N
N

N

HAL

open science

Fast Key Recovery Attack on ARMADILLO1 and
Variants

Pouyan Sepehrdad, Petr Susil, Serge Vaudenay

» To cite this version:

Pouyan Sepehrdad, Petr Susil, Serge Vaudenay. Fast Key Recovery Attack on ARMADILLO1 and
Variants. 10th Smart Card Research and Advanced Applications (CARDIS), Sep 2011, Leuven, Bel-

gium. pp.133-150, 10.1007/978-3-642-27257-8 9. hal-01596306

HAL Id: hal-01596306
https://inria.hal.science/hal-01596306
Submitted on 27 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01596306
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Fast Key Recovery Attack onARMADILLO1 and
Variants

Pouyan Sepehrdad, Petr SuSiSerge Vaudenay

EPFL, Lausanne, Switzerland
{pouyan. sepehrdad, petr.susil, serge.vaudenay}@pfl.ch

Abstract. The ARMADILLO cryptographic primitive is a multi-purpose crypto-
graphic primitive for RFID devices proposed at CHES’10. Tin@n purpose of
the primitive is to provide a secure authentication in a leimgle-response pro-
tocol. It has two versions, nametRMADILLO (subsequently denoted R-
MADILLO1) andARMADILLO2. However, we found a fatal weakness in the de-
sign which allows a passive attacker to recover the secyatkaolynomial time,

of ARMADILLO1 and some generalizations. We introduce some intermedgate d
signs which try to prevent the attack and lIARMADILLO1 to ARMADILLO2.
Considering the fact that the attack agaiA®&MADILLO1 is polynomial, this
brings about some concerns into the security of the secastbv®RMADILLO2,
although it remains unbroken so far.

1 Introduction

ARMADILLO is a hardware oriented multi-purpose cryptographic piaipresented at
CHES’10 [2]. It was built for RFID applications. It can be ds&s a PRF/MAC, e.g. for
a challenge-response protocol as a MAC, and also as a hadfiofufor digital signa-
tures, or a PRNG for making a stream cipher. It has two vessioamedRMADILLO
(subsequently denoted BWRMADILLO1) andARMADILLO?2.

During the review process of CHES’10 we found an attack esj@RMADILLO1
and its variants. ThARMADILLO?2 includes a quick fix to resist it. The attack and its
variants are presented in this paper.

To fix the vulnerability ofARMADILLO1 and simultaneously shrink the design, we
define multiple intermediate versions ®RMADILLO and we investigate their security
with respect to the original attack and illustrate that theystill vulnerable to a key re-
covery or a forgery attack. Although our attack is not apglie againsARMADILLO?2,
the step by step approach in the design of other variantsdiggw a concern behind the
security ofARMADILLO2. These intermediate designs reveal that the security sound
on ARMADILLO2 might be insufficient.

We introduce a generalized versiaRMADILLOgen and we explain when the key
recovery or forgery attack is possible. Finally, we cométodefinition ofARMADILLO2.

The attacks we show have always complexity polynomial irsthe of input. Specif-
ically, the attack again#iRMADILLO1 has complexityO(k?logk) and it can be per-
formed “by hand, as the actual key recovery algorithm ign@mple.

* Supported by a grant of the Swiss National Science Founda2{a002113486Q'1.

1.1 Related work

In [1] the authors found an attack agaid*MADILLO2 based on parallel matching.
The key recovery attack against FIL-MAC application ARMADILLO2-A and AR-
MADILLO2-E using single challenge-response pair {sadd 28 times faster than ex-
haustive search respectively. The technigues presentad paper may help to reduce
the time complexity if the attacker uses multiple samples.

2 Description of ARMADILLO

ARMADILLO relies on data-dependent bit transpositions. Given aripigsk with bit
orderingx = (x¢|| -- - ||x1), fixed permutationsy ando; over the sef1,2,...,¢}, a bit
strings, a bitb € {0, 1} and a permutatioa, definexs, = x whens has length zero, and
Xog, = X000y wherexg is the bit stringx transposed by, that is,

Xo = (Xo-1p) Il -+ [1X6-1(2))

The function(s, x) — Xg is a data-dependent transpositioxof he functiors— o5
can be seen as a particular case of the general semi-grougnianphism from{0, 1}*
to a groupG.

Notations. Throughout this documenit,denotes the concatenation of bitstrings,
@ denotes the bitwise XOR operatiohgdenotes the bitwise complement of a bitstring
X; we assume the little-endian numbering of bits, suchagXx.|| - - ||x1).

In this section, we give the description of two varias8MADILLO1 and AR-
MADILLO2. Then, we introduce a common generalized vergi®&mMADILLOgen and
show how it relates to all versions. We show the attack ag@RMADILLOgen for
many different choices of parameters.

2.1 ARMADILLO1

ARMADILLO1 maps an initial valu€ and a message blotkto two values (see Fig. 1)

(Vc,Vr) = ARMADILLO1(C,U)

ARMADILLO1 works based on a regist&linter. By definition,C and\¢ are ofc
bits, Vi as well as each blodl; are ofm bits, Xinter is of k = ¢+ mbits. ARMADILLO1
is defined by integer parametarsm, and two fixed permutationsy anda; over the
set{1,2,...,2k}. Concretely, we considen > 40 andk = c+ m. To initialize AR-
MADILLO1, Xinter is set toC||0™ where @ is a null padding block, an@ is an initial
value. ARMADILLO1 works as follows (Fig. 1).

1: in thei-th step, replace the rightmastbit block of Xinter by the blockJ;;
2: set al = 2k bits registex = Xinter||Xinter;

3: x undergoes a sequence of bit permutations which we dend® bie output of
this sequence of bit permutations is truncated to the rigbtibits, denoted, by

S= tailg((Xinter|| Xinter)gy; ..,)

4: setXinter to the value ofS® Xinter.
5: after processing the last blotl, take (\Vc||Vr) = Xinter as the output.

m

-~

[Ve |w]

(Xinter || Xinter)g, . K

))
| Xinter |O<)| Xinter MSMJ
f
L c |y

C

m

PN W-

Fig. 1. Scheme oARMADILLOL.

2.2 ARMADILLO2

For completeness, we now provide the descriptioARFADILLO2 [2] here. TheAR-
MADILLOZ is mostly based oARMADILLO1b (be defined later) with an additional pre-
processing mechanism. As the reader see later in the papgmd-processing prevents
our attack. We note that the pre-processing step outputgueeree of bits that defines
the data dependent permutation and ensures that the daadiey permutatioyinter
cannot be easily controlled by the attacker (see Fig. 2).

1: in thei-th step, replace the rightmastbit block of Xinter by the blockJ;;

2: set af = k bits registeix = Xinter;

3: x undergoes a sequence of bit permutatiagsando; and a constant addition,
which we denote by. In fact, P maps a bitstring om bits and a vectok of k
bits into another vector df bits asP(s||b,x) = P(s,xq, ©Y), whereb € {0,1} and
Xg, IS @ permutation of bits ok (transposition). The output of this sequencekof
bit permutations and constant addition is dendted P(U;,x). We call this step
pre-processing, since it is used to define the permutatioinéoconsequent step.

4: x undergoes a sequence of bit permutations and constanicadditiefined byyY.
The output of this sequence kbit permutations and constant addition is denoted
S=P(Y,x).

5: setXinter to the value ofS® Xinter.

6: after processing the last blotl, take(\c||Vr) as the output.

[{E P(Y,Cl|Ui)

| Y=PUi.C|U)
i

| c [ui

C T

Fig. 2. Scheme oARMADILLO2.

3 General ARMADILLOgen Algorithm

We define various intermediate versionsA&fMADILLO. These intermediate versions
show the relation betweefRMADILLO1 and ARMADILLO2 and give a security con-
cern onARMADILLO2. We explain step by step how the weakness in the design of
ARMADILLO1 relate to a possible weaknesses in desighRMADILLO2.

All these versions are based on data-dependent permuRatidrey all can be cov-
ered undeARMADILLOgen as a parametrized version of distinct variants, and bynggtti
corresponding parameters we obtalRMADILLO1, ARMADILLO1b, ARMADILLOA1c,
ARMADILLO1d and ARMADILLO2. We show an attack againS8RMADILLOgen for
some choices of parameters.

ARMADILLOgen is defined as

ARMADILLOgen(X) = T4(P(Ty(X), T2(X)), X)

where
PAY)=Y
A denotes the empty strings, T», andT4 are some linear functions, afig in its most
general form is
T3(b,Y) =L(Y)q, DY

wherelL is linear andy is a constant.

Then,ARMADILLOL1 is defined a®RMADILLOgen for

Ti(X) =X

T2(X) =X]||X

Ta(b,X) = Xo,
T4(X,Y) = tail(X) &Y

T1(X) = P(tailn(X), X)
To(X) =X

T3(b,X :xob@y
Ta(X,Y) = X &Y

3.1 ARMADILLO1b: Shrinking the Xinter Register

TheARMADILLO1b is a compact version gRMADILLO1 which prevents the preserva-
tion of Hamming weight by adding a constant. However, it doesprevent the attack
againstARMADILLO1. According to [2], theARMADILLO1 design prevents a distin-
guishing attack based on constant Hamming weight by hatiegdouble sized internal
register and the final truncation, assuming the outpi® tthnsposition looks pseudo-
random. We see later in this paper (see section 4) that tbif goes not hold in stan-
dard attack model arRMADILLO1 can be broken in polynomial time. First, we define
ARMADILLO1b and then demonstrate an attack against this version andiexmw the
same attack can be used agaiRMADILLO1.

ARMADILLO1b is defined a®\RMADILLOgen for

In the design oARMADILLO1b the state size is reducedkdits to save more gates.
So, there is only the registinter and not its complement, and there is no truncation.
To avoid Hamming weight preservation, after each permutdtiere is an XOR of the
current state with a constap{see Fig. 3).

[Ve |w]

P(Xinter, Xinter) k

T

| Xinter MSMJ
f

L c |y

e

m

PN W:

Fig. 3. Scheme 0ARMADILLO1b.

3.2 ARMADILLOI1c: Adding a Linear Layerin T3

To investigate whether a more complex layerTg can prevent the attack ofR-
MADILLO1b we defineARMADILLO1c. It is defined a®\RMADILLOgen for

T1(X) =X
T3(b,X) =L(X)g, ®Y

for a linear transformatioh, with arbitrary lineafT, andTjy.

3.3 ARMADILLO1d: Adding a Fixed Transposition in Ty

We will see later thaARMADILLO1c is still vulnerable. To prevent the attack aiR-
MADILLO1c, a fixed transposition was addedTinto mix the bits of the secret and the
challenge ARMADILLO1d is defined ag\RMADILLOgen for

Tl(x) = Xn
T3(b,X) = Xo, Y

for a fixed permutatiom and with arbitrary lineall, andTjy.

4 Key Recovery Attack againstARMADILLO1 and ARMADILLO1b

In this section, we describe an attack against two versiénsRMADILLO. We first
explain the attack o0ARMADILLO1b and then setting = 0 and extending the initial

state to(Xinter||Xinter) = (C[|[U||C||U), the same attack can be directly used against
ARMADILLO1.

SinceARMADILLO has more than one applications, we just briefly explain how it
is deployed in the challenge-response application. We teéereader to [2] for more
details. The objective is to have a fixed input-length MACpfase tha€C is a secret
andU is a one block challenge. The valug is the response or the authentication tag.
We write

Vr = ARMADILLO(C,U)

As can be seen from the description of the algorithm, then® isubstitution layer.
This means that for a fixed key the permutatioroc is fixed (but unknown). As we
see later in the paper, it can be easily recovered. For thekait suffices to recover
the mappingoc of a single index, for instance we recowas(j) = n for some value
j. If we can recover the mappirg:(j), we than take challengé$ so thatj-th bit of
P(Ui,CJ|U;) contains different bits of the key. This allows us to recaber secret key
from literally reading the key from the output ARMADILLO1b. We also show that the
attack can be extended to other scenarios, or can be chamfyedéry attack if the key
recovery is not possible. More precisely, we consider

Ti(X) =X
Tg(b,X) = xob DY

with arbitrary linearT, andT,4. This includesARMADILLO1 andARMADILLO1b.

The attack is based on the fact that a bit permutation isdindéh respect toXOR
operation, i.e., for a permutatian X andY be two vectors, we haueX & Y), = X; &
Yo'.

Lemma 1. Forany B, C, and U, we have
P(C||U,C|U) =P(C,PU,C|U))
Proof. We easily prove it by induction on the size@©f O

Lemma 2. For T3(b,X) = Xg, @Y, there exists a function 2XI — 21X such that for
any Y= (k|| --.|ly1) and X, we have

P(Y,X) =Xy @ f(Y)
Proof. Let rewrite
P(Y,X) = <<(x0yl &y). @y) ay.) oy
y2 Oys Oy,
Let define theprefixof Y as

prefix(Y) = {¥;; Y = . [y). 1 < j <K}

Thus,P can be rewritten as
PY.X)=(X®Y)oy YD B Yo, =Xoy ®P(Y,0)
peprefix(Y)
|

Now we apply the above results ARMADILLOgen with T;(X) = X andTsz(b,X) =
Xop DY

ARMADILLOgen(C||U) = T4(P(C||U, T2(C|U)),C||U)
= Ta4(P(C,P(U, Tz(CHU)))v S
=Ta(P(C,(Lu(C)ay @ f(U))),C[lV)
=T (b (C)ay © F(U))g @ F(©),CIU)

wherely (C) = T2(C||U) and f(U) is given by Lemma 2. The first equality is coming
from the definition, the second from Lemma 1 and the last twmftemma 2. So, we
can write

ARMADILLOgen(C|U) = L ((LU (Cloy ® F(U))o, B9WU) & h(C))

for some linear functioh and some functiongandh. For all the variants we considér,
is either the identity function or consists of dropping a t&tg. FOrARMADILLO1b and
ARMADILLO1 the functiorh(C) = f(C) & (C||0™), g(U) = (0°||U). Similarly,L(X) =X
andL(X) = tailg(X) respectively.

In what follows, we consider an arbitrainand take a vectas such that - L(X) =
X{i], i.e, thei-th bit of registerX. So, we obtain

& - ARMADILLOgen(C[[U) = (Lu (C)oy & F(U))_1) ©9(U)i & h(C);
Clearly, there exists a= ogl(i) such that
& - ARMADILLOgen(C||U) @ g(U);i = Ly (C)Gatl(j) @ f(U)j@h(C)i (1)

In chosen-input attacks against the PRF mode, we assumth¢hadversary can com-
pute
& - ARMADILLOgen(C||U)

for a choserlJ and a secre€. In the challenge-response application, we only have
access to/r, but in all considered variants, has Hamming weight one, so we just
need to seledtso that this bit lies in thet window. We introduce an attack (see Fig. 4)
which only needs this bit of the response foe klogk queries. This algorithm has
complexityo (k?logk) to recover the secrét (also see Fig. 5). In fact, the attacker can
simply recover the permutatioh= P(U;, Xinter), since she has control ovéy's. Now,

her goal is to find out how(C,Y) maps the inde) to i. The goal of the algorithm is

to find this mapping and recovets It is exploiting the fact that fixing thg thenh(C);

is fixed for all challenges and the left side of Eq. (1) can bepoted directly by the
adversary. Then, it recove@sby solving an overdefined linear system of equations and
check it has a solution. If so, it checks whether the recal@ris consistent with other
samples.

1: Pick a random from 1 tom.
2: for t from 1 ton = klogk do
3: collect challenge-response péik, & - ARMADILLOgen(C||Ut))
4: computey = g - ARMADILLOgen(C||Ut) ©g(Ut)i.
5: end for
6: for j from 1to¢ do
7: for eachp € {0,1} do
8: seth(C); =B.
9: for t from 1 tondo
10: compute_y, (C)Gatl(j) =by @ f(Up); @B for all ¢ bits.
11: end for
12: solve the system af linear equationgy, (C) out(i)
13: if no solutionthen
14: break
15: end if
16: deriveC
17: if Cis consistent with sampleélen
18: outputC.
19: end if
20: end for
21: end for

Fig. 4. The key recovery algorithm againrSRMADILLO1 andARMADILLO1b.

Attack complexityThe firstfor loop runsARMADILLO algorithmklogk times . The sec-
ond loop rung times where = 2k for ARMADILLO1 and¢ = k for ARMADILLO1b. We
perform up to Rlogk simple arithmetic operations in the second loop to compate v
uesLy, (C)GG,lU)' Solving the system aflinear equation requiré®(n®) in general case.

However, in the case ¢fRMADILLO1 andARMADILLO1b every line contains only one
variable of secreC, which comes from the Lemma 2. As we havegk equations

in c variables, if the mapping— | is not guessed correctly we have high probability
to obtain contradiction on line 13. So overall, we have camxipy of O(k?logk) for
attacking bottARMADILLO1 andARMADILLO1b.

Probability of successWe first choose randomlglogk challengesJ; and compute
ARMADILLOgen(C||U;). That is because, according ¢oupon collector problenf3]

the expected number of challenges so that every lfitisfmapped ta-th bit of output

is klogk. Therefore, amonglogk challenges all the bits of challenge and all the bits of
secret key are mapped to a single bit of the output. The a&taan derive equation for
the j-th bit of P(Ut,C||U;), and forklogk distinct challengeb); the set of equations will
have full rank. These equations do not change through the fineppingoc, only the
constant term might change due to te{C,0). Therefore if the attacker guegs— i
correctly, the set oklogk equations irc variables has a solution, otherwise the set of
klogk equations irc variables has no solution with probability at least 27",

Failure of the previous attackThe previously mentioned attack would fail, if the per-
mutationsop, o1 map bit indices in the sél, m| to the sef1,m|, i.e.,0o[1..m] = [1..m]

|]
Ut | Y =P(U, Xinter) | |2

| Xinter ”'321|j

Fig. 5. Scheme of the key recovery algorithm agailBMADILLO1 andARMADILLO1b.

andoj[1..m) = [1..m]. So, it might be speculated that picking such permutatiprtike
design makes the cryptosystem secure. HoweveARMADILLO with such permuta-
tions is vulnerable to a simple forgery attack.

Let remind the decomposition

ARMADILLO1b(C||U) = P(C||U,C|lU) & (C||U)
P(C,P(U,C|lU)) & (C[U)
P(C,(L(C)oy @ f(U))) @ g(U)

(L(C)oy ® F(U))g, ®9(U) &N(C)

Givenm challenges which form a linearly independent system, wecoampute the
response by solving the set of these linear equations.

5 Attack Extension with Linear Layer in T3 (ARMADILLO1c)

T3 function is very simple in the previous versions. The firdemfpt to prevent the
previous attack is to use a more complex layer but still lirexad check whether it
prevents the attack. We define another intermediate veasidrcall itARMADILLOc.
Then, we show that only adding a linear layemn Tz(b,X) = L(X)g, @y would not
prevent the attack.

Let L be a linear transformation. This attack requi@&) challenges and three Gaus-
sian eliminations which requi®(k®) operations. We define the néMRMADILLO1c as
follows.

10

ARMADILLO1¢(C|U) = T4(P(C||U, T2(C||U)), (C|lU))

where
P(sl[b,Y) =P(s,L(Y)q, DY)
PAY)=Y

We build a system of equations, where
ARMADILLO1c(C||Uj) = T4 (P(C||Uj, T2(C||Uj)),C||Uj)

=T4(P(C,P(U}, T2(C|Uj))),C|Uj)
=Ta(P(C,P(Uj, T2(CJ|0) & T2(0]|Uj))), C|[U;)
= T4(P(C,P(Uj, T2(C||0)) & P(Uj, T2(0]|U}))), C[|Uj)

=T (Lc(LUJ EBVJ)EBP(C,O),CHUJ)

wherely; (C) = P(Uj, T2(C||0)) andy; = P(Uj, T2(0[|Uj)).

We use the fact that a set ok+ 1 equationd.y; (C) is linearly dependent. Using

this we can bypass the unknown mappirg We can find a sel of equations whose
sum is 0. Lek be the parity of the cardinality af. We obtain

D ARMADILLO1c(C||Uj) =Ty (Lc (@y,-) ©eP(C,0),eC|| @U,-)
jed jed jed

Using the above expression with sevelal, we can recover linear mappig and
P(C,0). Using the knowledge dfc(X) we recoveP(C,2") for 0 < i < k. We do this by

Gaussian elimination on valu @y; . UsingP(C,2") for 0 < i < k, we can recover
jed
Ly, (C) as follow.

ARMADILLO1¢(C||Uj) = T4 (Le(Ly; (C) @ ;) & P(C,0),C|U;)

Therefore, we can compute
Ta (Le(Ly; (©)),CJ|0) = ARMADILLO1¢(C||Uj) @ Ta (Lc(y;) @ P(C,0),0]|Uj)
Let considet); # Uj, we have

A(U;,Uj) =Ta (Le(Ly (€)),CJ10) & Ta (Le(Ly, (C)),CII0)
=T (LC(LUi (C) D I—Uj (C)),O)
=ARMADILLO1c(C||Uj) ® T4 (Lc(vi) ® P(C,0),0]|U;)
® ARMADILLO1¢(C||Uj) ® T4 (Lc(yj) ® P(C,0),0[|Uj)

11

Hence, we obtain

Ly (C) @ Ly, (C) = L (T, H(ARMADILLO1¢(C|U;) & Ta (Le(vi) & P(C, 0), 0[|Uy)
@ ARMADILLO1c(C||Uj) @ T4 (Le(y;) @ P(C,0),0||U;),0))

SinceLy; (C) is a known transformation linear dwe can recover the secret key by
solving the set of linear equations.

6 Attack Extension with a Fixed Transposition in Ty
(ARMADILLO1d)

6.1 Case with no generall; and T4

The previous attack can be prevented by using an S-box ldgerever, if the underly-
ing permutatiorP is not predictable then we can not apply the aforementiottadia
We usedP(U,C||U) to generate linear equations, and then guess the mapptiy).

So, an attempt is to mix bits & andU . But then, we show that even though we do not
know the secret parts of permutation since these parts @& five can guess them one
by one. We design a version callaBMADILLO1d that first applies a fixed permutation
Tton the first register, i.el; is a transposition. Then, we show that settingo be a
transposition does not prevent a forgery atta#¢kRMADILLO1d is defined as follows.

ARMADILLO1d(C||U) = Ta(P((C||U)n, T2(CJ||U)), (C||U))
where
P(SHbaY) = P(S,ng EBV)
PAA,Y)=Y
We first consider a simple case firwhen bits of challenge form an interval (see

Fig. 6), andT; is identity andT4(X,Y) = X @Y. Later, we extend the attack to a general
transpositionly, T, andTa.

ARMADILLO1d(C1||C2||U) = P(C1||U||C2,C1||C2||U) ® (C|C2||U)

Let denoteX = (C1||Cz||U). We have

ARMADILLO1d(Cy||C,||U)

P(Cy|U[|C, X) @ X
P(Cy|lU,P(C2, X)) & X
P(Cy,P(U,P(C2,X))) & X

Concentrating on an arbitrary output hiand using Lemma 2, we obtain

12

[Ve |w]

@]

P(Xinter, Xinter) | | U ||k

[}
| Xinter |j

Fig. 6. The compression function @RMADILLO1d

ARMADILLO1d(Cy||Co[|U)[n] = P(Cy,P(U,P(C,C1||C2||JU)))[N]
 elclu)n
%" b(cy,0) @ PU,PC2 CulC2U))
_ @(CCeU)im
U Y p(Cy,0)n] @ P(U, 0)[t] & P(Ca,C1|[CoI|U)]
(Ca o)1)
i=az1(l

e P(C1,0)[n] & P(U,0)[t] @ P(C2,0)[1]
B(CC2[U)i] @ (Caf|Co|[U)[N]

Re-arranging the above expression,dp&= P(Cy,0)(l] andb, = P(Cy,0)[n] we obtain

ARMADILLOLd(Cy [|C2||U)[n] & g(U) [t] & X[n] @ X[i] = (& & bn))

We follow Fig. 7. for the attack scenario. Let= oc, (t) and| = oc, (i), where both
permutations are unknown. Set a vatu® be determined later. We grolqy distinct
challenges as follows: we put the challenggein group g if oy, (l) =t. In fact, a
challenge appears ingroups. These are grougg_,cu 9’2—»ou 2+ gk_m,u (K)-

We obtaink? groups with approximately challenges in each The right hand side
of equation (2) is fixed for all challenges in the same groumesoy (1) =t for all
U € G)_t. Hence the left hand side should be fixed for all challengéisérsame group

13

as well, since neitheay notb, changes. We deploy this property and use the following
algorithm to filter out “bad groups” and recover relationsiethallow us to forge the
response. Sinc€; andC; are fixed,oc, (i) and ogll(n) are fixed for(i,n) fixed. So,
oc, (i) for i € [1,m] can only map tan distinct positions, thereforecan have onlym
possibilities out ok. The same is true fcnrgll(n) which can only haven possibilities

for t. Intuitively, what we mean by a “bad group” is a group whichettrer in the
mappingogzl(l) mapsl out of the corresponding windows of siaeor in the mapping

oc, (t) mapst out of the corresponding windows of size Term “good groups” is used

to recoveroc,, oc,. We now define more precisely what we mean by a “bad group” and
how they can be filtered.

Definition 1. We call a group a “bad group” if the exists no paii,n) € [1,m]?, such
thatoc, (i) =l and o' (n) =t.

Lemma 3. The groupg, . is bad if for every paifi,n) € [1,m]? there exists Uz G|
such that the equation 2 is not satisfied.

Proof. The equation 2 has to be satisfied for gragip.; only if we gueswc, (i) =1
andcgll(n) =t correctly. Ifag, (i) # | or ac, (t) # n, then giverJ € g,y we have%
probability that the equation 2 would be satisfied even igieip is chosen incorrectly.

Therefore, we drop out a “bad grougy_; if there exists no paifi, n) € [1,m2 such that
(i— | —t— n) forwhich equation (2) is satisfied for all elements (see Fi¢-6llowing

this step, we also output a correct mapping- | — t — n) where(l,t) € [1,k]?> and

(i,n) € [1,m]2. The probability to accept a given incorrect group is Iovhartg—é. So,

for k* < 29 we keep no incorrect group for sure. That is, we nged4log, k.

Now we haven? groups left after filtering and at least one mapping— I+ — t; —
ng) for a group G, - Thesen? groups correspond to all groupg, e for |i €
{0c,[1],. .., 0c,[m} ande € {ac'[1], .., 0.]} (see Fig. 8). Since, , oc, are fixed,
the correct groups correspond to all mappings between troed seindices
{0c,[1],...,0¢,[m]} and the set ofindices{og'[1],...,0¢, m]}.

Now, we fix| to |t. This way we reduce the number of groupsioAt this stage, we
know the exact mapping is — |+. Depending on which grougi ., we pick at this
stage (we have a free choicetgf, we havem distinct mappings from bit;. We pick
one of these groupsy ., which mapd+ totg. i.e., the mappings on both ends of Fig.
7 are fixed. Then, we go through ati possibilities fom and check for alU € g,
whetherARMADILLO1d(C1||C2||U)[n] & g(U) [tg] @ X[n] & X[if] is constant. If yes, we
know thattyg maps ton. Using allm groupsg, .., we can recover permutatico:gl1 on
[1,m]. We can fixt to t¢ this time and perform the same procedure to recoggr

Now we have all we need to forge a response for a new challdmegé)’ be a new

challenge. We forgaRMADILLO1d bit by bit. Let consider bih of the responc& . We
have recoveredgll[l, m| and therefore we knowgll(n) wheren € [1,m] i.e., position

14

Fig. 7. ARMADILLO1d attack scheme

to which then™ bit of the respons® is mapped. Now we selett! such thatl’ €
glﬂcal(n). If we find suchl (i.e., we find the corresponding group) then we forge the
1

N= O0c, Oy Oc, (i)-th bit of the response as follows. Ldte G1-og(n) be arepresentative
1
of such a group. From equation (2) we have

ARMADILLO1d(C1||Co|JU)[n] @ g(U)[t] & X[n] & X]i] = (& & bn)
ARMADILLO1d(Cy ||Co||U")[n] & g(U")[t] & X'[n] & X[i] = (& & bn)

and therefore

ARMADILLO1d(C||U")[n] = ARMADILLO1d(C||lU)[n] & (X[i] & X'[i]) @& (9(U)[t]
eg(U)[t]) & (X[n} & X))

If there is no such (i.e., we cannot find any corresponding group) we forgertke
Oc, 0uOc, (i)-th bit of response as follows. Compared to the previouswasenly drop
(X[i]® X'[i]), sinceX[i] = X'[i], since the bit is coming from the secret part.

ARMADILLO1d(C||U")[n] = ARMADILLO1d(C||U)[n] & g(U)[t] ® g(U")]t]
®X[n] @ X'[n]

The complexity of the forgery attack is(qk*) with gk challenges, where ~ 4log, k.

1 Notice that thid can be in the “bad groups”. We only use the “good groups” tovecthe
secret permutationsc, andaog, .

15

oc, (fixed))

o, (fixed) \/\

Fig. 8. ARMADILLO1d group filtering scheme

6.2 Extension with theT; and T, Transformations

Let now consider the definition for a general case d @and T4 andT1(C1||C2||U) =
(C1]|U]|Cy), i.e., we assume thatkeeps a large piece of consecutive bittJabgether.

ARMADILLO1d(C1[|C2||U) = Ta(P(Ca[U[|C2, T2(C1[|C2[V), (Ca[|C2[| V)

The same steps as the previous attacks hold in the geneeadsagell. In the case
of Ty, since the secret is fixed it can be derived out as a constanirioomputations.
So, deploying the same grouping strategy, the attack sailks: It is not difficult to see
that the same method also holds even if we havditanction.

6.3 Extension to a generatt
Let now consider the definition

ARMADILLO1d(X) = P(Xy, X) ® X

for X = (Cq||...||G||U1||-.. ||Ui—1). In the algorithm above, the attacker decomposes the
computation ofARMADILLO1d into several stages. Let suppageg that we permute
the bits of secret using permutatiaras follows

Call-- NG [U]l- - Ve-1)m = CafJU[|Co[| U2 .. |C-a][V [|C

I.e. tmixesC andU bits together, without putting too many consecutive bitsl ofVe
uset times the forgery algorithm oARMADILLO1d to recover all mappingsc, .

16

1: for all g,_, where(l,t) € [1,k]? do

22 w=0

3. forall (i,n) € [1,m? do

4: err=0

5: pick an arbitran1 € G|_m

6 vV = ARMADILLO1d(Cy||Cz[|U1)[n] @ g(Us) [t] & X[n] & X i]

7 for allU € g|_m\Uz do

8: if v # ARMADILLO1d(Cy [|Co||U)[n] @ g(U)[t] @ X[n] @ X[i] then
9: w=w+1

10: err=1

11: break

12: end if

13: end for

14: if (err == 0) then

15: output(i — | —t —n).
16: end if

17: endfor

18: if (w==nP) then
19: dropgG .

20: endif

21: end for

Fig. 9. group filtering algorithm foARMADILLO1d.

Let assume that'%! > kqfor everyi. If this is not the case we can recover the mapping
Oc,_, 0y, Oc, for all evaluations ob; in polynomial time. In both cases, we recover each
oc, andag, ,, recursively. To recovesc, andag,,,, we fixEiy 1 = Ui1]|Gy2| ... |G by
fixing Uj;1,...,Ui_1, sinceCi,2,...,G is already fixed. Then, the problem is reduced
to the same situation as the previous attack, where we hawalarnge part sandwiched
between two intervals of the secret bilsFinally, we obtain the mappingc, on set
[1,m],0c,, ..., 0c_, onsetlKk| andcr(‘:‘l on sef{1, m|. Note that we can recover permu-
tationsog,, ..., 0c,_, on set[1,k] by setting challenge bits to different valuﬁsiimes.
All we need is to describe an algorithm to recover all constR(C;,0). Then we will
have everything we need to forge the respons&RMIADILLO1d to any challenge.

We now describe how to recovB(Cy,0). The same method can be used to derive
otherP(C;,0) recursively. The same as before, Let fixtafs exceptJ;. We use Lemma
1. and Lemma 2. and rewrite

ARMADILLO1d(X) & X = P(Cy||U1||E2, X)
= P(E2,P(U1,P(Cy,X)))
= P(Cl,X)GUlgEZ (&) P(Ul, O)UEZ (&) P(Ez, 0)
P(Cl’ O)0U10E2 D XGU]_GEZ @ P(Ul’ O)CTE2 @ P(EZv 0)

which gives us set of linear equations and we can @apyas necessary to obtain a large
system of equations and solve it.

17

Complexity. The general attack may iterate the algorithm in Fig. 9. uf times. In
some iterations, the requiremetti2> klogk does not need to be satisfied. In such case,
we need to extend the intervd] by guessing some bits of key. Such technique would
require anotheklogk steps. Therefore, the complexity is boundedigi- k*q-klogk).

We specified before thaf~ 4logk. Hence, the complexity of the offline stage of the
attack isO(k® log? k) and the algorithm requires at mdstiog® k queries.

6.4 Attack Impact on ARMADILLO2

We can seARMADILLO2 as a successor @iRMADILLO1d with a pre-processint
which is more elaborate than a simple transposition. Sueprpcessing makes it re-
sistant against our attack. Our attack is based on decotiggoaccording to Lemma 1
and a guess of a constant value of functighl) from Lemma 2. The pre-processing
phase protects against both the decomposition and theazwsiue of functiorf (U).
However, the attack we propose points out possible weaksésshe design oAR-
MADILLO2.

7 Conclusion

We have shown a devastating key recovery attack agaiRtaADILLO1 and discussed

a potential implication oARMADILLO2. Although we did not find an attack oxR-
MADILLO2, we have illustrated that the non-linearity based on dafeddent permu-
tations in bothARMADILLO1 and ARMADILLO? is not sufficient. The results do not
immediately apply oARMADILLO?2 but they allow for better understanding the design
and they might be used to improve the attack in [1].

Acknowledgements.This work was sponsored by OriddoWe would like to thank
Nicolas Reffé for his kind support. THERMADILLO algorithms are subject to patent
number WO/2008/148784 [4].

References

1. M. Abdelraheem, C. Blondeau, M. Naya-Plasencia, M. Midead E. Zenner. Cryptanalysis
of ARMADILLO2. In proceeding of ASIACRYPT 2Q13pringer, 2011.

2. Stéphane Badel, Nilay Dagtekin, Jorge Nakahara, Kh&eafi, Nicolas Reffe, Pouyan
Sepehrdad, Petr Susil, and Serge Vaudenay. ARMADILLO: AtiMurpose Cryptographic
Primitive Dedicated to Hardware. In Stefan Mangard and §oEnaXavier Standaert, editors,
Cryptographic Hardware and Embedded Systems, CHES, 201ime 6225 of ecture Notes
in Computer Sciengehapter 27, pages 398—-412-412. Springer Berlin / HeidgllBerlin,
Heidelberg, 2011.

3. John Kobza, Sheldon Jacobson, and Diane Vaughan. A Sofuye Coupon Collector’s
Problem with Random Sample Sizellethodology and Computing in Applied Probability
9(4):573-584, December 2007.

4. N. Reffe. CRYPTOGRAPHIC METHODS AND DEVICES FOR THE PSEO-RANDOM
GENERATION OF DATA ENCRYPTION AND CRYPTOGRAPHIC HASHING OR
MESSAGE, 12 2008.

2 http://www.oridao.com/

18

