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Abstract. Several countermeasures against side-channel analysis result
in misalignment of power traces, in order to make DPA more difficult.
In this paper we propose a new algorithm to align the measurements
after this desynchronizing through the variations of the internal clock,
random delays, etc. The algorithm is based on the ideas of SIFT and
U-SURF algorithm that were originally proposed for image recognition.
The comparison with other known methods favors our solution in terms
of efficiency and computational complexity.
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1 Introduction

Small electronic devices such as smart phones, PDAs and smart cards are becom-
ing increasingly popular. As a side effect of this trend, more critical information
is stored in these devices and therefore it is crucial that they are secure. As al-
gorithms used in modern chips are mathematically rather secure, attackers shift
focus to specific implementations and the secret information that leaks through
physics.

One of the focus areas is the power consumption of a device. About a decade
ago Kocher et al. proposed DPA, a method that allows attackers to extract
the secret key used for cryptographic operations from a small device such as a
smartcard [7]. Since then many countermeasures have been developed, as well
as ways to reduce the effects of these countermeasures.

Kocher’s method and its many variants depend on the assumption that dur-
ing the encryption, the timing of each operation during the cryptographic opera-
tion is constant between multiple executions of the algorithm. By adding dummy
operations at random points in time or using an unstable clock this assumption
is broken, and thereby DPA attacks become less effective. However, there exist
algorithms that attempt to recover DPA information even in this case of the
traces being misaligned e.g. Static Alignment [9] and Elastic Alignment [10].
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The power traces are altered such that the target is susceptible to a DPA attack
again. Static alignment is fast, but it only aligns one point of the cryptographic
operation and does not take into account differences in the timing of the indi-
vidual operations. Elastic Alignment performs continuous alignment, but it is
computationally intensive.

Our proposed algorithm is designed to perform continuous alignment, with-
out the drawback of the high computational requirements of Elastic Alignment.
The algorithm is inspired by U-SURF [2] which, given a reference picture, is
used to recognize pictures of the same scene/object taking into account differ-
ences in angle and light. The proposed algorithm uses several techniques used in
U-SURF, among most notably the use of block wavelets for detection and iden-
tifying of specific points in the recorded power signal. The main advantage of
block wavelets is that they can be applied in O(1), which improves the running
time substantially.

This paper is organized as follows. Section 2 describes relevant prior work.
In Sect. 3 we explain the main ideas behind wavelets as a starting point for the
new method. We present the algorithm and its main components in Sect. 4. Our
experiments and results are given in Sect. 5. Finally, Sect. 6 concludes this work.

2 Related Work

Alignment algorithms try to reduce the effects of an unstable clock and dummy
operations by aligning all traces in a set to a reference trace, which is a common
approach. In this paper we refer to the trace we align to as the reference trace
and the traces that need to be aligned as the target traces.

Static alignment was described by Mangard et al. in 2007 [9], see Ch. 8.
The idea is as follows: the attacker chooses a fragment in a reference trace close
to the area where the attack takes place. Then the algorithm aims to find this
same fragment in the other traces and shifts the other trace so that the reference
fragments are aligned. Although this does not fully counter an unstable clock or
random delays, it often does reduce the number of traces needed to successfully
perform a DPA attack.

Elastic Alignment [10] attempts to match each sample in a target trace to
samples in the reference trace. It can match sequences of samples in the target
trace to a single sample in the reference trace, and vice versa. The algorithm
minimizes the sum of the different sample values between matched samples.
This match is used to stretch and compress samples in the target trace to match
the reference trace. The result is an algorithm that can perform a continuous
synchronization of any two traces. The authors show Elastic Alignment runs in
O(n), with n the number of samples in the trace to align. However, the continuous
matching procedure is still quite computationally expensive.

Sliding Window DPA was proposed by Clavier et al. in 2000 [6]. as an algo-
rithm that is specifically designed to counter random process interrupts (RPI).
When RPI are used as a countermeasure the position of the leakage that is ex-
ploited by DPA can shift a few clock cycles. Each clock cycle in a power trace
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is replaced by the average of itself and a number of previous clock cycles. The
two main parameters of this method are the number of cycles to average (the
window size) and the number of samples per one clock cycle. In [10] it was shown
that SW-DPA performs fairly well. However when an unstable clock is used the
performance drops drastically. This is not surprising since the algorithm assumes
a stable clock of which the frequency is set in parameters of the algorithm.

SIFT stands for Scale Invariant Feature Transform. It is a feature generation
method proposed by Lowe in 1999 [8]. The features generated are used to recog-
nize objects in images. Object recognition algorithms have to be robust against
scaling, translation, rotation and noise in the images, which are similar prob-
lems to those due to the misalignment. U-SURF [2] stands for Upright-SURF
where SURF stands for Speeded Up Robust Features. U-SURF does the same
as SURF, except that it skips a step where orientations of the points of interest
(POI). Our solution is inspired by both, as we translate the ideas of SIFT and
U-SURF from the 2 dimensions (images) to one dimension (power traces).

In this work we aim at creating a continuous alignment algorithm, with a
strong focus on improving computational complexity.

3 Alignment with wavelets

To align two power traces one first needs to choose points in these power traces
to align upon. In Elastic Alignment, the points used for alignment are all the
samples in every resolution of each trace. This results in the calculation being
computationally demanding. The proposed algorithm uses far less points for
alignment and interpolates in between these points.

The points that are used to align on must be efficient to compute and rec-
ognizable in each trace. To find these points of interest (POI) in multiple traces
the proposed algorithm searches for certain patterns in the traces. These pat-
terns are identified with the use of wavelets. Wavelets give information about a
power trace with excellent temporal resolution, as opposed to a Fourier Trans-
form which has a trade-off between frequency resolution and temporal resolution.
The benefits of wavelets in getting rid of noise were already presented in [5], but
they were not used for re-synchronization. Another important advantage is that
the wavelets used in the proposed algorithm can be applied in O(1). This is
further explained in the remainder of this section.

3.1 Wavelets

The term “wavelet” means small wave. It is a signal with an amplitude that
starts out at zero, than increases, and then decreases back to zero. An example
of this can be created by multiplying a sine wave with the Gaussian distribution
function. This will result in a Morlet wavelet as can be seen in Fig. 1. Given a
wavelet function the wavelet response WR(t, ψ), of a wavelet defined by function
ψ(t) at a point t in a signal defined by function f(t), can be computed by
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Fig. 1: Examples of a Morlet wavelet (top-left), Mexican Hat wavelet (top-right), Mex-
ican Hat block wavelet (bottom-left) and Haar wavelet (bottom-right)

calculating the convolution of the wavelet and the signal at that point as is
shown in equation (1):

WR(t, ψ) =

∫
f(x) · ψα,t(x)dx, (1)

where ψα,β is the wavelet function ψ scaled with α and translated with β as
is shown in equation (2):

ψα,β(t) =
1√
α
ψ(
t− β
α

). (2)

When working with power traces the signal is not defined by a continuous
function. Instead it is defined by a set of discrete data points. The wavelet
response function reduces then to a summation which is shown in the following
sum:

WR(t, ψ) =

len∑
x=0

f(x) · ψα,t(x). (3)

where len is the number of sample points in the power trace.
For detection of POIs, wavelet responses are calculated at several scales and

at several sample points in the trace. Two patterns have been tried, the first
being a peak pattern which was identified with the Mexican Hat wavelet shown
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in Fig. 1. The second was the slope pattern which was identified with the Haar
wavelet also shown in Fig. 1. To be able to compare wavelet responses of different
scales the wavelet responses are divided by

√
s where s is the scale of the wavelet.

3.2 Block Wavelets

The calculation of a wavelet response as defined in equation (3) takes O(n) to
compute, where n is the length of the power trace. By using the 1-dimensional
variant of summed-area tables [1] this can be reduced to O(1) when using block
wavelets such as the Haar wavelet or the approximation of the Mexican Hat
wavelet. First, the power traces that need to be aligned are transformed in a
summed trace. Each element at position t in the summed trace is the sum of
all the samples before and including sample t in the power trace. The formal
definition of the summed trace S of power trace P is given in equation (4):

S[0] = P [0]

S[t] = S[t− 1] + P [t]. (4)

The convolution of the Haar wavelet and the block version of the Mexican
Hat wavelet with scale s at position t in summed trace S can now be calculated
efficiently: the Haar wavelet now requires only 3 read operation regardless of its
scale and the Mexican Hat requires 4. This follows directly from their definitions
applied to summed traces, the result of which is shown in equations (5) and (6):

Haar(S, t, s) =
−(S[t]− S[t− s

2 ]) + (S[t+ s
2 ]− S[t])

√
s

=
−2 · S[t] + S[t− s

2 ] + S[t+ s
2 ]

√
s

, (5)

MexicanHat(S, t, s) =
−(S[t− s

6 ]− S[t− s
2 ]) + 2 · (S[t+ s

6 ]− S[t− s
6 ])− (A[t+ s

2 ]− S[t+ s
6 ])

√
s

=
3 · (S[t+ s

6 ]− S[t− s
6 ])− (S[t+ s

2 ]− S[t− s
2 ])

√
s

. (6)

4 New algorithm

The proposed algorithm is inspired by U-SURF [2]. It has several tunable pa-
rameters but in order to ease the tuning attackers need to do, every parameter
in the algorithm is related to properties of the trace.

The algorithm consists out of four components: Detector, Descriptor, Matcher
and Warper. First the Detector finds points of interest (POI) in the reference
trace and the target traces. The Descriptor then generates a feature vector for
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each POI based on their context. Using these vectors the Matcher will match
POIs in the reference trace with POIs in the target trace. Finally, the Warper
uses the matched points to stretch and shrink the target trace and to align them
with the reference trace. This is a recursive process starting with POIs detected
with large wavelets. Each recursive step the algorithm repeats itself on trace
parts in between the POIs from the previous step with a reduced wavelet scale.

A POI in this paper is a data structure containing its position in a trace,
the wavelet scale which was used to detect it and a feature vector. The position
and scale are set by the Detector and the feature vector is generated by the
Descriptor. An area in the code consists of two positions marking the start
(inclusive) and end (inclusive) of the area. A match consists of a position in the
reference trace, a position in the target trace and a confidence value.

In the following sub-sections a detailed description is given for each of the
four components. The main procedure of the algorithm is shown in Algorithm
1.

Algorithm 1 The main loop of RAM

procedure RAMinner(m:matches, ref :sumtrace, tar:sumtrace, aref :area,
atar:area, ws:wavsize)

if ws < Detmw ∨ atar.size = 0 ∨ aref.size = 0 then
return

end if

refpois = detect(ref, aref, ws)
tarpois = detect(tar, atar, ws)
describe(ref , refpois)
describe(tar, tarpois)
mat = match(refpois, tarpois)

if isEmpty(mat) then
RAMinner(m, ref, tar, aref, atar, ws/2)
return

end if
for All areas (mref,mtar) between neighbouring matches in mat do

RAMinner(m, ref, tar,mref,mtar, ws/2)
addMatch(m, mref.end, mtar.end)

end for
end procedure

procedure RAM(ref :trace, tar:trace)
mat = (0,0)
ws = argmaxx (x = Detmw · 2k | k ∈ N ∧ x < ref.size)
RAMinner(mat,MakeSumTrace(ref),MakeSumTrace(tar), {0, ref.size −

1}, {0, tar.size− 1}, ws)
return warp(tar, mat)

end procedure
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4.1 Detector

The Detector detects POIs in the reference and target trace. A POI is a pattern
in the trace that can be quickly and repeatedly recognized in other traces of the
same set. The entire Detector procedure is shown in Algorithm 2.

POIs are found by performing a wavelet transform. The response for wavelets
of various scales is calculated for the trace. The algorithm starts with the largest
wavelet scale that satisfies this predicate Detmw · 2k < l with k being a natural
number, l being the trace length and Detmw being the minimum wavelet scale.
For each iteration the scale is halved until Detmw is reached. Due to the type of
wavelet used (Mexican Hat) Detmw should be a multiple of 3.

For performance reasons the wavelet responses are not calculated for every
sample but with a step size of 10% of the wavelet scale. A small step size slows
down the algorithm, whereas a big step size does not detect sufficient POIs.
Preliminary testing shows a value of 10% yields a good tradeoff. To be able to
compare the responses to a constant threshold, the responses are normalized
with respect to the wavelet scale. Samples with an absolute wavelet response
less than Detth times the standard deviation of the trace are discarded. The
constant Detth will be a parameter of the algorithm.

A best-of-its-neighbors filter is then applied to the remaining samples. If the
absolute wavelet response of a sample is not greater than the absolute wavelet
responses of its neighbors, the sample is discarded. Neighbors are defined here
as every sample within 3 times the step size from the sample under evaluation.
Early testing showed that at least 3 times the step size is needed here, as other-
wise too many POIs survive the filter, whereby the matcher will not be able to
differentiate them properly.

The samples that remain after the filter will be the POIs. Since these are
the points that will be used for alignment later on it is important that they are
located as accurate as possible. To achieve this the remaining responses will be
pinpointed by searching for the highest wavelet response in the vicinity (the step
size) of the point.

Figure 2 shows the result of the Detector. The first image is the original
trace followed by two images that show the POIs found by the detector at dif-
ferent scales. As is expected, large wavelets result in much fewer POIs than
small wavelets. Therefore it is more efficient to match the POIs from large scale
wavelets to POIs from another trace. On the other hand, smaller wavelets give
more information on how to align the traces.

The type of wavelet used here defines on which patterns the responses will
be high. Searching for slope patterns (by using Haar wavelets) and for peak
patterns (by using Mexican hat block wavelets) was tried. Both wavelets are
shown in Fig. 1. We found that in the traces we analyzed that the Mexican Hat
block wavelet outperformed the Haar wavelet in finding the same POIs in similar
traces.
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Fig. 2: A power trace (top) with its points of interest for two scales (middle=384,
bottom=6)

Algorithm 2 The main loop of the Detector

procedure detect(S:sumtrace, a:area, ws:wavsize)
B = buffer trace
step = max(1, ws/10)
pois = empty list
for i = a.start; i < a.end; i+ = step do

B[i] = MexicanHat(S, i, ws)
if abs(B[i]) < Detth ∗ stddev(RefTrace) then . Below threshold?

B[i] = 0
end if

end for

for i = a.start; i < a.end; i+ = step do
if B[i] 6= 0 ∧BestOfNeighbors(B, i) then . If best, add

addPOI(pois, P inPoint(S, i), ws)
end if

end for
return pois

end procedure
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4.2 Descriptor

The descriptor (Algorithm 3) aims to uniquely describe each POI by its context.
It generates a feature vector which will be used by the matcher to calculate
the distance between two POIs. These features must be robust to noise and
because there are many POIs coming from one single trace, the features must
be fast to calculate. We use the same approach as in U-SURF: an area of Desas
times the scale around each POI is divided in several sections as can be seen in
Fig. 3. Desas is a tunable parameter of the algorithm. For each of the sections
a few simple features are calculated. The sections are used to retain temporal
information.

Fig. 3: A selected POI (top) and 8 sections which are used for the features (bottom)

For each section a number Desss of Haar wavelet responses are calculated
(using the summed trace) at constant distance from each other with a wavelet
scale of Deshw times the scale of the POI. In order to focus on the area directly
around the POI, a Gaussian curve centered at the POI and with a standard
deviation of Desga is used to normalize the Haar wavelet response.

To include information about the polarity of the section all the wavelet re-
sponses are summed, and to include information about the intensity of the sec-
tion all the absolute wavelet responses are summed. The number of sections is
based on the feature count Desfc (2 features per section). The constants Deshw,
Desss, Desfc, Desga are tunable parameters of the algorithm.

4.3 Matcher

The Matcher (Algorithm 4) creates a mapping between the POI set of the refer-
ence trace and the POI set of the target trace based on the feature vectors. The
Matcher has to be robust to the fact that not every POI appears in both trace
and that descriptions of different operations may be similar.

For every POI from the reference trace a distance is calculated to every
POI from the target trace with the same scale. To allow comparison against a
threshold the normalized Euclidean distance is used, which is a special case of
the Mahalanobis distance and is defined in equation (7).
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Algorithm 3 The main loop of the Descriptor

procedure describe(S:sumtrace, pois:POIlist)
for All POI p from pois do

v = ZeroF illedV ector(Desfc)
da = Desas ∗ p.scale . size of the description area
sc = Desfc/2 . section count
ss = da/sc . section size
o = p.pos− sc/2 ∗ ss . offset, most left sample point
step = max(1, p.scale/Desss);

for s = 0; s < sc; s + + do . For each section
for i = 0; i < ss; i+ = step do . For each sample in the section

t = Haar(S, o + s ∗ ss + i,Deshw ∗ p.scale) . Calc Haar
t∗ = Gaussian(o + s ∗ ss + i− p.pos,Desga) . Normalize

end for
v[2 ∗ s]+ = t . Add response for section
v[2 ∗ s + 1]+ = abs(t) . Add absolute response for section

end for
setFeatureVector(p, v)

end for
end procedure

d(−→x ,−→y ) =

√√√√ N∑
i=1

(xi − yi)2
σ2
i

(7)

where σi is the standard deviation of the xi over the sample set. In our case σi
is calculated using every possible POI with the same scale. To do this the all
the POIs have to be calculated before the matching starts (note that this is not
shown in the algorithms), this will also speed up the algorithm. In some cases,
especially those with large scales, there are not enough POIs to give a proper
estimate for σi, but we find in practice this does not cause problems.

Each POI from the reference trace is matched with the POI with the smallest
distance in the target trace. For efficiency, if the distance is greater than the
threshold Matmd the match is removed. Testing shows that this removes most
of the mismatches as can be seen in Fig. 4.

Fig. 4: Two matched POI sets, with Matmd = 1000 (left) and Matmd = 4(right)
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In the remaining matches there can still occur cross matches. By this we
mean that sample point refn of the reference trace is matched against sample
point tarn of the target trace while at the same time sample refn+p is matched
against sample tarn+q with p ·q < 0. This is not allowed because it would violate
the temporal behavior of the trace.

To resolve these cross matches the confidence of a match and a penalty
function are used. The confidence of a match is defined by the distance of the
best match divided by the distance for the second best match. The penalty
function halves the confidence of a match for every other match it crosses. The
conflicting match with the lowest confidence will than be removed from the set.
This is repeated until all cross matches are resolved.

Algorithm 4 The main loop of the Matcher

procedure match(ref :POIlist, tar:POIlist)
matches = emptylist

for All POI p from ref do . Match POIs
q1 = argminq(dist(p.feats, q.feats)) | q ∈ tar) . Closest
q2 = argminq(dist(p.feats, q.feats)) | q ∈ tar ∧ q 6= q1) . Second closest
d1 = dist(p.feats, q1.feats)

conf = 1− d1/dist(p.feats, q2.feats)
if d1 < Matmd then

addMatch(matches, {p, q1, conf})
end if

end for

while crossmatches exist in matches do . Remove crossmatches
worst =argminm (m.conf ∗ 0.5NumCrosses(m,matches) | m ∈ matches)
removeMatch(matches, worst)

end while
return matches

end procedure

4.4 Warper

The Warper (Algorithm 5) takes a list of matched POIs from two traces and
shrinks and stretches sections of the target trace so it will be aligned with the
reference trace. In the result trace the values of the samples that are included
in the match list are set to the values of the target trace. Values in between
the matched points are interpolated. Various interpolation schemes have been
tried such as Nearest Neighbor, Linear, Cosine, Cubic and Hermite [4]. Hermite
interpolation is similar to cubic but has tension and biasing parameters. The
tension controls tightens the curve at known points whereas bias twists the curve
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towards one of the two points. Testing shows that differences were minimal but
slightly in favor of the Cubic interpolation scheme. The other schemes have not
been researched further.

The start and the end of the traces are not necessarily aligned. The samples
before the first matched sample are interpolated with the same parameters as
the samples between the first and the second matched samples. The same is done
at the end of the trace. We fill this with the values of the nearest sample.

Algorithm 5 The main loop of the Warper

procedure warp(tar:trace, mat:Matchlist)
t = TraceOfSize(tar.size)
for m = 1;m < mat.size;m + + do

ddest = mat[m].ref.pos−mat[m− 1].ref.pos . delta in reference trace
dsrc = mat[m].tar.pos−mat[m− 1].tar.pos . delta in target trace
r = dsrc/ddest . stretch/shrink factor

for i = 0; i < ddest; i + + do
t[mat[m].ref.pos + i] = interpolatedPoint(tar,mat[m].tar.pos + i ∗ r)

end for
end for
t[t.size-1] = tar[tar.size-1] . Copy last sample
return t

end procedure

5 Experiments and Results

In our experiments we intend to compare RAM to other well-known methods
for dealing with misalignment: Static Alignment [9], SW-DPA [6] and Elastic
Alignment [10]. We compare first-order success rates of CPA after performing the
different alignment techniques applied to measurements taken from a software
DES implementation.

The hardware used for our measurements consists of the standard side chan-
nel equipment: a smart card reader, a LeCroy 104Xi oscilloscope and our acqui-
sition and analysis software. We also employed a 48 MHz analog lowpass filter.
The traces were acquired from a programmable smart card, which contains a
software implementation of DES, including software countermeasures that can
be turned on and off. For these measurements we enabled the random delays
countermeasure, which introduces random wait states during execution of the
DES algorithm. The card runs at an external clock of 4 MHz.

Timing measurements for the comparison of different alignment methods
are performed on a computer with an E6750 2.66 GHz processor and 2 Gb of
RAM and running Windows 7. We sampled the traces at 250 megasamples per
second. We chose for a much higher frequency than the clock speed to get a
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more accurate reading per clock cycle. The acquired traces were compressed
right after acquisition by averaging samples until we effectively obtained one
sample per clock. In total we acquired 8248 consecutive clock cycles per DES
execution, providing us with several rounds of DES. This was performed with
random inputs for a total of 500k traces.

A typical trace from the resulting set is shown in Fig. 5. Note that the y-axis
shows negative mVolts. This is due to an offset introduced during acquisition
and has no consequences for our research.

Fig. 5: A typical trace from the data set, showing the last round of the encryption

5.1 Settings

Here we elaborate on different settings used for alignment algorithms we compare
our algorithm with.

Static alignment settings: For static alignment we selected a trace fragment of
600 samples at the end of the encryption. The allowed shift for this fragment
was set to 250 samples.

Sliding window settings: We preprocessed the traces for a SW-DPA attack [6],
by averaging the samples as described previously. The number of samples
per clock cycle was set to 1 and the size of the sliding window that we used
was 50, 100 and 200.

Elastic alignment settings: We also compare our proposed algorithm to Elastic
Alignment. We set the radius in which FastDTW (as in [10]) will search
for the optimal warppath. A radius of 70 provided a good trade-off between
alignment quality and speed.

RAM align: For the new algorithm the initial values of the constants were chosen
close to the values of U-SURF [2] whenever possible. The other baselines
for the constants were tuned on the basis of previous experimenting. Using
the correlations of the target traces with the reference trace it was decided
whether increasing or decreasing the constant yields better results. Various
values for the constants that we tested are given in Table 1.

Some additional explanations for constants and their values are given below.

Minimum Wavelet Size (Detmw) This constant specifies the stopping criterion
for the detector. The detector starts with large wavelets and decreases them
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Table 1: Different values for the constants that were used for tuning the algorithms.

Constant Notation Values tested Baseline value

Minimum Wavelet Size Detmw 3, 6, 12 6
Response Threshold Detth 2, 2.5, 3 3
Area Size Desas 12, 16, 20 20
Feature Count Desfc 16, 24, 32 32
Haar Wavelet Size Deshw 1.5, 2.5 -
Standard Deviation Gaussian Desga 2.8, 3.3, 3.8 -
Samples Per Section Desss 10, 20 -
Maximum Distance Matmd 2.3, 2.5, 2.7 2.5

after every iteration. If this wavelet size is reached then the detector is fin-
ished. In addition, lowering this value increases computation time, as usually
there are much more possible POIs at low wavelet sizes, which possibly com-
plicates correct matching. Lowering this value provides more precision for
alignment and could increase the overall score.

Response Threshold (Detth) The detector will only select samples to become
a POI if the wavelet response at that point is greater than Detth times
the standard deviation of the trace. A higher value input less points to
the matcher, but may result in too few POIs to do proper alignment. A
lower value also increases the running time of the algorithm. The matching
algorithm is quadratic in the number of POIs detected, which makes this
very computationally demanding.

Area Size (Desas) This specifies the size of the area around the POI which will
be used for the generation of the feature vector for this POI. The area of
this POI will be Desas times the scale of the POI. Low values mean that
POIs are related to each other based on the samples close to the POI (which
could have patterns that exist multiple times in the trace). High values take
samples further away into account, but could cause confusion that due to
the fact that areas of POIs overlap too much.

Feature Count (Desfc) This constant is related to the area size. It specifies
how many features should be calculated in the specified area. More features
means longer computation time but more accuracy for relating POIs.

Haar Wavelet Size (Deshw) The descriptor uses Haar wavelets of size Deshw
times the scale of the POI to generate the feature vectors. Higher values
means searching for patterns at lower signal frequencies. The wavelet be-
comes bigger and is less sensitive for higher frequencies.

Standard Deviation Gaussian (Desga) The descriptor weighs the Haar wavelet
responses with a Gaussian with an standard deviation of Desga times the
scale of the POI. Lowering the value of this constant means that the descrip-
tion is focused on samples closer to the POI.

Samples Per Section (Desss) This is the number of samples used per section.
The more samples used, the more accurate the descriptor can describe that
section. If significantly less samples are used it speeds up the algorithm.
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Maximum Distance (Matmd) This constant specifies the maximum allowed
distance between two matched POIs. If a match has a distance of more than
Matmd it will be discarded. Lowering this value will prevent cross matching,
but lowering it too much will discard usable matches.

Due to the fact that some of the constants influence each other, changing
the setting on one constant may change the optimal settings for the others.
More detailed graphical representation of the constants tuning is given in the
appendix. After tuning the best results were obtained with the following values
for the constants: Detmw = 3, Detth = 2.5, Desas = 16, Desfc = 32, Deshw =
2, Desga = 3.3, Desss = 10,Matmd = 2.3.

Result analysis The final results are the calculated first order success rates.
After alignment, the trace set is split into subsets. For each subset a number
of traces Ns is selected and a CPA [3] attack is performed on these traces.
The module counts the number of successful attacks S+ and the number of
unsuccessful attacks S− and calculates the first order success rate Rs:

Rs =
S+

S+ + S−

.

5.2 Comparison results

The running times of the different algorithms are listed in table 2. The proposed
algorithm clearly outperforms Elastic Alignment in computation time. Although
Static Alignment and SW-DPA are faster they are not able to align the traces
in such a way that a successful DPA attack can be performed as can be seen
in Fig. 6. When comparing the success rate to the number of traces used the
proposed algorithm performs similar to Elastic Alignment. However, when com-
paring the success rate to the time it took to align the traces, the proposed
algorithm outperforms Elastic Alignment with an order of magnitude.

Algorithm Run Time Time Per Trace

Static Alignment 12 minutes 1.44 ms

SW-DPA 18 minutes 2.16 ms

RAM 76 minutes 9.1 ms

Elastic Alignment 3115 minutes 373.8 ms

Table 2: Timing results for the various alignment methods. The time listed for SW-DPA
is the additional time it took to perform the DPA attack
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Fig. 6: Success To Trace Ratio (Left) and Success to Time Ratio (Right). Note that
data points in the right graph are not measurements but translated and interpolated
points from other experiments.

6 Conclusions and Future Work

Although several algorithms to align the measurements exist today they are
all limited in either success-to-number-of-traces-ratio or computation time. In
this work we introduce a new algorithm that obtains the best performances of
previous works in terms of both the success rate and computation time. The
proposed algorithm consists of four components. Each of these components can
be replaced so that new approaches can easily be tested. This provides an easy
to use framework for alignment algorithms.

We illustrate our results by experiments on a smartcard with a software
implementation of triple DES to measure the performance of the algorithm.
We used several experiments to tune the parameters of the algorithm. All of
the parameters are dependent on properties of the traces to be aligned. This
results in an algorithm which is easy to use. However, it is possible that further
experimenting (with other implementations and platforms) could result in other
values for the parameters.

We compared our proposed algorithm with Static Alignment, Sliding Window
DPA and Elastic Alignment. While Static Alignment and Sliding Window DPA
are not capable of properly aligning the used trace set, Elastic Alignment showed
excellent performance but was relatively slow. It took almost 52 hours to process
the 500 000 traces from our data set. Our proposed algorithm performed similarly
in terms of success ratio compared to Elastic Alignment but took only 76 minutes
to process the data set.

Acknowledgments

We would like to thank Riscure for providing an environment for fruitful discus-
sion during the research, and for providing the side-channel analysis platform
that was used for this work (Inspector). This work was supported in part by
the IAP Programme P6/26 BCRYPT of the Belgian State and by the European
Commission under contract number ICT-2007-216676 ECRYPT NoE phase II
and by the K.U.Leuven-BOF (OT/06/40).

16



References

1. D. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pattern
recognition, 13(2):111–122, 1981.

2. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-Up Robust Features
(SURF). Comput. Vis. Image Underst., 110:346–359, June 2008.

3. E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage
model. In M. Joye and J.-J. Quisquater, editors, Proceedings of 6th International
Workshop on Cryptographic Hardware and Embedded Systems (CHES), number
3156 in Lecture Notes in Computer Science, pages 16–29. Springer-Verlag, 2004.

4. R. Burden and J. Faires. Numerical analysis. Paciific Grove, California, United
States, 2004.

5. X. Charvet and H. Pelletier. Improving the DPA attack using Wavelet,transform.
In NIST Physical Security Testing Workshop, 2005.

6. C. Clavier, J.-S. Coron, and N. Dabbous. Differential power analysis in the pres-
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Fig. 7: The results for tuning the constants.
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