
HAL Id: hal-01596306
https://inria.hal.science/hal-01596306

Submitted on 27 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fast Key Recovery Attack on ARMADILLO1 and
Variants

Pouyan Sepehrdad, Petr Sušil, Serge Vaudenay

To cite this version:
Pouyan Sepehrdad, Petr Sušil, Serge Vaudenay. Fast Key Recovery Attack on ARMADILLO1 and
Variants. 10th Smart Card Research and Advanced Applications (CARDIS), Sep 2011, Leuven, Bel-
gium. pp.133-150, �10.1007/978-3-642-27257-8_9�. �hal-01596306�

https://inria.hal.science/hal-01596306
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Fast Key Recovery Attack onARMADILLO1 and
Variants

Pouyan Sepehrdad, Petr Sušil⋆, Serge Vaudenay

EPFL, Lausanne, Switzerland
{pouyan.sepehrdad, petr.susil, serge.vaudenay}@epfl.ch

Abstract. The ARMADILLO cryptographic primitive is a multi-purpose crypto-
graphic primitive for RFID devices proposed at CHES’10. Themain purpose of
the primitive is to provide a secure authentication in a challenge-response pro-
tocol. It has two versions, namedARMADILLO (subsequently denoted byAR-
MADILLO1) andARMADILLO2. However, we found a fatal weakness in the de-
sign which allows a passive attacker to recover the secret key in polynomial time,
of ARMADILLO1 and some generalizations. We introduce some intermediate de-
signs which try to prevent the attack and linkARMADILLO1 to ARMADILLO2.
Considering the fact that the attack againstARMADILLO1 is polynomial, this
brings about some concerns into the security of the second versionARMADILLO2,
although it remains unbroken so far.

1 Introduction

ARMADILLO is a hardware oriented multi-purpose cryptographic primitive presented at
CHES’10 [2]. It was built for RFID applications. It can be used as a PRF/MAC, e.g. for
a challenge-response protocol as a MAC, and also as a hash function for digital signa-
tures, or a PRNG for making a stream cipher. It has two versions, namedARMADILLO
(subsequently denoted byARMADILLO1) andARMADILLO2.

During the review process of CHES’10 we found an attack against ARMADILLO1
and its variants. TheARMADILLO2 includes a quick fix to resist it. The attack and its
variants are presented in this paper.

To fix the vulnerability ofARMADILLO1 and simultaneously shrink the design, we
define multiple intermediate versions ofARMADILLO and we investigate their security
with respect to the original attack and illustrate that theyare still vulnerable to a key re-
covery or a forgery attack. Although our attack is not applicable againstARMADILLO2,
the step by step approach in the design of other variants would give a concern behind the
security ofARMADILLO2. These intermediate designs reveal that the security bounds
on ARMADILLO2 might be insufficient.

We introduce a generalized versionARMADILLOgen and we explain when the key
recovery or forgery attack is possible. Finally, we come to the definition ofARMADILLO2.

The attacks we show have always complexity polynomial in thesize of input. Specif-
ically, the attack againstARMADILLO1 has complexityO(k2 logk) and it can be per-
formed “by hand“, as the actual key recovery algorithm is very simple.

⋆ Supported by a grant of the Swiss National Science Foundation, 200021134860/1.

1.1 Related work

In [1] the authors found an attack againstARMADILLO2 based on parallel matching.
The key recovery attack against FIL-MAC application ofARMADILLO2-A and AR-
MADILLO2-E using single challenge-response pair is 27 and 218 times faster than ex-
haustive search respectively. The techniques presented inour paper may help to reduce
the time complexity if the attacker uses multiple samples.

2 Description of ARMADILLO

ARMADILLO relies on data-dependent bit transpositions. Given a bitstring x with bit
orderingx = (xℓ‖· · ·‖x1), fixed permutationsσ0 andσ1 over the set{1,2, . . . , ℓ}, a bit
strings, a bitb∈ {0,1} and a permutationσ, definexσs = x whenshas length zero, and
xσs‖b

= xσs◦σb, wherexσ is the bit stringx transposed byσ, that is,

xσ = (xσ−1(ℓ)‖· · ·‖xσ−1(1))

The function(s,x) 7→ xσs is a data-dependent transposition ofx. The functions 7→σs

can be seen as a particular case of the general semi-group homomorphism from{0,1}∗

to a groupG.

Notations.Throughout this document,‖ denotes the concatenation of bitstrings,
⊕ denotes the bitwise XOR operation,x denotes the bitwise complement of a bitstring
x; we assume the little-endian numbering of bits, such asx = (xℓ‖· · ·‖x1).

In this section, we give the description of two variantsARMADILLO1 and AR-
MADILLO2. Then, we introduce a common generalized versionARMADILLOgen and
show how it relates to all versions. We show the attack against ARMADILLOgen for
many different choices of parameters.

2.1 ARMADILLO1

ARMADILLO1 maps an initial valueC and a message blockU to two values (see Fig. 1)
.

(VC,VT) = ARMADILLO1(C,U)

ARMADILLO1 works based on a registerXinter. By definition,C andVC are ofc
bits,VT as well as each blockUi are ofmbits,Xinter is of k = c+mbits.ARMADILLO1
is defined by integer parametersc, m, and two fixed permutationsσ0 andσ1 over the
set {1,2, . . . ,2k}. Concretely, we considerm≥ 40 andk = c+ m. To initialize AR-
MADILLO1, Xinter is set toC‖0m where 0m is a null padding block, andC is an initial
value.ARMADILLO1 works as follows (Fig. 1).

1: in the i-th step, replace the rightmostm-bit block ofXinter by the blockUi ;
2: set aℓ = 2k bits registerx = Xinter‖Xinter;

2

3: x undergoes a sequence of bit permutations which we denote byP. The output of
this sequence of bit permutations is truncated to the rightmostk bits, denotedS, by

S= tailk((Xinter‖Xinter)σXinter
)

4: setXinter to the value ofS⊕Xinter.
5: after processing the last blockUn, take(VC‖VT) = Xinter as the output.

Xinter Xinter
· · · 321

C Ui

c m

(Xinter‖Xinter)σXinter .
.
.
3
2
1

k

S

⊕

m

VTVC

Fig. 1. Scheme ofARMADILLO1.

2.2 ARMADILLO2

For completeness, we now provide the description ofARMADILLO2 [2] here. TheAR-
MADILLO2 is mostly based onARMADILLO1b (be defined later) with an additional pre-
processing mechanism. As the reader see later in the paper, the pre-processing prevents
our attack. We note that the pre-processing step outputs a sequence of bits that defines
the data dependent permutation and ensures that the data dependent permutationσXinter

cannot be easily controlled by the attacker (see Fig. 2).

1: in the i-th step, replace the rightmostm-bit block ofXinter by the blockUi ;
2: set aℓ = k bits registerx = Xinter;
3: x undergoes a sequence of bit permutations,σ0 andσ1 and a constantγ addition,

which we denote byP. In fact, P maps a bitstring ofm bits and a vectorx of k
bits into another vector ofk bits asP(s‖b,x) = P(s,xσb ⊕ γ), whereb∈ {0,1} and
xσb is a permutation of bits ofx (transposition). The output of this sequence ofk
bit permutations and constant addition is denotedY = P(Ui ,x). We call this step
pre-processing, since it is used to define the permutation for the consequent step.

3

4: x undergoes a sequence of bit permutations and constant addition P defined byY.
The output of this sequence ofk bit permutations and constant addition is denoted
S= P(Y,x).

5: setXinter to the value ofS⊕Xinter.
6: after processing the last blockUn, take(VC‖VT) as the output.

Y = P(Ui ,C‖Ui)

Y

C Ui

c m

P(Y,C‖Ui)

...

Ui

C
k

.

⊕

m

VTVC

Fig. 2. Scheme ofARMADILLO2.

3 GeneralARMADILLOgen Algorithm

We define various intermediate versions ofARMADILLO. These intermediate versions
show the relation betweenARMADILLO1 andARMADILLO2 and give a security con-
cern onARMADILLO2. We explain step by step how the weakness in the design of
ARMADILLO1 relate to a possible weaknesses in design ofARMADILLO2.

All these versions are based on data-dependent permutationP. They all can be cov-
ered underARMADILLOgen as a parametrized version of distinct variants, and by setting
corresponding parameters we obtainARMADILLO1, ARMADILLO1b, ARMADILLO1c,
ARMADILLO1d and ARMADILLO2. We show an attack againstARMADILLOgen for
some choices of parameters.

ARMADILLOgen is defined as

ARMADILLOgen(X) = T4(P(T1(X),T2(X)),X)

4

where
P(s‖b,Y) = P(s,T3(b,Y))
P(λ,Y) = Y

λ denotes the empty string,T1, T2, andT4 are some linear functions, andT3 in its most
general form is

T3(b,Y) = L(Y)σb ⊕ γ

whereL is linear andγ is a constant.

Then,ARMADILLO1 is defined asARMADILLOgen for

T1(X) = X
T2(X) = X‖X
T3(b,X) = Xσb

T4(X,Y) = tailk(X)⊕Y

ARMADILLO2 is defined asARMADILLOgen for

T1(X) = P(tailm(X),X)
T2(X) = X
T3(b,X) = Xσb ⊕ γ
T4(X,Y) = X⊕Y

3.1 ARMADILLO1b: Shrinking the Xinter Register

TheARMADILLO1b is a compact version ofARMADILLO1 which prevents the preserva-
tion of Hamming weight by adding a constant. However, it doesnot prevent the attack
againstARMADILLO1. According to [2], theARMADILLO1 design prevents a distin-
guishing attack based on constant Hamming weight by having the double sized internal
register and the final truncation, assuming the output ofP transposition looks pseudo-
random. We see later in this paper (see section 4) that this proof does not hold in stan-
dard attack model andARMADILLO1 can be broken in polynomial time. First, we define
ARMADILLO1b and then demonstrate an attack against this version and explain how the
same attack can be used againstARMADILLO1.

ARMADILLO1b is defined asARMADILLOgen for

T1(X) = X
T2(X) = X
T3(b,X) = Xσb ⊕ γ
T4(X,Y) = X⊕Y

In the design ofARMADILLO1b the state size is reduced tok bits to save more gates.
So, there is only the registerXinter and not its complement, and there is no truncation.
To avoid Hamming weight preservation, after each permutation there is an XOR of the
current state with a constantγ (see Fig. 3).

5

Xinter
· · · 321

C Ui

c m

P(Xinter,Xinter)
.
.
.
3
2
1

k

S

⊕

m

VTVC

Fig. 3. Scheme ofARMADILLO1b.

3.2 ARMADILLO1c: Adding a Linear Layer in T3

To investigate whether a more complex layer inT3 can prevent the attack onAR-
MADILLO1b we defineARMADILLO1c. It is defined asARMADILLOgen for

T1(X) = X
T3(b,X) = L(X)σb ⊕ γ

for a linear transformationL, with arbitrary linearT2 andT4.

3.3 ARMADILLO1d: Adding a Fixed Transposition in T1

We will see later thatARMADILLO1c is still vulnerable. To prevent the attack onAR-
MADILLO1c, a fixed transposition was added inT1 to mix the bits of the secret and the
challenge.ARMADILLO1d is defined asARMADILLOgen for

T1(X) = Xπ
T3(b,X) = Xσb ⊕ γ

for a fixed permutationπ and with arbitrary linearT2 andT4.

4 Key Recovery Attack againstARMADILLO1 and ARMADILLO1b

In this section, we describe an attack against two versions of ARMADILLO. We first
explain the attack onARMADILLO1b and then settingγ = 0 and extending the initial

6

state to(Xinter‖Xinter) = (C‖U‖C‖U), the same attack can be directly used against
ARMADILLO1.

SinceARMADILLO has more than one applications, we just briefly explain how it
is deployed in the challenge-response application. We refer the reader to [2] for more
details. The objective is to have a fixed input-length MAC. Suppose thatC is a secret
andU is a one block challenge. The valueVT is the response or the authentication tag.
We write

VT = ARMADILLO(C,U)

As can be seen from the description of the algorithm, there isno substitution layer.
This means that for a fixed keyC the permutationσC is fixed (but unknown). As we
see later in the paper, it can be easily recovered. For the attack it suffices to recover
the mappingσC of a single index, for instance we recoverσC(j) = n for some value
j. If we can recover the mappingσC(j), we than take challengesUi so that j-th bit of
P(Ui ,C‖Ui) contains different bits of the key. This allows us to recoverthe secret key
from literally reading the key from the output ofARMADILLO1b. We also show that the
attack can be extended to other scenarios, or can be changed to forgery attack if the key
recovery is not possible. More precisely, we consider

T1(X) = X
T3(b,X) = Xσb ⊕ γ

with arbitrary linearT2 andT4. This includesARMADILLO1 andARMADILLO1b.
The attack is based on the fact that a bit permutation is linear with respect toXOR

operation, i.e., for a permutationσ, X andY be two vectors, we have(X⊕Y)σ = Xσ ⊕
Yσ.

Lemma 1. For any T3, C, and U, we have

P(C‖U ,C‖U) = P(C,P(U ,C‖U))

Proof. We easily prove it by induction on the size ofC. ⊓⊔

Lemma 2. For T3(b,X) = Xσb ⊕ γ, there exists a function f: 2|X| → 2|X| such that for
any Y= (yk‖ . . .‖y1) and X, we have

P(Y,X) = XσY ⊕ f (Y)

Proof. Let rewrite

P(Y,X) =

(

(

(

Xσy1
⊕ γ
)

σy2

⊕ γ
)

σy3

⊕ γ . . .

)

σyk

⊕ γ

Let define theprefixof Y as

prefix(Y) = {Yj ; Yj = (yk‖ . . .‖y j),1≤ j ≤ k}

7

Thus,P can be rewritten as

P(Y,X) = (X⊕ γ)σY ⊕ γ⊕
M

p∈prefix(Y)

γσp = XσY ⊕P(Y,0)

⊓⊔

Now we apply the above results toARMADILLOgen with T1(X) = X andT3(b,X) =
Xσb ⊕ γ.

ARMADILLOgen(C‖U) = T4(P(C‖U ,T2(C‖U)),C‖U)
= T4(P(C,P(U ,T2(C‖U))),C‖U)
= T4(P(C,(LU (C)σU ⊕ f (U))),C‖U)

= T4

(

(LU(C)σU ⊕ f (U))σC
⊕ f (C),C‖U

)

whereLU(C) = T2(C‖U) and f (U) is given by Lemma 2. The first equality is coming
from the definition, the second from Lemma 1 and the last two from Lemma 2. So, we
can write

ARMADILLOgen(C‖U) = L
(

(LU(C)σU ⊕ f (U))σC
⊕g(U)⊕h(C)

)

for some linear functionL and some functionsgandh. For all the variants we consider,L
is either the identity function or consists of dropping a fewbits. ForARMADILLO1b and
ARMADILLO1 the functionh(C)= f (C)⊕(C‖0m), g(U)= (0c‖U). Similarly,L(X)= X
andL(X) = tailk(X) respectively.

In what follows, we consider an arbitraryi and take a vectorei such thatei ·L(X) =
X[i], i.e, thei-th bit of registerX. So, we obtain

ei ·ARMADILLOgen(C‖U) = (LU(C)σU ⊕ f (U))σ−1
C (i) ⊕g(U)i ⊕h(C)i

Clearly, there exists aj = σ−1
C (i) such that

ei ·ARMADILLOgen(C‖U)⊕g(U)i = LU (C)σ−1
Ut

(j)⊕ f (U) j ⊕h(C)i (1)

In chosen-input attacks against the PRF mode, we assume thatthe adversary can com-
pute

ei ·ARMADILLOgen(C‖U)

for a chosenU and a secretC. In the challenge-response application, we only have
access toVT , but in all considered variants,ei has Hamming weight one, so we just
need to selecti so that this bit lies in theVT window. We introduce an attack (see Fig. 4)
which only needs this bit of the response forn = k logk queries. This algorithm has
complexityO (k2 logk) to recover the secretC (also see Fig. 5). In fact, the attacker can
simply recover the permutationY = P(Ui ,Xinter), since she has control overUi ’s. Now,
her goal is to find out howP(C,Y) maps the indexj to i. The goal of the algorithm is
to find this mapping and recoversC. It is exploiting the fact that fixing thei, thenh(C)i

is fixed for all challenges and the left side of Eq. (1) can be computed directly by the
adversary. Then, it recoversC by solving an overdefined linear system of equations and
check it has a solution. If so, it checks whether the recoveredC is consistent with other
samples.

8

1: Pick a randomi from 1 tom.
2: for t from 1 ton = k logk do
3: collect challenge-response pair(Ut ,ei ·ARMADILLOgen(C‖Ut))
4: computebt = ei ·ARMADILLOgen(C‖Ut)⊕g(Ut)i .
5: end for
6: for j from 1 toℓ do
7: for eachβ ∈ {0,1} do
8: seth(C)i = β.
9: for t from 1 ton do

10: computeLUt (C)σ−1
Ut

(j) = bt ⊕ f (Ut) j ⊕β for all c bits.

11: end for
12: solve the system ofn linear equationsLUt (C)σ−1

Ut
(j)

13: if no solutionthen
14: break
15: end if
16: deriveC
17: if C is consistent with samplesthen
18: outputC.
19: end if
20: end for
21: end for

Fig. 4.The key recovery algorithm againstARMADILLO1 andARMADILLO1b.

Attack complexity.The firstfor loop runsARMADILLO algorithmk logk times . The sec-
ond loop runsℓ times whereℓ = 2k for ARMADILLO1 andℓ = k for ARMADILLO1b. We
perform up to 2k logk simple arithmetic operations in the second loop to compute val-
uesLUt (C)σ−1

Ut
(j). Solving the system ofn linear equation requiresO(n3) in general case.

However, in the case ofARMADILLO1 andARMADILLO1b every line contains only one
variable of secretC, which comes from the Lemma 2. As we havek logk equations
in c variables, if the mappingi → j is not guessed correctly we have high probability
to obtain contradiction on line 13. So overall, we have complexity of O(k2 logk) for
attacking bothARMADILLO1 andARMADILLO1b.

Probability of success.We first choose randomlyk logk challengesUt and compute
ARMADILLOgen(C‖Ut). That is because, according tocoupon collector problem[3]
the expected number of challenges so that every bit ofC is mapped toi-th bit of output
is k logk. Therefore, amongk logk challenges all the bits of challenge and all the bits of
secret key are mapped to a single bit of the output. The attacker can derive equation for
the j-th bit of P(Ut ,C‖Ut), and fork logk distinct challengesUt the set of equations will
have full rank. These equations do not change through the fixed mappingσC, only the
constant term might change due to termP(C,0). Therefore if the attacker guessj → i
correctly, the set ofk logk equations inc variables has a solution, otherwise the set of
k logk equations inc variables has no solution with probability at least 1−2−n.

Failure of the previous attack.The previously mentioned attack would fail, if the per-
mutationsσ0, σ1 map bit indices in the set[1,m] to the set[1,m], i.e.,σ0[1..m] = [1..m]

9

i

j

Xinter
· · · 321

C Ut

c m

C

Ut Y = P(Ut ,Xinter)

P(C,Y)

.

.

.
3
2
1

k

S

⊕

m

VTVC

Fig. 5. Scheme of the key recovery algorithm againstARMADILLO1 andARMADILLO1b.

andσ1[1..m] = [1..m]. So, it might be speculated that picking such permutations in the
design makes the cryptosystem secure. However, theARMADILLO with such permuta-
tions is vulnerable to a simple forgery attack.

Let remind the decomposition

ARMADILLO1b(C‖U) = P(C‖U,C‖U)⊕ (C‖U)
= P(C,P(U,C‖U))⊕ (C‖U)
= P(C,(L(C)σU ⊕ f (U)))⊕g(U)
= (L(C)σU ⊕ f (U))σC

⊕g(U)⊕h(C)

Givenmchallenges which form a linearly independent system, we cancompute the
response by solving the set of these linear equations.

5 Attack Extension with Linear Layer in T3 (ARMADILLO1c)

T3 function is very simple in the previous versions. The first attempt to prevent the
previous attack is to use a more complex layer but still linear and check whether it
prevents the attack. We define another intermediate versionand call itARMADILLO1c.
Then, we show that only adding a linear layerL in T3(b,X) = L(X)σb ⊕ γ would not
prevent the attack.
Let L be a linear transformation. This attack requiresO(k) challenges and three Gaus-
sian eliminations which requireO(k3) operations. We define the newARMADILLO1c as
follows.

10

ARMADILLO1c(C‖U) = T4(P(C‖U,T2(C‖U)),(C‖U))

where
P(s‖b,Y) = P(s,L(Y)σb ⊕ γ)
P(λ,Y) = Y

We build a system of equations, where

ARMADILLO1c(C‖U j) = T4 (P(C‖U j ,T2(C‖U j)),C‖U j)

= T4 (P(C,P(U j ,T2(C‖U j))),C‖U j)

= T4 (P(C,P(U j ,T2(C‖0)⊕T2(0‖U j))),C‖U j)

= T4 (P(C,P(U j ,T2(C‖0))⊕P(U j ,T2(0‖U j))),C‖U j)

= T4
(

LC(LU j (C)⊕ γ j)⊕P(C,0),C‖U j
)

whereLU j (C) = P(U j ,T2(C‖0)) andγ j = P(U j ,T2(0‖U j)).
We use the fact that a set ofck+ 1 equationsLU j (C) is linearly dependent. Using

this we can bypass the unknown mappingLC. We can find a setJ of equations whose
sum is 0. Letε be the parity of the cardinality ofJ. We obtain

M

j∈J

ARMADILLO1c(C‖U j) = T4

(

LC

(

M

j∈J

γ j

)

⊕ εP(C,0),εC‖
M

j∈J

U j

)

Using the above expression with severalJ’s, we can recover linear mappingLC and
P(C,0). Using the knowledge ofLC(X) we recoverP(C,2i) for 0< i < k. We do this by

Gaussian elimination on values

(

M

j∈J

γ j

)

. UsingP(C,2i) for 0≤ i < k, we can recover

LU j (C) as follow.

ARMADILLO1c(C‖U j) = T4
(

LC(LU j (C)⊕ γ j)⊕P(C,0),C‖U j
)

= T4
(

LC(LU j (C)),C‖0
)

⊕T4(LC(γ j)⊕P(C,0),0‖U j)

Therefore, we can compute

T4
(

LC(LU j (C)),C‖0
)

= ARMADILLO1c(C‖U j)⊕T4(LC(γ j)⊕P(C,0),0‖U j)

Let considerUi 6= U j , we have

∆(Ui ,U j) =T4 (LC(LUi (C)),C‖0)⊕T4
(

LC(LU j (C)),C‖0
)

=T4
(

LC(LUi (C)⊕LU j (C)),0
)

=ARMADILLO1c(C‖Ui)⊕T4(LC(γi)⊕P(C,0),0‖Ui)

⊕ARMADILLO1c(C‖U j)⊕T4(LC(γ j)⊕P(C,0),0‖U j)

11

Hence, we obtain

LUi (C)⊕LU j (C) = L−1
C (T−1

4 (ARMADILLO1c(C‖Ui)⊕T4(LC(γi)⊕P(C,0),0‖Ui)

⊕ARMADILLO1c(C‖U j)⊕T4(LC(γ j)⊕P(C,0),0‖U j) ,0))

SinceLUi (C) is a known transformation linear inC we can recover the secret key by
solving the set of linear equations.

6 Attack Extension with a Fixed Transposition in T1
(ARMADILLO1d)

6.1 Case with no generalT2 and T4

The previous attack can be prevented by using an S-box layer.However, if the underly-
ing permutationP is not predictable then we can not apply the aforementioned attack.
We usedP(U,C‖U) to generate linear equations, and then guess the mappingP(C,Y).
So, an attempt is to mix bits ofC andU . But then, we show that even though we do not
know the secret parts of permutation since these parts are fixed, we can guess them one
by one. We design a version calledARMADILLO1d that first applies a fixed permutation
π on the first register, i.e.,T1 is a transposition. Then, we show that settingT1 to be a
transposition does not prevent a forgery attack.ARMADILLO1d is defined as follows.

ARMADILLO1d(C‖U) = T4(P((C‖U)π,T2(C‖U)),(C‖U))

where

P(s‖b,Y) = P(s,Yσb ⊕ γ)
P(λ,Y) = Y

We first consider a simple case forT1 when bits of challengeU form an interval (see
Fig. 6), andT2 is identity andT4(X,Y) = X⊕Y. Later, we extend the attack to a general
transpositionT1, T2 andT4.

ARMADILLO1d(C1‖C2‖U) = P(C1‖U‖C2,C1‖C2‖U)⊕ (C1‖C2‖U)

Let denoteX = (C1‖C2‖U). We have

ARMADILLO1d(C1‖C2‖U) = P(C1‖U‖C2,X)⊕X
= P(C1‖U,P(C2,X))⊕X
= P(C1,P(U,P(C2,X)))⊕X

Concentrating on an arbitrary output bitn and using Lemma 2, we obtain

12

Xinter

C1 C2 U

c m

P(Xinter,Xinter)

C2

U

C1

k

S

⊕

m

VTVC

Fig. 6. The compression function ofARMADILLO1d

ARMADILLO1d(C1‖C2‖U)[n] = P(C1,P(U,P(C2,C1‖C2‖U)))[n]
⊕(C1‖C2‖U)[n]

t=σ−1
C1

(n)

= P(C1,0)[n]⊕P(U,P(C2,C1‖C2‖U))[t]
⊕(C1‖C2‖U)[n]

l=σ−1
U (t)
= P(C1,0)[n]⊕P(U,0)[t]⊕P(C2,C1‖C2‖U)[l]

⊕(C1‖C2‖U)[n]
i=σ−1

C2
(l)

= P(C1,0)[n]⊕P(U,0)[t]⊕P(C2,0)[l]
⊕(C1‖C2‖U)[i]⊕ (C1‖C2‖U)[n]

Re-arranging the above expression, foral = P(C2,0)[l] andbn = P(C1,0)[n] we obtain

ARMADILLO1d(C1‖C2‖U)[n]⊕g(U)[t]⊕X[n]⊕X[i]= (al ⊕bn) (2)

We follow Fig. 7. for the attack scenario. Letn = σC1(t) and l = σC2(i), where both
permutations are unknown. Set a valueq to be determined later. We groupk.q distinct
challenges as follows: we put the challengeU j in groupG l→t if σU j (l) = t. In fact, a
challenge appears ink groups. These are groupsG1→σUj (1), G2→σUj (2), . . . , G k→σUj (k)

.

We obtaink2 groups with approximatelyq challenges in each. The right hand side
of equation (2) is fixed for all challenges in the same group, since σU (l) = t for all
U ∈ G l→t . Hence the left hand side should be fixed for all challenges inthe same group

13

as well, since neitheral notbn changes. We deploy this property and use the following
algorithm to filter out “bad groups” and recover relations which allow us to forge the
response. SinceC1 andC2 are fixed,σC2(i) andσ−1

C1
(n) are fixed for(i,n) fixed. So,

σC2(i) for i ∈ [1,m] can only map tom distinct positions, thereforel can have onlym
possibilities out ofk. The same is true forσ−1

C1
(n) which can only havem possibilities

for t. Intuitively, what we mean by a “bad group” is a group which whether in the
mappingσ−1

C2
(l) mapsl out of the corresponding windows of sizem or in the mapping

σC1(t) mapst out of the corresponding windows of sizem. Term “good groups” is used
to recoverσC1, σC2. We now define more precisely what we mean by a “bad group” and
how they can be filtered.

Definition 1. We call a group a “bad group” if the exists no pair(i,n) ∈ [1,m]2, such
thatσC2(i) = l andσ−1

C1
(n) = t.

Lemma 3. The groupG l→t is bad if for every pair(i,n) ∈ [1,m]2 there exists U∈ G l→t

such that the equation 2 is not satisfied.

Proof. The equation 2 has to be satisfied for groupG l→t only if we guessσC2(i) = l
andσ−1

C1
(n) = t correctly. If σC2(i) 6= l or σC1(t) 6= n, then givenU ∈ G l→t we have1

2
probability that the equation 2 would be satisfied even if thegroup is chosen incorrectly.

Therefore, we drop out a “bad group”G l→t if there exists no pair(i,n)∈ [1,m]2 such that
(i → l → t → n) for which equation (2) is satisfied for all elements (see Fig 9). Following
this step, we also output a correct mapping(i → l → t → n) where(l ,t) ∈ [1,k]2 and

(i,n) ∈ [1,m]2. The probability to accept a given incorrect group is lower than k2

2q . So,
for k4 ≪ 2q we keep no incorrect group for sure. That is, we needq≈ 4log2k.

Now we havem2 groups left after filtering and at least one mapping(i f → l f → t f →
nf) for a groupG l f →t f . Thesem2 groups correspond to all groupsG l i→ei for l i ∈

{σC2[1], . . . ,σC2[m]} andei ∈{σ−1
C1

[1], . . . ,σ−1
C1

[m]} (see Fig. 8). SinceσC1,σC2 are fixed,
the correct groups correspond to all mappings between the set of m indices
{σC2[1], . . . ,σC2[m]} and the set ofm indices{σ−1

C1
[1], . . . ,σ−1

C1
[m]}.

Now, we fix l to l f . This way we reduce the number of groups tom. At this stage, we
know the exact mapping isi f → l f . Depending on which groupG l f →tg we pick at this
stage (we have a free choice oftg), we havem distinct mappings from bitl f . We pick
one of these groupsG l f →tg which mapsl f to tg. i.e., the mappings on both ends of Fig.
7 are fixed. Then, we go through allm possibilities forn and check for allU ∈ G l f →tg
whetherARMADILLO1d(C1‖C2‖U)[n]⊕g(U)[tg]⊕X[n]⊕X[i f] is constant. If yes, we
know thattg maps ton. Using allm groupsG l f →·, we can recover permutationσ−1

C1
on

[1,m]. We can fixt to t f this time and perform the same procedure to recoverσC2.

Now we have all we need to forge a response for a new challenge.Let U ′ be a new
challenge. We forgeARMADILLO1d bit by bit. Let consider bitn of the responceR′. We
have recoveredσ−1

C1
[1,m] and therefore we knowσ−1

C1
(n) wheren∈ [1,m] i.e., position

14

!

!

!

!

!

!

Fig. 7. ARMADILLO1d attack scheme

to which thenth bit of the responseR′ is mapped. Now we selectl 1 such thatU ′ ∈
G l→σ−1

C1
(n)

. If we find suchl (i.e., we find the corresponding group) then we forge the

n= σC1σU σC2(i)-th bit of the response as follows. LetU ∈ G l→σ−1
C1

(n) be a representative

of such a group. From equation (2) we have

ARMADILLO1d(C1‖C2‖U)[n]⊕g(U)[t]⊕X[n]⊕X[i]= (al ⊕bn)
ARMADILLO1d(C1‖C2‖U ′)[n]⊕g(U ′)[t]⊕X′[n]⊕X′[i] = (al ⊕bn)

and therefore

ARMADILLO1d(C‖U ′)[n] = ARMADILLO1d(C‖U)[n]⊕ (X[i]⊕X′[i])⊕ (g(U)[t]
⊕g(U ′)[t])⊕ (X[n]⊕X′[n])

If there is no suchl (i.e., we cannot find any corresponding group) we forge then =
σC1σU σC2(i)-th bit of response as follows. Compared to the previous casewe only drop
(X[i]⊕X′[i]), sinceX[i] = X′[i], since the bit is coming from the secret part.

ARMADILLO1d(C‖U ′)[n] = ARMADILLO1d(C‖U)[n]⊕g(U)[t]⊕g(U ′)[t]
⊕X[n]⊕X′[n]

The complexity of the forgery attack isO (qk4) with qk challenges, whereq≈ 4log2k.

1 Notice that thisl can be in the “bad groups”. We only use the “good groups” to recover the
secret permutationsσC2 andσC1.

15

σ!!("#$%&)

σ!!("#$%&)

σ!"

Fig. 8. ARMADILLO1d group filtering scheme

6.2 Extension with theT4 and T2 Transformations

Let now consider the definition for a general case of aT2 andT4 andT1(C1‖C2‖U) =
(C1‖U‖C2), i.e., we assume thatπ keeps a large piece of consecutive bits ofU together.

ARMADILLO1d(C1‖C2‖U) = T4(P(C1‖U‖C2,T2(C1‖C2‖U)),(C1‖C2‖U))

The same steps as the previous attacks hold in the general case as well. In the case
of T2, since the secret is fixed it can be derived out as a constant inour computations.
So, deploying the same grouping strategy, the attack still works. It is not difficult to see
that the same method also holds even if we have theT4 function.

6.3 Extension to a generalπ

Let now consider the definition

ARMADILLO1d(X) = P(Xπ,X)⊕X

for X = (C1‖ . . .‖Ct‖U1‖ . . .‖Ut−1). In the algorithm above, the attacker decomposes the
computation ofARMADILLO1d into several stages. Let supposewlog that we permute
the bits of secret using permutationπ as follows

(C1‖ . . .‖Ct‖U1‖ . . .‖Ut−1)π = C1‖U1‖C2‖U2‖ . . .‖Ct−1‖Ut−1‖Ct

I.e.π mixesC andU bits together, without putting too many consecutive bits ofU . We
uset times the forgery algorithm onARMADILLO1d to recover all mappingsσCi .

16

1: for all G l→t , where(l ,t) ∈ [1,k]2 do
2: ω = 0
3: for all (i,n) ∈ [1,m]2 do
4: err = 0
5: pick an arbitraryU1 ∈ G l→m
6: ν = ARMADILLO1d(C1‖C2‖U1)[n]⊕g(U1)[t]⊕X[n]⊕X[i]
7: for all U ∈ G l→m\U1 do
8: if ν 6= ARMADILLO1d(C1‖C2‖U)[n]⊕g(U)[t]⊕X[n]⊕X[i] then
9: ω = ω+1

10: err = 1
11: break
12: end if
13: end for
14: if (err == 0) then
15: output(i → l → t → n).
16: end if
17: end for
18: if (ω == m2) then
19: dropG l→t .
20: end if
21: end for

Fig. 9. group filtering algorithm forARMADILLO1d.

Let assume that 2|Ui | ≥ kq for everyi. If this is not the case we can recover the mapping
σCi−1σUi σCi for all evaluations ofUi in polynomial time. In both cases, we recover each
σCi andσCi+1 recursively. To recoverσCi andσCi+1, we fixEi+1 =Ui+1‖Ci+2‖ . . .‖Ct by
fixing Ui+1, . . . ,Ut−1, sinceCi+2, . . . ,Ct is already fixed. Then, the problem is reduced
to the same situation as the previous attack, where we have a challenge part sandwiched
between two intervals of the secret bitsC. Finally, we obtain the mappingσC1 on set
[1,m], σC2, . . . , σCt−1 on set[1,k] andσ−1

Ct
on set[1,m]. Note that we can recover permu-

tationsσC2, . . . , σCt−1 on set[1,k] by setting challenge bits to different valuesk
m times.

All we need is to describe an algorithm to recover all constants P(Ci ,0). Then we will
have everything we need to forge the response ofARMADILLO1d to any challenge.

We now describe how to recoverP(C1,0). The same method can be used to derive
otherP(Ci ,0) recursively. The same as before, Let fix allUi ’s exceptU1. We use Lemma
1. and Lemma 2. and rewrite

ARMADILLO1d(X)⊕X = P(C1‖U1‖E2,X)
= P(E2,P(U1,P(C1,X)))
= P(C1,X)σU1σE2

⊕P(U1,0)σE2
⊕P(E2,0)

= P(C1,0)σU1σE2
⊕XσU1σE2

⊕P(U1,0)σE2
⊕P(E2,0)

which gives us set of linear equations and we can varyσU1 as necessary to obtain a large
system of equations and solve it.

17

Complexity. The general attack may iterate the algorithm in Fig. 9. up tok times. In
some iterations, the requirement 2|Ui |≥ k logk does not need to be satisfied. In such case,
we need to extend the intervalUi by guessing some bits of key. Such technique would
require anotherk logk steps. Therefore, the complexity is bounded byO(k·k4q·k logk).
We specified before thatq ≈ 4logk. Hence, the complexity of the offline stage of the
attack isO(k6 log2k) and the algorithm requires at mostk3 log2k queries.

6.4 Attack Impact on ARMADILLO2

We can seeARMADILLO2 as a successor ofARMADILLO1d with a pre-processingT1

which is more elaborate than a simple transposition. Such preprocessing makes it re-
sistant against our attack. Our attack is based on decomposition according to Lemma 1
and a guess of a constant value of functionf (U) from Lemma 2. The pre-processing
phase protects against both the decomposition and the constant value of functionf (U).
However, the attack we propose points out possible weaknesses in the design ofAR-
MADILLO2.

7 Conclusion

We have shown a devastating key recovery attack againstARMADILLO1 and discussed
a potential implication onARMADILLO2. Although we did not find an attack onAR-
MADILLO2, we have illustrated that the non-linearity based on data-dependent permu-
tations in bothARMADILLO1 andARMADILLO2 is not sufficient. The results do not
immediately apply onARMADILLO2 but they allow for better understanding the design
and they might be used to improve the attack in [1].

Acknowledgements.This work was sponsored by Oridao2. We would like to thank
Nicolas Reffé for his kind support. TheARMADILLO algorithms are subject to patent
number WO/2008/148784 [4].

References

1. M. Abdelraheem, C. Blondeau, M. Naya-Plasencia, M. Videau, and E. Zenner. Cryptanalysis
of ARMADILLO2. In proceeding of ASIACRYPT 2011. Springer, 2011.

2. Stéphane Badel, Nilay Daǧtekin, Jorge Nakahara, Khaled Ouafi, Nicolas Reffé, Pouyan
Sepehrdad, Petr Sušil, and Serge Vaudenay. ARMADILLO: A Multi-purpose Cryptographic
Primitive Dedicated to Hardware. In Stefan Mangard and François-Xavier Standaert, editors,
Cryptographic Hardware and Embedded Systems, CHES 2010, volume 6225 ofLecture Notes
in Computer Science, chapter 27, pages 398–412–412. Springer Berlin / Heidelberg, Berlin,
Heidelberg, 2011.

3. John Kobza, Sheldon Jacobson, and Diane Vaughan. A Surveyof the Coupon Collector’s
Problem with Random Sample Sizes.Methodology and Computing in Applied Probability,
9(4):573–584, December 2007.

4. N. Reffé. CRYPTOGRAPHIC METHODS AND DEVICES FOR THE PSEUDO-RANDOM
GENERATION OF DATA ENCRYPTION AND CRYPTOGRAPHIC HASHING OFA
MESSAGE, 12 2008.

2 http://www.oridao.com/

18

