N

N

Efficient Prevention of Credit Card Leakage from
Enterprise Networks
Matthew Hall, Reinoud Koornstra, Miranda Mowbray

» To cite this version:

Matthew Hall, Reinoud Koornstra, Miranda Mowbray. Efficient Prevention of Credit Card Leakage
from Enterprise Networks. 12th Communications and Multimedia Security (CMS), Oct 2011, Ghent,
Belgium. pp.238-240, 10.1007/978-3-642-24712-5_23 . hal-01596206

HAL Id: hal-01596206
https://inria.hal.science/hal-01596206
Submitted on 27 Sep 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://inria.hal.science/hal-01596206
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Efficient Prevention of Credit Card Leakage
from Enterprise Networks

Matthew Hall', Reinoud Koornstra?, and Miranda Mowbray?

! No Institutional Affiliation, mhall @ mhcomputing.net
2 HP Networking, USA, koornstra @ hp.com
3 HP Labs, UK, miranda.mowbray @ hp.com

Abstract. We have developed a new approach to the problem of pre-
venting the leakage of credit card numbers in traffic on a large enter-
prise network. In contrast to a previously-used method, it has higher
throughput, and it can be partly implemented in hardware without any
additional libraries.

Keywords: cloud security, privacy, data leak prevention

1 Previous Approaches to Preventing Credit Card
Leakage

The danger of credit card numbers leaking from enterprise networks onto the
public Internet is exacerbated both by the rise of targeted phishing attacks, and
by the increasing use of cloud computing and consequent increase in data traffic
between enterprises and the public cloud.

Several companies (for example Symantec, Websense, Vericept, Mimecast
and Code Green networks), offer products and services that examine the data
layer of a packet on an enterprise network and determine whether it contains
credit card numbers, so as to prevent these from being leaked.

These products and services use one of two approaches. The first approach
is to store digital fingerprints of a set of card numbers and check the data for
exact matches to these digital fingerprints. This however can only detect credit
card numbers whose fingerprints are in the stored set.

The second approach, which can detect any card numbers, begins by per-
forming a first pass on the packet data to identify candidate numbers that fit
a regular expression for potential card numbers. For example, all American Ex-
press (Amex) card numbers are 15-digit numbers beginning with 34 or 37. Then
a second pass is performed to determine if any of the candidate numbers satisfy
a check called the Luhn check. All valid credit card numbers satisfy this check,
although the converse does not hold.

One way to carry out the Luhn check on a number n is to double every
alternate digit in the number including the penultimate digit, sum the digits of
the resulting numbers, set L(n) to the remainder mod 10 of this sum, and check
whether L(n) = 0. For example, 932152 passes the Luhn check because the sum



of the digits of the numbers 18 3 4 1 10 2 is 20, but 93215 does not because the
sum of the digits of the numbers 9 6 2 2 5 is 24, which is not divisible by 10.

The candidate numbers that are found to pass the Luhn check are sent to
leakage inspectors for Amex, VISA etc. that have full information about the
set of valid numbers issued by the provider. If a valid credit card number is
identified, further transmission of the packet containing this number may be
blocked.

Unfortunately, the regular-expression pass is an expensive operation in terms
of resource requirements. Our experience is that for the high packet volumes on
modern enterprise networks, it is infeasible to run the regex pass on all packets.
This pass might be speeded up by implementing it in hardware: however this
would require the regex library, which has considerable size, to be stored in the
hardware.

2 Owur Approach

We have developed and prototyped a new approach to this problem. Instead
of first performing a regex pass and then a Luhn check pass, we first use a
novel high-speed streaming Luhn algorithm which identifies, in a single pass, all
14, 15 or 16-digit numerical substrings of the data packet that pass the Luhn
check. (We have applied for a US patent for this streaming algorithm, application
number PCT/US2011/022709). Lightweight custom string check functions, in
software, are then run on the set of numbers that are reported by the algorithm
as passing the Luhn check. These string checks are designed so that the Luhn
check algorithm and string checks between them carry out exactly the same set of
checks as the first two passes of the approach that uses regular expressions. Any
candidate card numbers passing these checks are forwarded to leakage inspectors,
as before.

In a benchmarking experiment (details of which are omitted from this ex-
tended abstract for lack of space), a software implementation using our approach
achieved more than 4.7 times the throughput of an implementation of the ap-
proach using a regex pass. If even faster throughput is necessary to process high
traffic volumes, our Luhn check algorithm is simple and easy to implement in
hardware, without the need for additional libraries.

The pseudocode for the algorithm is below. The notation sd(a,b) is short-
hand for the string with entries d[a] ,d[a+1], ... d[bl, where a, b € ZZ and
0 < a < b. The vector d stores the sequence of digits received from the stream
since the beginning or the last non-digit character, and i records this sequence’s
length. When a new digit is read in from the string, i is updated and the vari-
able x[i] is set such that x[1] is equivalent mod 10 to L(sd(1,1)). Then the
algorithm determines whether the substrings of length 13, 14 or 15 ending at
this new digit pass the Luhn check.

To determine this, the algorithm uses the fact that if sl, s2 are digital
strings and s2 is of even length, and sl - s2 is the concatenation of sl with
52, it follows from the definition of L that L(s2) = (L(sl - s2) — L(s1))%10. If



1 > 13, putting sl=sd(1,i-14), s2=sd(i-13,1) in this equation implies that
sd(i-13,1) passes the Luhn check iff (L(sd(1,1))—L(sd(1,i-14))%10 = 0,
which is equivalent to (x [1] —x[1-14]1)%10 = 0. The checks for sd(i-14,1) and
sd(i-15,1) can be derived similarly by setting sl=d[i-14], s2=sd(i-13,1)
and s1l=sd(1,i-16), s2=sd(i-15,1) respectively.

Start by setting i=0, d[0]=0, x[0]=0.
While there are more entries in the string, repeat the following:
Get the next entry, and set e to it
if e is other than a base-10 digit
set 1 =0
if e is a base-10 digit
increase i by 1
set d[i] = e
if i == 1 set x[1] = e
if i >1
set x[1] = d[i] + 2d[i-1] + x[i-2]
if d[i-1] > 4 increase x[i] by 1
if 1 > 13
set ¢ = (x[i] - x[i-14]) % 10
if ¢ == 0 report sd(i-13,i) as passing the check

if i > 14
add d[i-14] to c
if ¢ % 10 == report sd(i-14,i) as passing the check

if i > 15 and (x[i] - x[i-16]) % 10 ==
report sd(i-15,i) as passing the check

This algorithm could be further refined. For instance, lookup tables can fur-
ther reduce computation requirements, and memory requirements can be re-
duced by over-writing all but the 17 most recent elements of the vectors, since
only these are used. The number of strings processed by the string check can
be reduced at the expense of slightly more computation during the Luhn check
pass, by modifying the Luhn check algorithm to only report numbers beginning
with 3, 4, 5 or 6.

Using a streaming algorithm in place of a regex check might also speed up
the detection of other types of personal data, for example IBAN numbers or
numbers in some national ID schemes.

There is increasing use of protocols such as SSL which transmit data in en-
crypted form. This protects data in transit, but leaves open the possibility that
personal data may be transmitted by mistake and misused after it has been de-
crypted by the recipient. Companies such as Symantec, Code Green Networks
and Trend Micro offer products that can intercept data before transmission (they
are known as Endpoint DLP products). If used in combination with some inter-
ception means, our method could be used to inspect data before transmission,
and block the transmission where necessary.



