In fact, BP-CPMeteo is an instance of

a particular subclass of ServiceModel, namely of the subclass Service-

ModelCPMeteo, which is specifically introduced into our model for accommodat-

ing all of CPMeteo’s BPs
3
. Now, in order to capture the aforementioned two facts we:

1. Associate the instance BP-CPMeteo with an instance, say EntityCPMeteo, of

the class EntityInlvolvement through the property hasEntityInvolve-

ment.

2. Associate the instance EntityCPMeteo with the instance CPMeteo of the class

gr:BusinessEntity via the property ofBusinessEntity. Note that the

instance CPMeteo identifies the business entity which is responsible for defining

the BP.

2 This is by no means the complete set of the classes and properties offered by USDL Core,

but rather an appropriate subset discerned for the purposes of this paper. Note that in order

to reduce notational clutter we avoid specifying namespaces for classes and properties, un-

less a class or property comes from an external ontology (e.g. the GoodRelations ontology).

In addition, the following conventions are used in the figures of this paper: a class is repre-

sented by an oval; a property is represented by an arrow decorated with the name of the

property; a subclass relation is represented by an arrow decorated with the subset symbol

(⊆); instance-class associations are represented with perforated lines.
3 Although we concentrate here on a single BP, CPMeteo may be associated with a number of

different BPs, each represented by a distinct instance of the class ServiceModelCP-

Meteo.

Validating Policies for Dynamic and Heterogeneous Cloud Environments 509

3. Associate the instance EntityCPMeteo with the instance Intermediary of

the class BusinessRole via the property withBusinessRole. Note that the

instance Intermediary identifies the role in the capacity of which CPMeteo

acts when defining the BP.

By virtue of steps 1 and 2 above, and the transitivity of object properties, the instance

BP-CPMeteo is associated (indirectly) with the instance CPMeteo, thus identify-

ing the business entity responsible for defining BP-CPMeteo. Similarly, by virtue of

steps 1 and 3 above, BP-CPMeteo is associated with the instance Intermedi-

ary, thus identifying the role in the capacity of which CPMeteo acts when defining

BP-CPMeteo.

4.2 Validating the Core Portion of a BP

Our aim is to verify that the Core portion of a BP correctly captures the two facts

mentioned in Section 4.1, namely the business entity responsible for defining the BP,

as well as the role in the capacity of which this business entity acts when defining the

BP. First, however, we need to ensure that there indeed exists an instance of the class

ServiceModel which identifies the BP. To this end, the policy validation mecha-

nism uses the Apache Jena Java API in order to obtain all those resources that are

defined as subclasses of the class ServiceModel, as well as all the instances that

are encompassed in these subclasses. The mechanism then ensures that there exists

exactly one instance in the subclass ServiceModelCPMeteo (i.e. the BP-

CPMeteo instance of Figure 1) which identifies the BP.

Turning next to verifying that the BP correctly captures the two facts mentioned in

Section 4.1, the validation mechanism uses again the Jena Java API in order to check

that: i) BP-CPMeteo is associated with exactly one instance of the class En-

tityInvolvement via the hasEntityInvolvement property; ii) this En-

tityInvolvement instance is associated with the instance CPMeteo of the class

gr:BusinessEntity, and with no other instances from that class; iii) the same

EntityInvolvement instance is associated with the instance Intermediary of

the class BusinessRole, and with no other instances from that class. In case any

of these checks fails, the validation process fails.

4.3 Linked USDL SLA

USDL SLA provides an adequate ontological framework for modelling the

knowledge that lurks behind a BP, i.e. the particular characteristics that a service must

exhibit in order to be on-boarded on a cloud platform. As discussed in Section 3, these

characteristics are formulated in terms of SLPs and SLOs. Below we outline how

these SLPs and SLOs are modelled in USDL SLA
4
.

4 The modelling of SLPs and SLOs in Linked USDL was presented in [5]; it is repeated here

for completeness. Recall from Section 3 that SLOs express entry-level criteria that must be

510 S. Veloudis et al.

Fig. 2. Linked USDL SLA framework

SLPs are expressed as instances of the USDL SLA ServiceLevelProfile

class (see Figure 2). For example, the SLPs of the scenario of Section 3.1 are

expressed as instances of a particular subclass of the class ServiceLevelPro-

file, namely SLP-CPMeteo, which encompasses all SLPs offered by CPMeteo.

Thus, the instance SLP-Gold depicted in Figure 2, represents CPMeteo’s ‘gold’

profile. The class SLP-CPMeteo is associated with the BP (i.e. with the instance

BP-CPMeteo that identifies the BP) through the property hasSLPCPMeteo (see

Figure 2). This is a sub-property of the USDL SLA property hasServiceLev-

elProfile which associates the USDL Core class ServiceModel with the

USDL SLA class ServiceLevelProfile.

As reported in Section 3.1, each SLP comprises an SLO for each of the service-

level attributes of Table 1. In our framework, the SLOs corresponding to a particular

attribute are expressed as instances of a suitable subclass of the USDL SLA Guar-

anteedStates class (see Figure 2). For example, the SLOs of the attribute stor-

age, i.e. the ‘gold storage’, ‘silver storage’, and ‘bronze storage’ SLOs of Table 1,

appear as instances of the subclass SL-Storage (for instance the instance SL-

GoldStorage depicted in Figure 2)
5
. An SLP is related to the SLOs that it

satisfied in order for a service to be on-boarded on CPMeteo. Also recall that SLPs are

groupings of SLOs that represent different ‘deployment packages’ offered by CPMeteo.
5 Similarly, the SLOs of the encryption attribute, i.e. the ‘gold encryption’, ‘silver en-

cryption’, and ‘bronze encryption’ SLOs of Table 1, appear as instances of an analogous

subclass, say SL-Encryption (not shown in Figure 2).

Validating Policies for Dynamic and Heterogeneous Cloud Environments 511

comprises through suitable sub-properties of the property hasServiceLevel. For

instance, an SLP is associated with the SLOs of the storage attribute through the

sub-property hasSLStorage; in Figure 2, this sub-property interrelates the instanc-

es SLP-Gold and SL-GoldStorage.

Now, each SLO is expressed in terms of a service-level expression (SLE) which

articulates those conditions that must be met for the SLO to be achieved. An SLE is

represented as an instance of an appropriate subclass of the class

ServiceLevelExpression (see Figure 2). For instance, the SLEs corresponding

to the storage SLOs take the form of instances of the class SLE-Storage (cf.

SLE-GoldStorage of Figure 2). SLOs are related to their SLEs through suitable

sub-properties of the property hasServiceLevelExpression. For instance, the

storage SLOs are related to their SLEs via the property hasSLEStorage depicted

in Figure 2.

Finally, each SLE is associated with a variable that represents a certain attribute

and is linked with an allowable range of values. Following a symmetrical approach to

the one provided for SLOs and SLEs, variables take the form of instances of suitable

subclasess of the class USDL SLA Variable class. Similarly, value ranges take

the form of instances of suitable subclasses of the class gr:Quantitative

ValueInteger. Figure 2 illustrates these subclasses (Var-Storage,

AllowedStorage), and instances (Var-GoldStorage, Val-GoldStorage),

for the ‘gold’ storage attribute. SLEs bind their constituent variables through sub-

properties of the property hasVariable (e.g. the hasVarStorage sub-property

of Figure 2). Similarly, variables are linked to their allowable value ranges through

sub-properties of the property hasDefaultQuantitativeValue (e.g. the

hasDefaultStorage sub-property of Figure 2).

4.4 Validating the SLA Portion of a BP

Two main methods are involved in the validation of the SLA portion of a BP: (i) a

parsing method which constructs a programmatic representation of the framework

described in Section 4.3; (ii) a policy validation method which performs the necessary

correctness checks.

Programmatically Representing the SLA Portion of a BP. Each of the USDL-SLA

classes depicted in Figure 2 is represented programmatically in terms of an appropri-

ate in-memory data structure. Subsequently, for each such class 𝑆 , the validation

mechanism discovers all the domain-specific subclasses 𝐶 of 𝑆 that are encompassed

in the BP. It then populates the data structure corresponding to 𝑆 with these sub-

classes. For example, it populates the data structure corresponding to the USDL-SLA

class ServiceLevelProfile with the SLP-CPMeteo subclass and the data

structure corresponding to the USDL-SLA class ServiceLevel with the SL-

Storage subclass. The same applies for the data structures corresponding to the rest

of the USDL SLA classes depicted in Figure 2. Each discovered subclass 𝐶 is also

represented programmatically in terms of an appropriate in-memory structure. For

512 S. Veloudis et al.

each such subclass 𝐶, the validation mechanism proceeds to discover all those proper-

ties that are defined in the BP, along with their linked ranges, which happen to have

as the subclass 𝐶 as their domain. It then populates the data structure corresponding to

𝐶 with these properties. These properties are effectively all the sub-properties of the

USDL SLA properties that are encountered in the BP. By the end of this process, we

have a complete in-memory representation of the model depicted in Figure 2.

Validating the SLA Portion of a BP. The policy validation method operates on the

in-memory data structures constructed by the parsing method above. More specifical-

ly, it checks that: (i) at least one instance exists in each of the subclasses of the Ser-

viceLevelProfile class (e.g. the instance SLP-Gold depicted in Figure 2); (ii)

the instance BP-CPMeteo (that identifies the BP) is associated with such an instance

through a sub-property of the property hasServiceLevelProfile. Subsequent-

ly, the validation method checks that: (i) each SLP instance is associated with at least

one SLO instance, i.e. with at least one instance from the subclasses of the Guaran-

teedStates class that were discovered by the parsing process; (ii) these associa-

tions take place through distinct sub-properties of the USDL SLA property hasSer-

viceLevel. In an entirely symmetrical manner, the validation mechanism then

checks that: (i) each SLO (i.e. each subclass of the class GuaranteedStates) is

associated with at least one SLE (i.e. with at least one subclass of ServiceLev-

elExpression) via a distinct sub-property of hasServiceLevelExpres-

sion; (ii) each SLO instance is associated with at least one SLE instance. An analo-

gous set of checks applies for the associations between SLEs and variables. Further-

more, the mechanism checks that there exists an one-to-one correspondence between

variables and quantitative (or qualitative) values. In addition, it checks that: (i) all

quantitative value instances are associated with minimum and maximum values via

the properties gr:hasMinValueInteger, gr:hasMaxValueInteger; (ii)

each quantitative value instance is associated with an appropriate unit of measurement

via gr:hasUnitOfMeasurement.

Testing the Validation Mechanism

In order to increase our assurance on the policy validation mechanism, a test harness

has been developed for potentially discovering invalid BPs that may go undetected by

the mechanism. The harness automatically injects errors into the BP and observes

whether these are detected by the validation mechanism. More specifically, for every

triple 𝑇 in the BP, it extracts the subject TS, the predicate TP, and the object TO, of 𝑇.

It then generates a new triple 𝑇’ by introducing an error in TS (e.g. a typo) and runs the

validation mechanism with 𝑇 being replaced by 𝑇′. It follows the same procedure for

TP and TO. The test harness revealed a number of bugs that led to failure in detecting

certain erroneous BPs. For example, a significant bug that was discovered was that

the validation mechanism failed to check whether certain object properties intercon-

necting instances in the BP were in fact sub-properties of the correct Linked USDL

properties.

Validating Policies for Dynamic and Heterogeneous Cloud Environments 513

5 Conclusions and Future Work

We have presented a policy validation mechanism which automatically assesses the

correctness of state-oriented policies. This ensures that cloud services are checked for

compliance against correctly-formed policies. We believe that such a mechanism is a

vital ingredient of any framework aspiring to provide policy-based quality assurance

of cloud services. Our policy validation mechanism has been used in conjunction with

the SC
3
 mechanism that we have developed for evaluating the quality of cloud

services. Both mechanisms have been successfully used for assessing CRM services

on-boarded on an exising commercial cloud application platform – namely the CAS

Open platform [18].

As part of future work, we intend to extend our mechanism to cover a wider range

of policies including action-oriented policies. Such an extension will enable us to

model policies articulating the actions that need to be taken in case one or more SLOs

are violated (or are about to be violated) during the consumption of a service. In

addition, we are already extending our mechanism to cope with context-aware

security policies in highly-dynamic and heterogeneous cloud environments.

Acknowledgements. The research leading to these results has received funding from

the European Union’s Horizon 2020 research and innovation programme under grant

agreement No 644814.

6 References

1. Foster, I., Zhao, Y., Raicu, I. Lu, S.: Cloud Computing and Grid Computing 360-Degree

Compared. IEEE Grid Computing Workshop 2008. IEEE, pp.1--10, (2008)

2. Cloud Computing Reference Architecture. Technical report, NIST (2011)

3. Veloudis, S., Paraskakis, I., Friesen, A., Verginadis, Y., Patiniotakis, I., Rossini, A.: Contin-

uous Quality Assurance and Optimisation in Cloud-based Virtual Enterprises. In Camarin-

ha-Matos, L.M., Afsarmanesh, H. (eds.) PRO-VE 2014. LNCS, vol 434, pp. 621--632,

Springer, Heidelberg (2014)

4. Yi, S.: Virtual Organization Based Distributed Environmental Spatial Decision Support Sys-

tems: Applications in Watershed Management. PhD Thesis, Michigan State University,

3348219 (2008)

5. Veloudis, S., Paraskakis, I., Petsos, C.: Cloud Service Brokerage: Strengthening Service Re-

silience in Cloud-Based Virtual Enterprises. In Camarinha-Matos et al. (eds.) PRO-VE

2015. LNCS, vol 463, pp. 122--135, Springer, Heidelberg (2015)

6. Linked USDL, http://www.linked-usdl.org/

7. PaaSword project, http://www.paasword.eu/

8. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification Language.

In Sloman, M., Lobo, J., Lupu, E. (eds.) Proceedings of the International Workshop on Pol-

icies for Distributed Systems and Networks (POLICY '01), pp. 18--38, Springer-Verlag,

London (2000)

9. eXtensible Access Control Markup Language (XACML) Version 3.0. 22 January 2013.

OASIS Standard. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

http://www.linked-usdl.org/
http://www.paasword.eu/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

514 S. Veloudis et al.

10. Security Assertions Markup Language (SAML) Version 2.0. Technical Overview 25 March

2008. OASIS Standard. https://www.oasis-open.org/committees/download.php/27819/sstc-

saml-tech-overview-2.0-cd-02.pdf (2008)

11. WS-Trust 1.3. 19 March 2007. OASIS Standard. http://docs.oasis-open.org/ws-sx/ws-

trust/200512/ws-trust-1.3-os.doc (2007)

12. Uszok, A., Bradshaw, J., Jeffers, R., Johnson, M., Tate, A., Dalton, J., and Aitken, S.: KAoS

Policy Management for Semantic Web Services. IEEE Intel. Sys. 19, 4, 32--41 (2004)

13. Kagal, L., Finin, T., Joshi, A.: A Policy Language for a Pervasive Computing Environment.

In 4th IEEE Int. Workshop on Policies for Distributed Systems and Networks (POLICY

'03), pp. 63--74, IEEE Computer Society, Washington, DC (2003)

14. Nejdl, W., Olmedilla, D., Winslett, M, Zhang. C.C.: Ontology-Based policy specification

and management. In Gómez-Pérez, A. and Euzenat, J. (eds.) ESWC'05, pp. 290-302,

Springer-Verlag, Berlin, Heidelberg (2005)

15. OWL Web Ontology Language Reference. W3C Recommendation. 10 February 2004.

http://www.w3.org/TR/owl-ref/

16. RDF 1.1 XML Syntax. W3C Recommendation. 10 February 2004.

http://www.w3.org/TR/rdf-syntax-grammar/

17. Barros, A. and Oberle, D.: Handbook of Service Description: USDL and its Methods,

Springer (2012)

18. Cardoso, J., Pedrinaci, C., Leidig, T., Rupino P. and Leenheer, P.: Foundations of Open Se-

mantic Service Networks. International Journal of Service Science, Management, Engineer-

ing, and Technology, vol. 4, no. 2, 1-16 (2013)

19. Cardoso, J., Pedrinaci, C., Leidig, T.: Linked USDL: a Vocabulary for Web-scale Service

Trading. In 11th Extended Semantic Web Conference (ESWC) (2014)

20. GoodRelations: The Professional Web Vocabulary for E-Commerce.

http://www.heppnetz.de/projects/goodrelations/

21. SKOS Simple Knowledge Organization System. http://www.w3.org/2004/02/skos/

22. The FOAF Project. http://www.foaf-project.org

23. CAS CRM, http://www.cas-crm.com/

http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.doc
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.doc
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.heppnetz.de/projects/goodrelations/
http://www.w3.org/2004/02/skos/
http://www.cas-crm.com/

