
HAL Id: hal-01596205
https://inria.hal.science/hal-01596205

Submitted on 27 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Secure Perceptual Hash Algorithm for Image Content
Authentication

Li Weng, Bart Preneel

To cite this version:
Li Weng, Bart Preneel. A Secure Perceptual Hash Algorithm for Image Content Authentication.
12th Communications and Multimedia Security (CMS), Oct 2011, Ghent, Belgium. pp.108-121,
�10.1007/978-3-642-24712-5_9�. �hal-01596205�

https://inria.hal.science/hal-01596205
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Secure Perceptual Hash Algorithm for Image
Content Authentication

Li Weng and Bart Preneel⋆

Katholieke Universiteit Leuven, ESAT/COSIC-IBBT
li.weng@esat.kuleuven.be,bart.preneel@esat.kuleuven.be

Abstract. Perceptual hashing is a promising solution to image content
authentication. However, conventional image hash algorithms only offer
a limited authentication level for the protection of overall content. In this
work, we propose an image hash algorithm with block level content pro-
tection. It extracts features from DFT coefficients of image blocks. Ex-
periments show that the hash has strong robustness against JPEG com-
pression, scaling, additive white Gaussian noise, and Gaussian smooth-
ing. The hash value is compact, and highly dependent on a key. It has
very efficient trade-offs between the false positive rate and the true pos-
itive rate.

1 Introduction

In the Internet era, images are massively produced and distributed in digital
form. Although digital images are easy to store and process, they are also sus-
ceptible to malicious modification. Due to widely available image editing soft-
ware, even non-professionals can perform content modification. Consequently,
people begin to suspect what they see from digital images. Sometimes, public
incidents happen, due to fake images. Therefore, the need for protecting content
authenticity is emerging.

Among various techniques, perceptual hashing is a promising solution. Hash-
ing means to compute a digest value from data. This digest value, typically a
short binary string, is called a hash value. Perceptual hash algorithms are a
particular kind of hash algorithms for multimedia data. They have the special
property that the hash value is dependent on the multimedia content, and it re-
mains approximately the same if the content is not significantly modified. Since a

⋆ This work was supported in part by the Concerted Research Action (GOA) AM-
BioRICS 2005/11 of the Flemish Government and by the IAP Programme P6/26
BCRYPT of the Belgian State (Belgian Science Policy). The first author was sup-
ported by the IBBT/AQUA project. IBBT (Interdisciplinary Institute for Broad-
Band Technology) is a research institute founded in 2004 by the Flemish Govern-
ment, and the involved companies and institutions (Philips, IPGlobalnet, Vital-
sys, Landsbond onafhankelijke ziekenfondsen, UZ-Gent). Additional support was
provided by the FWO (Fonds Wetenschappelijk Onderzoek) within the project
G.0206.08 Perceptual Hashing and Semi-fragile Watermarking.

perceptual hash value is a compact representation of the original content, it can
be used for robust content authentication. Compared with conventional crypto-
graphic hash algorithms [1], perceptual hash algorithms have the advantage that
they can tolerate the difference in quality and format – the binary representation
no longer matters; the same content always maps to the same hash value. This
is particularly useful for the multimedia domain.

In this work, we focus on image content authentication by perceptual hash
algorithms. In a typical application scenario, the authentic hash value is avail-
able; anyone who suspects the image can compute the hash value and compare
it with the authentic one (Fig. 1b). For example, the authentic hash value can
be published online, or electronically signed by digital signature techniques [1].
Although this application is known, there are some unsolved issues. In partic-
ular, there is the minor modification problem: when malicious modification is
perceptually insignificant, the hash algorithm is unable to distinguish it from
legitimate distortion. Most image hash algorithms compute the hash value from
an image’s global features. Since global features are not sensitive to local mod-
ification, these algorithms are generally vulnerable to the minor modification
problem, thus are not suitable for content authentication applications with high
security demand. In this work, a potential solution is provided. We propose an
image hash algorithm with the ability of authenticating image blocks.

The rest of the work is organized as follows: Section 2 introduces image hash-
ing and its limitation; Section 3 describes the proposed image hash algorithm;
Section 4 shows some experiment results; Section 5 concludes the work.

Feature extraction

Feature reduction

Hash

Image Key

Randomization Hash 2

Hash source

Hash 1

Similarity comparison

Decision

Key

Hash generation

Image

(a) Hash generation. (b) Hash comparison.

Fig. 1. Diagrams of perceptual hash generation (a) and comparison (b).

2 Perceptual Hashing and Its Limitation

The basic components of a perceptual hash algorithm are feature extraction,
feature reduction, and randomization (Fig. 1a). During feature extraction, ro-
bust features are extracted from the input signal. Typically, these features are

insensitive to moderate distortion, such as compression, noise addition, etc. Fea-
ture reduction, similar to a quantization procedure, includes means to efficiently
represent extracted features. Randomization is a critical component for security
and other performance. It includes means to achieve the key-dependent property
(explained later). Many recent designs begin to support this property. Besides
the above major components, there are also pre-processing and post-processing.

The requirements for perceptual hashing come from two aspects. From a
generic security point of view, a perceptual hash algorithm should possess the
following properties:

– One-way: it is hard to reveal the input from the hash value;
– Collision-resistant: it is hard to find different inputs that have similar hash

values; given an input and its hash value, it is hard to find another input
which has a similar hash value;

– Key-dependent: the hash value is highly dependent on a key.

The first property is useful for protecting the confidentiality of the input. The
second property ensures that the chance of collision is negligible, so that the
hash value can be considered only as a fair representation of the corresponding
input. The last property is used for entity authentication, i.e., only the entity that
knows the key can generate the correct hash value, see [1, message authentication
code]. Additionally, from a multimedia security point of view, there is a more
demanding requirement:

– The hash value is insensitive to legitimate media content distortion, but
sensitive to malicious modification.

Unfortunately, these requirements are not all well fulfilled in practice. This is
due to the intrinsic limitation of perceptual hash algorithms.

A limit of perceptual hashing is that perceptually insignificant but malicious
distortion cannot be distinguished from legitimate distortion. It is defined here as
the minor modification problem. Since a perceptual hash value is computed from
robust features, it can be used for content authentication. However, the effect is
limited. A perceptual hash value is only sensitive to significant content modifica-
tion, while malicious attacks can be perceptually insignificant [2, 3]. Considering
an image as a point in a vector space, the essence of perceptual hashing is di-
mension reduction [4]. A hash value is typically computed from low dimensional
features. It is naturally resistant to distortion that only affects higher dimensions.
However, the distortion brought by malicious attacks can be as small as legiti-
mate distortion. As long as the distortion only affects high dimensions, no matter
it is legitimate or malicious, it will be tolerated. For example, Fig. 2 shows two
Lena images: a) a maliciously modified version; b) a compressed version. Ex-
isting image hash algorithms may not be able to distinguish the two images.
For example, the ART-based image hash algorithm in [5] is used to compute
hash values for these images. The hash values are compared to the original one.
The resulted hash distances (normalized Hamming distance) are 0.0091 for the
modified version and 0.0195 for the compressed version. Such small distances

normally indicate that the inputs are legitimate. The distances even imply that
the modified version looks more authentic than the compressed version. In order
to exclude insignificant but malicious distortion, a tight threshold can be used
for hash comparison. However, that will also exclude some legitimate distortion,
thus decreases the robustness. Therefore, conventional image hash algorithms
are not suitable for applications with high security requirements.

(a) Modified Lena (b) Compressed Lena

Fig. 2. The minor modification problem.

The research on perceptual image hashing used to focus on robustness. The
earliest work was probably proposed by Schneider and Chang in 1996 [6], based
on the image histogram. Later in 1999, Fridrich proposed another algorithm
based on randomized image block projection, which for the first time introduced
the use of a secret key during hash generation [7, 8]. New algorithms come up with
novel ways of feature extraction, such as [9–11, 5], and they typically strive for
better robustness. For example, the radon transform based algorithm by Lefèbvre
et al. [12] and the Fourier-mellin transform based algorithm by Swaminathan
et al. [13] claim to have relatively good resistance to rotation and some other
geometric distortion. Another research topic of interest is the security of the key,
see e.g. [14, 15]. Nevertheless, the issue concerned in this work has never been
specifically addressed.

3 A Secure Image Hash Algorithm

In order to alleviate the minor modification problem, we propose to design an
image hash algorithm by a block-based approach. That means, we consider an
image block as the basic unit for authenticity protection. We evenly divide an
image into blocks, and apply a “block” hash algorithm to each block. The final
hash value is the concatenation of all block hash values. In this way, malicious
modification is restricted up to the scale of a block.

A straight-forward way to construct a block-based image hash algorithm is
to apply an existing image hash algorithm to image blocks instead of the whole
image. However, this approach might dramatically increase the hash size and
the computational cost. A conventional image hash algorithm may have a hash
size up to 1 kb. If an image has 64 blocks, it costs 64 kb to store the whole
hash value. Besides, a large hash size also influences the speed of analysis for
large-scale applications. Therefore, it is necessary to design block-based image
hash algorithm specifically. The goal of this work is to design such an algorithm
with a good balance between the performance and the cost.

Before we describe the proposed algorithm, we need to define the performance
of such block-based algorithms in general. Since the algorithm is applied to image
blocks, the performance of such an algorithm is defined as how well it protects
the content of a block unit. Therefore, the size of the block plays an important
role in the design. If the block is too small, the hash size becomes extremely
large. Another observation is that a block begins to lose perceptual meaning if
the size is too small. In the extreme case, a block shrinks to a point and has no
perceptual meaning. Therefore, the block size must be carefully chosen. On the
other hand, the perceptual importance of a block is also relative to the size of
the image. For example, a 64× 64 block may not be significant in a 2048× 2048
image, but it is significant in a 512 × 512 image. It means we need to fix the
block size and the image size when defining the authentication performance.

Based on these considerations, we define the protection level as the ratio be-
tween the block dimension and the default image dimension. The default image
dimension is not the dimension of the original input image, but the maximum
dimension before feature extraction. The protection level of our proposed algo-
rithm is 64/512. We use a block size of 64× 64 pixels. Before feature extraction,
the image is resized so that the maximum dimension equals 512 pixels.

The basic idea of the proposed algorithm is to generate a hash value from
low frequency phases of the two-dimensional discrete Fourier transform (DFT)
coefficients of an image block. It begins with a pre-processing stage. An input
image is first converted to gray and resized by bicubic interpolation to make
the maximum dimension equal to 512 pixels. The resulted image is smoothed
by a 3 × 3 average filter and processed by histogram equalization. These steps
have several effects: 1) reduce the dimensionality of the feature space; 2) limit
the hash length and the computation time; 3) remove insignificant noise and
increase robustness; 4) synchronize the image size. The preprocessed image is
padded with zero to make the size equal to multiples of 64.

The rest of the algorithm is applied to image blocks of 64× 64 pixels. They
are explained in detail below. The block hash values are concatenated to form
the final hash value.

3.1 Feature Extraction from Image Blocks

The feature extraction is applied to image blocks. It works in the DFT domain.
The DFT is an orthogonal transform. Since the coefficients are uncorrelated,

there is low redundancy in the extracted features. The two-dimensional DFT of
an M ×N image block xm,n is defined as

Xk,l =

M−1∑
m=0

N−1∑
n=0

xm,n exp

(
−j2πnk

N
+

−j2πml

M

)
,

k = {0, 1, . . . , N − 1}, l = {0, 1, . . . ,M − 1} .

The extracted feature is the phase information of the coefficients

∠Xk,l ∈ [0, 2π) .

It is well known that the phase is critical in the representation of natural images,
see e.g. [16–18].

After an image block is transformed by a 2D-DFT, the coefficient matrix
is organized to have the zero frequency (DC) coefficient in the center. Since
low frequency coefficients are less likely to be affected by incidental distortion,
an initial feature vector is formed by low frequency phases. For implementation
simplicity, the phases within a central square of width 2l+1 are extracted, where
l is an integral parameter that controls the length of the feature vector. This is
illustrated in Fig. 3.

x

DFT phase matrix

l=8

Selected phases

Discarded part

x index

y
in

de
x

10 20 30 40 50 60

10

20

30

40

50

60

−3

−2

−1

0

1

2

(a) Diagram (b) The phase map of an image block

Fig. 3. Selection of low frequency phases.

3.2 Feature Reduction and Randomization

The phase matrix in the frequency range specified by l is processed to compose
the final feature vector. In our algorithm we set l = 8. Since pixel values are real
numbers, the DFT coefficient matrix is conjugate-symmetric. Therefore, about
half of selected phases are redundant. The phase matrix is divided into two parts
and the redundant part is discarded, as shown in Figure 3. The zero phase of the
DC coefficient is also discarded. There are 144 phase values left. They will be ran-
domized and compressed. The randomization part requires a cryptographically

secure pseudo-random bit generator (PRBG). It generates uniformly distributed
pseudo-random data from a secret key. It can be implemented by e.g. running
the block cipher AES in the counter mode [1, 19].

Specifically, there are two randomization steps and two compression steps
(Fig. 4). First, 144 phase values are combined into a column vector v . This
vector is subjected to a secret permutation p generated by the secure PRNG.
The second step is compression. A new feature vector v′ is generated from the
permuted one p(v) by computing the mean of every 2 elements

v′i = p(v)2i + p(v)2i+1, i = 0, · · · , 71. (1)

This step not only makes the final hash value more compact, but also increases
robustness and security. The third step is dithering. The final feature vector f
is derived by adding a dither sequence s to v′; this step is motivated by Johnson
and Ramchandran’s work [20]. The dither sequence is generated by the secure
PRNG. The elements of the dither sequence are uniformly distributed between
0 and 2π, and the addition operation is computed modulo 2π

fi = (v′i + si) mod 2π, i = 0, · · · , 71 . (2)

These steps make the hash value highly dependent on the secret key. The last
step is quantization of the feature vector f . Because legitimate distortion is likely
to cause slight changes in DFT phases, coarse quantization can be applied to
gain robustness. For implementation simplicity, an n-bit uniform quantizer with
Gray coding is used. The parameter n controls the quantization accuracy. We
use n = 2.

Permutation

Initial feature vector
(144 phase values)

Mean value computation

Quantization

Block hash value
(144 bits)

Dithering

Final feature vector

v’

p(v)

v

f

Secure
PRNG

KEY

Fig. 4. Feature vector processing.

3.3 Hash Comparison

A metric must be defined to measure the distance between hash values. The
hash distance metric used in the proposed scheme is the bit error rate (BER),

or the normalized Hamming distance. It is defined as

dxy =
1

N

N−1∑
i=0

|xi − yi| ,

where x and y are two binary vectors of length N . The (block) hash distance is
compared with a threshold. The two images (or blocks) are considered similar
if the distance is below the threshold. In this work, we mainly consider the
similarity between image blocks.

4 Experiment Results

The proposed algorithm has been extensively tested. The results are shown in
this section. We consider the performance in terms of robustness, discrimination,
and key dependence. A database of natural scene photos1 are used in the tests.
It consists of different genres such as architecture, art, humanoids, landscape,
objects, vehicles, etc. The image resolutions are larger than 1280× 1280 pixels.
All tests are performed on image block level, except for the key dependence test.

4.1 Robustness Test

A good algorithm is robust against legitimate distortion. We consider a few
kinds of distortion as legitimate – JPEG compression, isotropic down-scaling,
Gaussian smoothing, and additive white Gaussian noise (AWGN). They are
commonly encountered in practice. The hash value is expected to be insensitive
to these operations. In this test, we generate distorted versions for 900 original
images in the database according to Table 1, and compute all the hash values.
For each pair of original block and its distorted version, we compute the average
block hash distance. The results are listed in Tables 2–5.

Table 1. Legitimate distortion

Distortion name Distortion level (step)

JPEG compression Quality factor: 5 – 25(5), 30 – 90 (10)
Down-scaling Scale ratio: 0.3 – 0.9 (0.1)
AWGN Signal to noise ratio: 10 – 40 (5) dB
Gaussian smoothing Window size: 3 – 13 (2)

The distortion levels are selected to slightly exceed the normal ranges in
practice. The results show that except for some extreme cases, e.g., AWGN with
10 dB signal to noise ratio (SNR), or JPEG with quality factor 5, all the av-
erage hash distances are quite small and generally increase with the distortion

1 www.imageafter.com

Table 2. Robustness test for JPEG compression.

Quality factor 5 10 15 20 25 30

Average block hash distance 0.218 0.168 0.144 0.128 0.117 0.108

Quality factor 40 50 60 70 80 90

Average block hash distance 0.097 0.088 0.081 0.072 0.056 0.039

Table 3. Robustness test for down-scaling.

Scale ratio 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Average block hash distance 0.096 0.065 0.042 0.050 0.058 0.067 0.042

level. Gaussian smoothing has the least influence to the hash value – the dis-
tance is 0.031 for all distortion levels. This demonstrates the good robustness of
the extracted features. For down-scaling, the hash distance does not monoton-
ically increase with the distortion level. It is possibly because that the scaling
operation and the resizing operation (in the pre-processing stage) involve pixel
sub-sampling and interpolation where noise is not always proportional to the
scale ratio; moreover, they may lead to slight changes of the aspect ratio and
displacement of image blocks, thus introduce some randomness in the final re-
sults. Nevertheless, the distances are small compared to JPEG and AWGN.

4.2 Discrimination Test

In this test, we compare image blocks of different content. A pair of blocks is
randomly chosen from two images in the same category, and their block hash
values are compared. The purpose of this test is to see if the hash value is able to
distinguish perceptually different blocks. It also shows the algorithm’s potential
to detect malicious modification on the block level.

Although randomly selected blocks are likely to be different, sometimes we
meet similar blocks. Therefore, a metric is needed to decide whether two blocks
are really different. We use the well-known structural similarity (SSIM) [21] for
judging the ground truth. The SSIM is a widely used similarity metric for images.
It compares two images, and returns a score between 0 (no similarity) and 1 (full
similarity). We apply SSIM to image blocks, and compare the similarity score
with a predefined threshold t. In our experiment, we set t = 0.7. Those block
pairs, whose SSIM scores are below the threshold, are considered as perceptually
different. A large hash distance is expected for different blocks. We compute the
hash distance for about 800 thousand pairs of different blocks. The average hash
distances for some image types are listed in Table 6. The overall average hash
distance is 0.437.

Table 4. Robustness test for additive white Gaussian noise.

Signal to noise ratio (dB) 10 15 20 25 30 35 40

Average block hash distance 0.214 0.171 0.135 0.106 0.083 0.064 0.048

Table 5. Robustness test for Gaussian smoothing.

Window size 3 5 7 9 11 13

Average block hash distance 0.031 0.031 0.031 0.031 0.031 0.031

Table 6. Average hash distance between different blocks.

Image type
Average block hash distance

(standard deviation)
Overall average

(standard deviation)

Architecture 0.432 (0.040)

0.437 (0.043)

Art 0.441 (0.042)
Landscape 0.435 (0.046)
Objects 0.447 (0.042)
Humanoids 0.440 (0.042)
Vehicles 0.441 (0.043)
... ...

The discrimination performance is measured by the average block hash dis-
tance. Intuitively, if two image blocks are randomly chosen, they are most likely
to be “half similar”. If the hash distance uniformly represents the similarity, on
average it is about half of the full distance, i.e., 0.5. From this point of view, the
proposed hash achieves good discrimination. The deviation from the ideal situ-
ation can be due to several reasons. First, the small size of the block hash limits
the discrimination power. Second, since the test is carried out for the same type
of images, the bias can be understood as the essential similarity among images
of the same kind. The results show that it is unlikely to find different blocks
with similar hash values. Therefore, attempts to replace a block with another is
unlikely to succeed without being detected.

4.3 Hypothesis Test

In a typical application scenario, after the block hash distance d is computed, it
is compared with a threshold T . The decision is made from two hypotheses:

– H0 – the blocks correspond to different content;
– H1 – the blocks correspond to similar content.

If d ≤ T , we choose H1; otherwise we choose H0.
The overall performance of the algorithm can be characterized by the true

positive rate Pd and the false positive rate Pf . They are defined as:

– Pd = Probability {d ≤ T |H1} ;
– Pf = Probability {d ≤ T |H0} .

When the threshold T is increased, the hash is likely to tolerate more distortion,
but that also increases the chance of false positive. A good algorithm should
suppress the false positive rate while maintaining a high true positive rate. Pre-
viously, we have generated about 1.4 million positive cases (in the robustness

test) and 0.8 million negative cases (in the discrimination test) on the block
level. By adjusting the value of T , we compute Pd and Pf and plot their trends,
as shown in Fig. 5. One can see that Pd increases with T , while Pf is negligible
until T = 0.3.

In order to choose the most suitable threshold value, we also take into account
of the false negative rate Pm, which is defined as

– Pm = Probability {d > T |H1} .

By definition, Pm = 1 − Pd. We can see that Pf and Pm are contradicting
requirements. Depending on the severity of false positive and false negative,
different applications give their own bias towards Pf or Pm. By default, we can
choose the equal error rate point (EERP), where Pf = Pm, as the working point.
In our case, T = 0.344 is the EERP, where Pd = 0.977, and Pf = Pm = 0.023.
We also plot the relationship between Pd and Pf , known as the receiver operating
characteristic (ROC) curve, in Fig. 6. The ROC curve illustrates the good overall
performance from another angle – the proposed algorithm offers efficient trade-
offs between Pd and Pf .

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold − T

P
ro

ba
bi

lit
y

P
f
 , P

d
 , and P

m
 vs. T

False positive rate − P
f

True positive rate − P
d

False negative rate − P
m

EERP

Fig. 5. True positive rate, false positive rate, and false negative rate.

4.4 Key Dependence Test

All the above tests use a default key for generating hash values. When the
algorithm is used as a message authentication code, the hash value must be
highly dependent on the key. In this test, we use 900 images to validate the key
dependence property. For each image, we generate 100 hash values using different
keys. They are pair-wise compared. There are 4950 hash comparisons for each
image, and about 5 million comparisons in total. If two different keys are used
for the same image, the corresponding hash values should be totally different, as

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The ROC curve

False positive rate − P
f

T
ru

e
po

si
tiv

e
ra

te
 −

 P
d

0 0.02 0.04 0.06 0.08 0.1

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

The ROC curve (close−up)

False positive rate − P
f

T
ru

e
po

si
tiv

e
ra

te
 −

 P
d

(a) The complete curve (b) A close-up

Fig. 6. The receiver operating characteristics.

if they correspond to different content. The average hash distances for all images
are plotted in Fig. 7. All the average distances are centralized around 0.5 with
a very small dynamic range within 0.4997 – 0.5004. This demonstrates the good
randomization mechanism of the proposed scheme.

0 100 200 300 400 500 600 700 800 900
0.4997

0.4998

0.4999

0.5

0.5001

0.5002

0.5003

0.5004

0.5005

Image index

A
ve

ra
ge

 h
as

h
di

st
an

ce

Average hash distance between hash values by different keys

average distance per image
overall average = 0.5001

Fig. 7. Key dependence test.

5 Conclusion and discussion

In the multimedia domain, a challenge to content authentication is, that the
same content may have different digital representations. A potential solution is
perceptual hashing, because it provides robustness against incidental distortion,
such as compression. However, due to the minor modification problem, conven-
tional image hash algorithms only protect the overall content of an image. In

this work, we propose an image hash algorithm with a much higher security
level. The algorithm aims at protecting the authenticity of image blocks. We
define the protection level as 64/512, which typically corresponds to 1/48 area
of a 4 : 3 image. For each image block, features are computed from the phase
values after the discrete Fourier transform. Experiments show that the hash has
strong robustness against JPEG compression, scaling, additive white Gaussian
noise, and Gaussian smoothing. The hash algorithm is key dependent, thus can
be used as a message authentication code. Experiments confirm that the hash
value is highly dependent on the key. The hash size is 144 bits per 64× 64 block
(6912 bits per 4 : 3 image) after pre-processing. In spite of such a compact size,
hypothesis test shows that we achieve very efficient trade-offs between the false
positive rate and the true positive rate.

In our experiment, distortions such as rotation and translation are not taken
into account, because it is questionable to consider them as authentic in the
content protection circumstance. They typically generate much higher distortion
than other non-geometric manipulations, thus give chance to malicious modifica-
tion. In general, the performance of content authentication significantly degrades
if geometric distortion is allowed.

What is not discussed in this work is the security of the key, see [22]. Given
some known image/hash pairs, it is not obvious how much effort is needed to
derive the key of our algorithm. In practice, we advise not using the same per-
mutation and dithering for all blocks in an image. An in-depth security analysis
will be given in the future.

References

1. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press (1996)

2. Coskun, B., Memon, N.: Confusion/diffusion capabilities of some robust hash
functions. In: Proc. of 40th annual conference on information sciences and systems,
Princeton, USA (Mar. 2006)

3. Weng, L., Preneel, B.: Attacking some perceptual image hash algorithms. In: Proc.
of IEEE International Conference on Multimedia & Expo. (2007) 879–882

4. Voloshynovskiy, S., Koval, O., Beekhof, F., Pun, T.: Conception and limits of
robust perceptual hashing: towards side information assisted hash functions. In:
Proc. of SPIE. Volume 7254. (February 2009)

5. Weng, L., Preneel, B.: Shape-based features for image hashing. In: Proc. of IEEE
International Conference on Multimedia & Expo. (2009)

6. Schneider, M., Chang, S.F.: A robust content based digital signature for image au-
thentication. In: Proc. of International Conference on Image Processing (ICIP96).
Volume 3. (1996) 227–230

7. Fridrich, J.: Robust bit extraction from images. In: Proc. of IEEE International
Conference on Multimedia Computing and Systems. Volume 2. (1999) 536–540

8. Fridrich, J., Goljan, M.: Robust hash functions for digital watermarking. In: Proc.
of International Conference on Information Technology: Coding and Computing.
(2000)

9. Venkatesan, R., Koon, S.M., Jakubowski, M., Moulin, P.: Robust image hash-
ing. In: Proc. of IEEE International Conference on Image Processing. Volume 3.,
Vancouver, CA (2000) 664–666

10. Mihçak, M.K., Venkatesan, R.: New iterative geometric methods for robust per-
ceptual image hashing. In: Proceedings of ACM Workshop on Security and Privacy
in Digital Rights Management, Philadelphia, PA, USA (Nov. 2001)

11. Monga, V., Evans, B.: Robust perceptual image hashing using feature points. In:
Proc. of IEEE International Conference on Image Processing. Volume 1. (2004)
677– 680

12. Lefèbvre, F., Macq, B., Legat, J.D.: RASH: RAdon Soft Hash algorithm. In: Proc.
of the 11th European Signal Processing Conference. Volume 1., Toulouse, France
(September 2002) 299–302

13. Swaminathan, A., Mao, Y., Wu, M.: Robust and secure image hashing. IEEE
Transactions on Information Forensics and Security 1(2) (June 2006) 215–230

14. Swaminathan, A., Mao, Y., Wu, M.: Security of feature extraction in image hash-
ing. In: Proc. of 2005 IEEE International Conference on Acoustics, Speech, and
Signal Processing, Philadelphia, PA, USA (Mar. 2005)

15. Radhakrishnan, R., Xiong, Z., Memon, N.: On the security of the visual hash
function. Journal of Electronic Imaging 14 (2005) 10

16. Oppenheim, A., Lim, J.: The importance of phase in signals. Proceedings of the
IEEE 69(5) (May 1981) 529 – 541

17. Gegenfurtner, K., Braun, D., Wichmann, F.: The importance of phase information
for recognizing natural images. Journal of Vision 3(9) (2003) 519a

18. Ni, X., Huo, X.: Statistical interpretation of the importance of phase information
in signal and image reconstruction. Statistics & Probability Letters 77(4) (2007)
447–454

19. Barker, E., Kelsey, J.: Recommendation for random number generation using
deterministic random bit generators. Technical report, NIST (2007)

20. Johnson, M., Ramchandran, K.: Dither-based secure image hashing using dis-
tributed coding. In: Proc. of IEEE International Conference on Image Processing.
Volume 2. (2003) 751–754

21. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: From
error visibility to structural similarity. IEEE Transactions on Image Processing
13(4) (April 2004) 600–612

22. Mao, Y., Wu, M.: Unicity distance of robust image hashing. IEEE Transactions
on Information Forensics and Security 2(3) (September 2007) 462–467

