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Abstract. Taxi trip duration affects the efficiency of operation, the satisfaction 

of drivers, and, mainly, the satisfaction of the customers, therefore, it is an im-

portant metric for the taxi companies. Especially, knowing the predicted trip du-

ration beforehand is very useful to allocate taxis to the taxi stands and also finding 

the best route for different trips. The existence of hyperconnected network can 

help to collect data from connected taxis in the city environment and use it col-

laboratively between taxis for a better prediction. As a matter of fact, the exist-

ence of high volume of data, for each individual taxi, several models can be gen-

erated. Moreover, taking into account the difference between the data collected 

by taxis, this data can be organized into different levels of hierarchy. However, 

finding the best level of granularity which leads to the best model for an individ-

ual taxi could be computationally expensive. In this paper, the use of metalearn-

ing for addressing the problem of selection of the right level of the hierarchy and 

the right algorithm that generates the model with the best performance for each 

taxi is proposed. The proposed approach is evaluated by the data collected in the 

Drive-In project. The results show that metalearning helps the selection of the 

algorithm with the best performance.  

Keywords: Hyperconnected World, Machine Learning, Metalearning, Data 

Mining, Intelligent Transportation Systems, Collaborative Data Analysis 

1 Introduction 

Hyperconnectivity is used to define the interconnectedness of people, organizations, 

and objects which result from different technology innovations like the Internet, mobile 

technology and the Internet of Things (IoT) [1]. The hyperconnectivity exists not only 

in the communication between people but also in the connectivity of cars [2]. In addi-

tion, to make the travel and transportation more efficient and more comfortable, the 

hyperconnectivity is the main driver of innovation [3]. 

On the other hand, the transportation system is clearly overloaded by congestion in 

the major cities. For example in the city center of London, the average speed of cars is 

14 km/h [4] while the car's speed in the city center of Moscow is around 6km/h [5]. 

Positively, this can be an opportunity to improve interconnectedness of cars in the city 
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environment. These cars can be parts of the communication infrastructure for the Intel-

ligent Transportation Systems (ITS) and also offer various opportunities for gathering 

data about a city by continually sensing events from streets and process sensed data. 

Therefore, utilizing vehicular networks as an infrastructure for urban sensing is a 

cost-efficient way of deploying an urban monitoring system without actually deploying 

connected sensors [6] (Fig. 1 shows a snapshot of the communication between moving 

cars within the city of Porto). Vehicles typically do not have energy constraints. There-

fore, cars can be equipped with powerful wireless transmitters, processing units, and 

sensing devices (vibration sensors, GPS, video cameras, detectors, acoustic detectors, 

car sensors, etc.).  

Thousands of cars which are networked together using wireless communication are 

able to connect us to a seemingly unlimited data gathered from the city environment. 

The gathered data can be processed and visualized live, enabling monitoring activities 

(Fig. 1) and better decision making. However, this data can also be serve as the basis 

for predictive models that can be an informative tool for the decision support systems 

one step further. Given the availability of the massive amount of data which is geo-

graphically distributed, data mining approaches are being used to obtain models for all 

parts of the city that are integrated into ITS applications [7, 8, 9, 10, 11, 12, 13, 14].  

One of the interesting examples of ITS applications is the prediction of trip duration 

for public transportation [15, 16, 17]. Knowing the prediction of trip duration before-

hand can be very instructive for taxi companies, passengers, and drivers to make the 

right decision for the route planning and scheduling by using the data collected about 

the taxi's trips by each taxi. Fig. 1 shows a snapshot of exchanged messages between 

taxis in the city of Porto. 

 

Fig. 1. A snapshot showing exchanged messages between taxis in the city of Porto [18] 

Machine learning algorithms by using the data collected by taxis relate the trip du-

ration to several data features which describe the trip like the time of the trip, origin, 
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destination, the weather, and the week's day. The prediction of duration of the trip may 

vary from one taxi to another, due to differences in the taxi usage, the brand of the 

vehicle, the driving habits, and the route.  

In addition, taking advantage of the massive amount of gathered data, the possibility 

of having a more specific model for an individual taxi instead of a global model for all 

taxis in the traditional data mining approaches is a reality in the current hyperconnected 

transportation system. 

However, this is not true for all taxis due to the lack of existence of enough data for 

creating an accurate model for all taxis. For example, in a sparse area of the city, like 

the area indicated in Figure 1 with a circle, only a few observations is available for 

modeling. In this case, a collaborative data modeling would be a good solution to im-

prove the quality of the model by using the data from other sources. The previous results 

[19, 20] confirm that there is potential in sharing data in the process of learning local 

models. For the prediction of the trip duration, different taxis can use different data like 

taxi's data, data from taxi's neighbors, data collected at the roadside unit, or the data 

which is collected throughout the city (different dimensions). Further, collaborative 

data modeling may improve the quality of the prediction in the cost of data communi-

cation.  

On the other hand, various algorithms have been introduced which can be used for 

the prediction of trip duration. However, their performance varies and therefore causes 

several challenges. One of the important challenges in the area of data mining is that to 

discover for a specific problem which algorithm has the best performance. Yet, it has 

already been shown that there is no unique algorithm in which it has the best perfor-

mance for a broad problem domain [21]. Therefore, the problem of algorithm selection 

is done either based on expert advice or a trial-and-error approach. Neither way is ut-

terly satisfactory for the end user who wishes to access the technology cost-effectively 

[22].  

A metalearning approach [23] is used in this paper to deal with these problems: 1) 

which algorithm should be used, and 2) when and with whom the data should be shared. 

Metalearning uses a machine learning algorithm to relating the algorithm's performance 

to the data characterization. The contribution is also extended to 3) applying this col-

laborative data analysis to the problem of estimating of the taxi trip duration using the 

taxi dataset which is obtained from the Carnegie Mellon (CMU) Portugal project, 

DRIVE-IN (Distributed Routing and Infotainment through Vehicular Inter-Network-

ing) [24]. We also 4) discuss the use of this approach for other applications including 

manufacturing of products and supply chain management. 

The rest of the paper is organized as follow. Section 2 explains the proposed ap-

proach and the results of the experiment. An extension of the approach is discussed in 

Section 3. Finally, Section 4 concludes the paper. 
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2 An Example of Collaborative Data Analysis in 

Hyperconnected Transportation System 

In this section, a collaborative data analysis (Section 2.2) is introduced and applied to 

a dataset from hyperconnected transportation system (Section 2.1). Then, the proposed 

approach is evaluated on the dataset and the results are presented in Section 2.3. 

2.1 Taxi Data 

The data is collected from a large-scale scenario [24], from taxis in the city of Porto.  

Porto has an area of 41.3 km2 , and contains 965 km of roads which make it the second 

largest city in Portugal. It has with more than one million inhabitants and is in a center 

of a metropolitan area. There are 441 taxis and 63 taxi stands in the city. Each taxi has 

a GPS receiver and can collect the log about each trip. The dataset consists of 5 months 

in 2013 for all the taxis. The dataset contains 13 data features characterizing events 

[24]. 

As an example of the scenario where the data is collected, Figure 2 shows a snapshot 

of the taxis placements in the city of Porto. The green dots show the taxi positions in 

the city. The communication range for two taxis (red and black) is also shown by purple 

circles. 

 

Fig. 2. Illustrative map of Porto, Portugal. The green dots are the initial taxi placement. The 

communication range for the red and the black taxi is shown by a purple circle around them. 
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There are five months data in 2013. Table 1 shows the number of taxis and the average 

number of observations for each taxi in each month. There are around 440 taxis and on 

average, there are between 1238-1484 observations for each taxi. The fourth and fifth 

columns also show the minimum and the maximum number of observations per each 

taxi, respectively. As it can be seen, there are taxis with few examples (2-14 

observations). In these cases, data aggregation to use data from other taxis may be 

useful for modeling. 

Table 1. A simple statistics about Taxi dataset 

Month No. Of Taxis Average 

number of 

observations 

per each taxi 

Minimum 

number of 

observations 

per each taxi 

Maximum 

number of 

observations 

per each taxi 

201302 443 1238.5 2 2467 

201303 443 1356.6 6 3452 

201304 446 1302.7 14 2824 

201305 443 1484.9 2 3165 

201306 442 1385.7 6 3037 

2.2 Collaborative Data Analysis 

As mentioned earlier, to improve the problem of algorithms selection and collaborative 

data modeling, we propose a metalearning approach which helps to select the right 

algorithm and the right part of data space for each individual taxi. In this section, we 

briefly describe the methodology which is summarized in Figure 3. 

 

Fig. 3. Methodology used for a collaborative data analysis in hyperconnected transportation 

systems 

The data collection is done within the DRIVE-IN project [24] (see Section 2.1). Then, 

the dataset is organized in hierarchy structure using two levels of hierarchy: the data 

associated with a taxi as local data and the data for the whole month as global data.  

 

In the proposed model, at the first level, each taxi (�� ) makes a category, ���, ∀� ∈
{1, … , ��} where �� is the number of taxis. The level two has only one category joining 

all the data from 440 taxis. 

After forming the dataset in a customized format, �� = ��� , ��
� , ���, ∀� ∈

{1, … ,440}, ∀� ∈ {1,2}, it is passed to the base-level experiment. In the next step, each 

algorithm is applied on the data from both levels for each taxi.  
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At the base-level, four machine learning algorithms are applied to the data: support 

vector machines (SVMs) [25, 26, 27], random forest [25, 26, 27], decision tree [31, 32, 

33], and linear regression [31, 32]. As a result, there are several performance indicators 

for each taxi: ����  which indicates the performance of the algorithm � at level � for taxi 

�. 
���

� : ∀! ∈ {1, … ,4}, ∀� ∈ {1,2}, ∀� ∈ {1, … ,440}   (1) 

Where ! indicates the algorithms, � shows taxis, and � stands for levels. 

In addition, for each taxi and at each level of the hierarchy, the metafeatures are calcu-

lated.  

There are 31 metafeatures in which they describe the dataset's structure. All the met-

afeatures that we used are briefly described in [36]. In general "#�
�
 is the value of the 

metafeatures for the taxi � at the level �. By comparing the performance indicators at 

the base-level for each taxi, the best one is selected according to the Eq. 2: 

�$%&'( = max�,� (���
� ) , ∀! ∈ {1, … ,4}, ∀� ∈ {1,2}   (2) 

The metadata consists of the taxi identification, metafeatures for both levels and the 

best performance indicator obtained from Eq. 2. 

�� , "#��, "#�., �$%&'(    (3) 

The purpose of the metalearning is to discover the best algorithm and level to obtain 

the best performance. Consequently, the meta-level experiment maps the extracted met-

afeatures to the best performance obtained at the base-level (target variable at the meta-

level). 

Finally, the proposed model can recommend an algorithm and a level for each taxi that 

by applying the recommended algorithm on the suggested level, the best performance 

can be obtained (see Eq. 4). 

/0123 ��456: ��           (4) 

/0123 056456: {7280""2�121 32923 (�), 7280""2�121 :3�07�6ℎ" (�)} 

More detail about the methodology used to obtain the results is presented in [36]. 

2.3 Evaluation 

Base-level evaluation. The problem of prediction of the trip duration at the base-level 

is a regression problem. Each trained model tries to predict the trip duration. This eval-

uation of the prediction is done by the Normalized Root-Mean-Square-Error (NRMSE). 

RMSE is a routinely used metric which indicates the differences between the actual 

observed value and the predicted value by a machine learning model. In addition, the 

NRMSE is calculated using the RMSE divided by the standard deviation (std) of the 

predicted variable (See Equations 5 and 6). We use the hydroGOF package [37] in R 

[38] to calculate the NRMSE. 

</=> = ?∑(A'BC DA'()E
FG     (5) 

H</=> = 100 ∗ JKLM
N     (6) 
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Where �� is the number of predictions, O is the std of the prediction values, �6�  is the 

real trip duration, and �6PC  is the predicted trip duration. Considering the NRMSE val-

ues, the algorithm with the lowest NRMSE is chosen as the best one for each taxi and 

is used at the meta-level. 

Meta-level evaluation. The proposed framework at the meta-level predicts an algo-

rithm and a level of granularity which have the lowest NRMSE for a selected taxi. As 

a result, the meta-level problem is a classification problem. This prediction is made 

based on metafeatures which describe the characterization of the dataset. 

At the meta-level, the performance of the framework is evaluated by the accuracy of 

the model. Moreover, the performance of the proposed framework is also evaluated by 

comparing to the possible range of base-level performance. =8:321%QQRQ  is a metric that 

shows the relative NRMSE of the metalearning framework with respect to the best and 

the worst NRMSE at the base-level. It is calculated by the following equation: 

=8:321%QQRQ = SJKLMTUDSJKLMV
SJKLMWDSJKLMV    (7) 

Where H</=>KX  is the NRMSE of the metalearning framework, H</=>Y  is the best 

NRMSE and H</=>Z is the worst NRMSE at the base-level. Therefore, the range of 

=8:321%QQRQ  is from 0 to 1. Furthermore, a lower =8:321%QQRQ  shows a better perfor-

mance at the meta-level. 

2.4 Is Collaborative Data Analysis Useful? 

In this section, we sum up the obtained results from the evaluation part of our method-

ology. 

Base-level results. As previously mentioned (Section 2.3), the performance of the base-

level is evaluated by NRMSE.  Figure 4-(a) is the box-plot of the average NRMSE for 

each taxi for each month. It is clear that the NRMSE is less than 5% for all months. The 

average NRMSE is approximately 1% for each month. So, the base-level error is around 

1% on average which sounds significantly good. These results show that at the base-

level, the models can predict the trip duration very precisely. 

Meta-level results. As discussed previously (Section 2.3), our metric to evaluate the 

meta-level results is =8:321%QQRQ . Figure 4-(b) shows this metric on average for all 

months. As it can be seen, the =8:321%QQRQ  is about 30% in the worst scenario and 

around 5% for the best one. The meta-level results (the blue line) are much better than 

the baseline results (the green line). The baseline is the majority best solution at the 

base-level which is a combination of an algorithm and a level for each taxi that has the 

best performance. Generally speaking, the results show that during the raining months 

(February to April) in Porto, when there are more taxi trips in the city, the meta-level 

is more accurate than the months that there are fewer taxi trips (May and June) due to 

lack of enough data for building a model. In this case, it is recommended to use the 

global model to have an accurate model. 
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Fig. 4. Evaluation results 

Meta-level vs base-level results. The comparison results between the meta-level and 

the base-level show that the performance of the algorithms selected by the meta-model 

is near the best performance obtained at the base-level (Figure 4-(c)). The performance 

of the suggested solution by the meta-level (the blue and the cyan line) is almost close 

to the best performance at the base-level (the green line) while is better than the baseline 

performance (the black line). This satisfies our objectives.  

Finally, the comparison of accuracy between the baseline (the black line) and the meta-

level (the blue line) is illustrated in Figure 4-(d). According to these results, the perfor-

mance of the meta-level exceeds the performance of the baseline for all months. 
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3 Discussion 

The proposed approach in this paper helps to identify the best solution for the problem 

of prediction of taxi trip duration to improve the taxi utilization and passenger satisfac-

tion. Using the hyperconnected intelligent systems, this proposal can be used by differ-

ent applications including manufacturing of products by forecasting of product de-

mands, supply chain management by predicting of the best location of stocks, and real-

time optimization of supply chain networks by prediction of the best route for fleets, 

through networking machinery, sensors and control systems together. 

All manufacturers have a desire to give their consumers exactly what they want. This 

can be done by using past data collected from sales and production lines and forecasting 

the demand for a product. Our proposed approach can be implemented in this case by 

organizing the past data into hierarchy structure. One of possible solution can be using 

three different hierarchy levels: the data associated with a product, the data related to a 

group of products which have the same type, i.e. foods, clothes, and so on, and all the 

data. 

Another example is supply chain management where a poor stock's location can give 

low productivity, unreliable deliveries of materials, high costs, and poor customer ser-

vice. The same approach can be done using the data that can be collected from the 

logistics and also stocks movement within the supply chain. The approach can help to 

deal with the uncertain and non-stationary demand with minimum cost. 

The hyperconnected networks and IoT present excellent possibilities for businesses to 

conduct through evolution and innovation. For this purpose, companies need to be 

aware of the changing of the business dynamics caused by innovation. 

4 Conclusion 

The existence of hyperconnected networks can make a revolution in the public trans-

portation systems. High resource utilization and customer satisfaction are two major 

metrics which can be achieved using hyperconnected networks and machine learning 

approaches. In this paper, a metalearning proposal is introduced for the prediction of 

taxi trip duration to improve the taxi utilization and passenger's satisfaction by using a 

collaborative data analysis. The proposed approach aims at assisting taxi companies, 

passengers, and the public authorities for better distributing taxis to the taxi stands and 

determining the best route for the taxi trips using appropriate learning algorithm for the 

prediction of taxi trip duration. The experiments are carried out on the data collected in 

the Drive-In project. Several models are obtained from two levels of granularity: taxi 

itself and whole taxis. The results demonstrate that the proposed metalearning frame-

work can help recommending an algorithm with the best performance at the base-level 

with high accuracy and outperforms the baseline accuracy. Furthermore, the perfor-

mance of the base-level is also substantially adequate. In overall, the metalearning fore-

casts the duration of the taxi trip with the error rate less than 5%. 
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As interesting future works, this approach can be extended to other parts of the hyper-

connected networks, i.e. manufacturing of products and supply chain management, as 

discussed in Section 3. 
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