
HAL Id: hal-01593029
https://inria.hal.science/hal-01593029

Submitted on 25 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Layered Detection Method for Malware Identification
Ting Liu, Xiaohong Guan, Yu Qu, Yanan Sun

To cite this version:
Ting Liu, Xiaohong Guan, Yu Qu, Yanan Sun. A Layered Detection Method for Malware Identi-
fication. 8th Network and Parallel Computing (NPC), Oct 2011, Changsha„ China. pp.166-175,
�10.1007/978-3-642-24403-2_14�. �hal-01593029�

https://inria.hal.science/hal-01593029
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Layered Detection Method for Malware Identification

Ting Liu, Xiaohong Guan, Yu Qu, Yanan Sun

SKLMS Lab and MOE KLNNIS Lab, Xi’an Jiaotong University, P. R. China

{tingliu, xhguan, yqu, ynsun}@sei.xjtu.edu.cn

Abstract. In recent years, millions of new malicious programs are produced by

a mature industry of malware production. These programs have tremendous

challenges on the signature-based anti-virus products and pose great threats on

network and information security. Machine learning techniques are applicable

for detecting unknown malicious programs without knowing their signatures.

In this paper, a Layered Detection (LD) method is developed to detect malwares

with a two-layer framework. The Low-Level-Classifiers (LLC) are employed to

identify whether the programs perform any malicious functions according to the

API-calls of the programs. The Up-level-Classifier (ULC) is applied to detect

malwares according to the low level function identification. The LD method is

compared with many classical classification algorithms with comprehensive test

datasets containing 16135 malwares and 1800 benign programs. The experi-

ments demonstrate that the LD method outperforms other algorithms in terms of

detection accuracy.

Keywords: Machine learning; Network security; Malware detection; Malicious

function identification

1 Introduction

Exponential growth and development of Internet has created unprecedented opportu-

nities to access and share information. Millions of online users and ubiquitous Internet

accesses have cultivated not only a great number of convenient services and

fast-developing companies, but also innumerable malicious programs and a huge

underground economy. Malicious tools enable attackers to gain access to a variety of

valuable resources such as identities, credentials, hacked hosts, and other information

and services. The attackers sell the information and services on the underground

market, and then reinvest the profits into the development of new malicious tools and

services. This profitable cycle leads to a dramatic increase in the significant prolifera-

tion of malicious codes. In 2008, Symantec detected 1,656,227 new malicious pro-

grams which took up over 60% of the approximately 2.6 million malicious programs

that Symantec has detected in total over time[1].

Malware is defined as a program that performs a malicious function, such as com-

promising a system’s security, damaging a system or obtaining sensitive information

without the user’s permission. The malwares can be generally divided into the fol-

lowing categories: viruses, worms, Trojans and others. In recent years, Trojans and

worms have been ranked as the top security threats, which occupied 68% and 29% of

all new malwares and took over all top 10 malware families in 2008[1]. This paper

concentrates on the Trojan and worm classification.

Due to inestimable damages caused by malicious programs, malware detection has

become one of the primal research interests in the field of network and information

security. Over the past decade, the signature-based detection, employed by most

commercial antivirus products, such as Kaspersky Anti-Virus (KAV) and Symantec

Norton AntiVirus, is the most widely used for detecting malware. In 2007, Kaspersky

added 250,000 new signatures into their antivirus databases and released more than

10,000 database updates [2]. The rapidly-growing signature database would cause

significant increase of computational cost to check all the signatures, and missing

frequent updates would cause security loop holes.

Dynamic analysis is considered as an effective approach to detect unknown malwares.

In 1991, researchers managed to determine what the programs attempt to do by ob-

serving and analyzing their actions at run-time in a controlled environment [3]. The

major drawback of this technique is that the detection can only be done after at least a

part of the malicious code is executed and has generated suspicious behaviors in the

system. Therefore, many researchers have proposed that the suspected programs

could be run and analyzed on the virtual machine (VM) before proceeding on an ac-

tual system [4, 5]. Since more and more malwares do not carry out malicious activi-

ties directly but only “activated” by a particular instruction, this method may not be

effective in “normal” operation.

Applying machine learning in network security is regarded as one of the alternative

effective solutions with integrated consideration of security and privacy with massive

and ubiquitous information. The ability of machine learning to detect unknown at-

tacks is demonstrated in the context of intrusion detection systems[6-8]. In recent

3

years, many machine learning techniques have been applied to detect unknown mal-

wares. Machine learning approach is based on the assumption that malwares have

certain characteristics not presented in benign programs. The supervised classifier is

trained to distinguish malicious codes based on the known instances of malicious and

benign programs [9]. Thereby, the performance of this method critically depends on

the methods of feature extraction, feature selection and classification. Another issue is

that few of machine learning based approach could identify the malware’s functions

which are useful for selecting defense strategy.

In this paper, a Layered Detection (LD) method is developed to detect malwares with

a two-layer framework. The Low-Level-Classifiers (LLC) are employed to identify

whether the programs perform any malicious functions according to the API-calls of

the programs. The Up-level-Classifier (ULC) is applied to detect malwares according

to the low level function identification. A hybrid structure (Type-function), constitut-

ing of the classification results of LLC and ULC, is proposed to describe the malware.

The LD method is compared with many classical classification algorithms with com-

prehensive test datasets containing 16135 malwares and 1800 benign programs. The

experiments demonstrate that the LD method outperforms other algorithms in terms of

detection accuracy. Moreover, the Type-function is proved as an unprejudiced and

effective method for describing malware functions. In fact, the LD method can accu-

rately identify 98% of all malwares’ functions, much higher than the other methods

do. Furthermore, we also apply our method to distinguish malicious and benign pro-

grams. The experimental results demonstrated that the LD method integrated with J48

Tree outperformed others classifiers including Boosting-J48.

The rest of this paper is organized as follows. Section 2 presents the methods of fea-

ture extraction, feature selection, classification and measurement which will be used

in this paper. The framework of the LD method is introduced in the Section 3. The

experimental results are discussed in Section 4, which show the LD method outper-

forms other methods. Section 5 is the conclusions of this paper.

2 Machine Learning Based Approach

The primary goal of this study is to explore the performance of various machine

learning techniques in detecting known and unknown malwares based on the API

calls. A large number of programs, including the benign and the malicious, have been

collected to train and evaluate the classifiers. The methods of feature extraction and

definition are firstly presented in this section. And then, the feature selection methods,

classification algorithms and performance measurements are briefly described.

2.1 Feature Extraction and Definition

17935 Windows PE programs have been gathered, consisting of 16135 malicious and

1800 benign executables. The malicious executables are collected from malwares

database of Kaspersky Corporation and Honey-Net in our lab, including 6377 Down-

loader Trojans, 4795 Spy Trojans, 2214 PSW Trojans, 1458 Email Worms, 532 P2P

Worms and 759 Net Worms (which are expressed as M1 to M6 respectively). The

benign programs are collected from a freshly installed Windows XP SP2 system,

including DLL and EXE files. 2710 standard Windows API calls [10] are selected as

the attributes of the program in this paper. By searching the Import Address Table of

the programs, the Windows API calls of the programs are extracted and recorded in

original dataset. The attribute is defined as {A1, A2, …Ai, ..., A2710, R}, where Ai iden-

tifies the ith API call (absence is 0 and presence is 1) and R represents the program

category (benign is 0 and malicious is 1).

To facilitate the presentation, the notations are defined as follow:

R is the type of the sample. RB, RM and RMi means the sample is a benign, malicious

and ith malware type program.

Ai is the ith API, Ai1 means that the ith API is called; and Ai0 means not.

S is the set of samples and defined as {A1, A2, …Am, R}.

2.2 Performance Measures

To measure the performance of previous feature selection and classification algo-

rithms, several performance measures are selected in this work to represent and com-

pare the results.

Confusion Matrix constitutes of the statistics of actual and predicted values. True

Positive (TP) and True Negative (TN) are the number of correctly classified malicious

and benign programs. False positive (FP) and False negative (FN) are the number of

falsely classified benign and malicious programs. N(RM) and N(RB) are the number of

the actual malicious and benign programs. N(RPM) and N(RPB) are the number of the

predicted malicious and benign programs. N is the number of all samples.

5

True Positive Rate (TPR) is the rate of correctly classified malwares, which presents

the detection rate.

() ()MTPR TP TP FN TP N R  

False Positive Rate (FPR) is the rate of misclassified benign programs in benign

class.

() ()BFPR FP TN FP FP N R  

Accuracy is the rate of the entire correctly classified instances in whole set.
()Accuracy TP TN N 

Kappa is used to measure the agreement between predicted and observed categoriza-

tions of a dataset, while correcting for agreement that occurs by chance.

() (1)Kappa Accuracy Pe Pe  

where Pe is the hypothetical probability of chance agreement, using the observed data

to calculate the probabilities of each observer randomly selecting category[11].

2.3 Feature Selection

A large number of features in many domains result in a huge challenges on the effi-

ciency and accuracy of the classification. Typically, some of the features do not con-

tribute to the accuracy of the classification task and may even hamper it. Therefore,

identifying the most representative features is significant in minimizing the classifica-

tion error and the resource consumption. In present research, three measurements:

Information Gain, One-Rule [12] and Chi-Square [13] are employed to evaluate the

contribution of each API in malware classification. The top ranked features are se-

lected.

2.4 Classification Algorithm

Naive Bayes is one of the most successful learning algorithms for text categorization.

It is based on the Bayes rule assuming conditional independence between classes. In

this study, Naive Bayes algorithm is implemented by WEKA NaiveBayes(NB) classi-

fier [14].

Decision Tree is a decision support tool that uses a tree-like graph or model of deci-

sions and their possible consequences, including chance event outcomes, resource

costs, and utility. In decision tree classifiers, the internal nodes are tests on individual

features, and leaves are classification decisions. Typically, a greedy top-down search

method is used to find a small decision tree that correctly classifies the training data

[13]. C4.5, a classical algorithm for generating a decision tree and an extension of ID3

algorithm, is performed by WEKA J48 classifier in this study.

Boosting refers to a general and provably effective method of producing a very accu-

rate prediction rule by combining rough and moderately inaccurate rules of thumb.

This technique trains successive component classifiers with a subset of the training

data that is “most informative” given the current set of component classifiers. Clas-

sification of a test point is based on the outputs of the component classifiers. Boosting

can achieve a very low training error, even a vanishing training error if the problem is

separable[15]. Adaptive Boosting (AdaBoost) is one of the most popular boosting

algorithms, formulated by Yoav Freund and Robert Schapire. In this work, it is used

in conjunction with NB and J48 to improve their performance, which is executed by

WEKA AdaBoost classifier [14].

3 Layered Framework and Method for Detecting Malwares

Many machine learning techniques have been applied to detect unknown malwares.

In our study, it is demonstrated that the common classification algorithms are signifi-

cantly affected by: 1) the imbalanced numbers of benign and malicious programs; 2)

the known differences among various malwares; 3) the multiple correlated functions

of malwares.

For most classification algorithms, the imbalanced numbers of different classes results

in un-uniform classification criteria of different classes. In fact, most users only use a

number of required software products, but are threatened by thousands of malwares.

In this paper, 16135 malwares and 1800 Windows XP SP2 initial executables are

collected as the training and testing dataset. When the NB and J48 classifiers are ap-

plied to categorize all these programs with 10-fold cross-validation, the FPR of them

are as high as 32% and 18%.

Furthermore, the differences among various malwares also cause many difficulties for

malware detection. Table 2 displays the probabilities of 10 APIs to be called by vari-

ous programs, which represents the highest Information Gain in all APIs. It is noticed

that ReadProcessMemory is scarcely called by the benign programs, Downloader

Trojan, Email Worm and P2P Worm, but called by 15.1% of PSW Trojans. Obvious-

ly, the calling of ReadProcessMemory is a positive evidence to identify a program as

7

the PSW Trojan. However, it is a dilemmatic evidence for the classifiers to identify

whether that program is malicious when all malwares are set in one class.

Table 1. The probability of API to be called by various of programs

API
Probability to be called

Benign DLoader PSW SPY Email P2P Net

DisableThreadLibraryCalls 39.5% 2.6% 0.3% 1.9% 0.0% 0.0% 0.5%

InterlockedIncrement 53.8% 7.4% 3.4% 13.5% 7.4% 11.5% 15.0%

InterlockedDecrement 53.2% 9.0% 3.3% 13.4% 7.8% 11.1% 14.0%

GetLastError 77.2% 26.7% 18.4% 26.8% 22.2% 29.9% 30.3%

SetLastError 45.2% 6.1% 5.2% 6.0% 3.4% 2.6% 6.1%

ExitProcess 17.6% 62.5% 64.7% 63.8% 75.0% 79.3% 68.4%

HeapFree 40.1% 12.3% 4.7% 10.3% 11.1% 9.2% 14.9%

GetProcAddress 59.3% 78.6% 92.4% 88.6% 90.2% 89.8% 93.3%

ReadProcessMemory 0.9% 1.5% 15.1% 4.2% 1.0% 0.8% 1.8%

HeapAlloc 40.4% 15.0% 5.7% 10.4% 11.2% 9.2% 14.9%

The malware’s type is useful and important for selecting defense strategy. However, it

is extremely difficult to identify the type, since the most malwares perform multiple

correlated functions. Even the security experts and companies define the malwares

depending on their subjective judgments. For example, the Rustock is employed to

create one of today’s most extensive zombie networks for sending spam, exploiting

the Rootkit techniques [16]. It is defined as Backdoor by Symantec, and as Rootkit by

Kaspersky and MCafee.

To address the above issues, a new method - Layered Detection (LD) is proposed for

malware detection. It applies a two-layer framework to identify the malware’s func-

tion and detect the malware, and uses a Type-function structure to express the mal-

ware classification result. The LD method will be introduced from two phases: train-

ing and testing.

As illustrated in Fig.1.a, the training phase of LD classifier is constituted of two steps.

In the first step, all malwares are divided into several sub-datasets according to their

type. These sub-datasets are applied to train the Low-Level-Classifiers (LLC) for iden-

tifying whether the programs perform the various malicious functions. Since these

sub-datasets present better balance between the benign and malicious programs and

retain the characteristics of various malware types, the LLC can identify the pro-

gram’s malicious functions with low FPR and high Accuracy. In the second step, the

training programs are evaluated by all LLCs in parallel. The identification results are

used to train the Up-level-Classifier (ULC) for detecting malwares. If a LD classifier

employs NB and J48 to train the LLCs and ULC, it is named as LD-NB-J48.

a. Training phase

b. Testing phase

Fig. 1. The model of Layered Detection Classifier

In the testing phase, all programs are first evaluated by the LLCs to identify whether

they perform malicious functions, and are then estimated by the ULC to determine

whether they are malwares, as shown in Fig.1.b. Both classifications of LLCs and

ULC are output as Type-function structure for providing unprejudiced and compre-

hensive information to users.

4 Experiment and Discussion

4.1 Feature Selection

In all 2710 Windows standard APIs, there are 1559 APIs that are never called by any

program. These APIs seldom contribute to the malware classification, but reduce the

accuracy and exponentially increased the computation consumption. By filtering these

useless APIs, a new subset was generated, consisting of the rest 1151 APIs (called as

S1151), to replace the original dataset in the following part. Then, three supervised

feature selection methods: IG, One-Rule and Chi-Square are employed to evaluate

9

and rank the value of all APIs on classification. For each selection method, the top 25,

50, 75, 100, 150, 200, 250, 300, 400, 600, 800 and 1000 valuable attributes are se-

lected as new sets. (These sets were marked as SMethod Num, for example SIG100 expresses

100 APIs are selected with IG measure.) The NB and J48 classifiers are applied to

categorize all subsets using 10-fold cross-validation. For reliable results, every classi-

fier is repeated 10 times on each set. The average Kappa is calculated to evaluate

various feature selection methods, feature sizes, and classification algorithms.

Kappa describes the agreement between predicted and actual value by deducting the

random success from the classifier’s success. Hence, it is employed to evaluate the

methods of feature selection and classification which showed oppositely on accuracy

and FPR in this study.

Fig. 2. Kappa of 3 feature selection methods

As illustrated in Fig 2, the Kappa of NB classifier is 0.522 on the S1151. On the OR

sets, it increases slowly but surely when more and more features are removed and

exceeds 0.6 when the feature size is 100 and 150. On the IG and CHI sets, it quickly

reduces about 20% when the feature size decreases from 600 to 200. That proves the

OR method selects more effective and reliable features for the NB classifier than the

IG and CHI. Considering the computational costs of classification, the feature size is

expected to be as small as possible. As demonstrated in Fig.2, J48 classifier presents

integrated performance on the SIG100. The Kappa is more than 0.6 only on the SOR100

and SOR150 (the Kappa of a substantial classifier should be more than 0.6 [11]). There-

fore, the IG and OR are chosen for the J48 and NB classifier, and the feature size is

100.

4.2 Malware Classification

In this subsection, we employ many classification algorithms to detect malwares, and

compare their performance using different measurements. Besides J48 and NB, the

LD method employs Multilayer Perceptron (MP) and IBk as its ULC algorithm. MP is

a back propagation neural network classifier, and IBk is a k-nearest-neighbor classifi-

er that uses the Euclidean distance metric [14, 15]. (k is set as 6 in this paper.) More-

over, the AdaBoost, collaborating with J48 and NB algorithms, is employed to com-

pare with the LD method.

Table 2. Malware detection collaborating with LD-J48 on SIG100

Method TP TN FP FN FPR Accuracy Kappa

J48 15986 1484 316 149 17.56% 97.41% 0.8503

Multi-J48 15935 1523 277 200 15.39% 97.34% 0.8499

AdaBoost-J48 16016 1590 210 119 11.67% 98.17% 0.8961

LD-J48-J48 16036 1639 161 99 8.94% 98.55% 0.9185

LD-J48-NB 15369 1734 66 766 3.67% 95.36% 0.7809

LD-J48-MP 16040 1640 160 95 8.89% 98.58% 0.9200

LD-J48-IBk 16035 1636 164 100 9.11% 98.53% 0.9172

Table 3. Malware detection collaborating with LD-NB on SOR100

Method TP TN FP FN FPR Accuracy Kappa

NB 15860 982 818 275 45.44% 93.91% 0.6103

Multi-NB 15101 1247 553 1034 30.72% 91.15% 0.5620

AdaBoost-NB 15872 976 824 263 45.78% 93.94% 0.6104

LD-NB-NB 15277 1313 487 858 27.06% 92.50% 0.6195

LD-NB-J48 15674 1218 582 461 32.33% 94.18% 0.6680

LD-NB-MP 15731 1147 653 404 36.28% 94.11% 0.6523

LD-NB-IBk 15667 1220 580 468 32.22% 94.16% 0.6672

Various classification algorithms are applied to detect malwares according to the pro-

gram’s function which are identified by the LD-J48. As reported in Table 3, LD-J48,

LD-J48-MP and LD-J48-IBk misclassify no more than 100 malwares; and their Ac-

curacy and Kappa are as high as 98.5% and 0.92. Although the LD-J48-NB shows the

worst Accuracy, it falsely classifies only 95 benign programs (the FRP is as low as

3.67%). The AdaBoost method obviously improves the ability to identify malwares of

J48: the FP and FN reduce 33.5% and 20.1%, and the Kappa increases from 0.8503

to 0.8961. The Multi-J48 falsely classifies fewer benign programs, but misclassifies

more malwares than the J48.

11

Table 4 shows the malware detection results when various methods are collaborated

with LD-NB. Generally speaking, the performances of LD-NB on dataset SOR100 are

not as good as that of LD-J48 on SIG100, and the performances of various methods

collaborating with LD-NB are similarly to the LD-J48.

The experimental results demonstrate that the LD method significantly improves the

detection accuracy of many classifiers. In more specific terms, LD-J48-MP is rec-

ommended to pursue high Accuracy and Kappa, and LD-J48-NB is suggested to chase

low FPR.

5 Conclusions

In paper we demonstrate that the accuracy of malware detection is significantly af-

fected by: 1) the imbalanced numbers of benign and malicious programs; 2) the

known differences among various malwares; 3) the multiple correlated functions of

malwares. A new method based on machine learning is developed for malware detec-

tion. To address the above issues, a layered detection framework is established and

the malwares are divided into several sub-datasets to train the low-level-classifiers for

identifying malicious functions and are detected based on the identified functions by

the up-level-classifier. Since the malwares can be well categorized in the framework,

it is helpful for selecting defense strategy.

The experiments with 17935 collected programs show that the new method can cor-

rectly identify the functions of 98.5% malwares and detect 98.6% of all malwares.

Moreover, many feature selection methods and classification algorithms are also in-

vestigated. It is demonstrated that the IG and OR feature selection methods are ame-

nable for J48 and NB classifiers respectively and the best feature size is 100. The new

method demonstrates more than 95% accuracy, about twice as high as Multi-J48 and

Multi-NB, for malicious function identification, and outperforms other classification

algorithms including Boosting for malware detection.

Reference

[1] Gostev, A.: Kaspersky Security Bulletin: Statistics 2008.: (2009)

[2] Lo, R., Kerchen, P., Crawford, R., Ho, W., Crossley, J., Fink, G., Levitt, K., Olsson, R.,

Archer, M.: Towards a testbed for malicious code detection.: Compcon Spring '91. Digest

of Papers (1991) 160-166

[3] Wang, X., Yu, W., Champion, A., Fu, X., Xuan, D.: Detecting worms via mining dy-

namic program execution.: Security and Privacy in Communications Networks and the

Workshops, 2007. SecureComm 2007. Third International Conference on (2007) 412-421

[4] Jiang, X., Wang, X., Xu, D.: Stealthy malware detection and monitoring through

VMM-based "out-of-the-box" semantic view reconstruction. ACM Transactions on In-

formation and System Security 13 (2010)

[5] Wenke, L., Stolfo, S.J., Mok, K.W.: A data mining framework for building intrusion

detection models.: Security and Privacy, 1999. Proceedings of the 1999 IEEE Symposium

on (1999) 120-132

[6] Berral, J.L., Poggi, N., Alonso, J., Gavald, R., Torres, J., Parashar, M.: Adaptive distrib-

uted mechanism against flooding network attacks based on machine learning.: Proceed-

ings of the 1st ACM workshop on Workshop on AISec. ACM, Alexandria, Virginia,

USA (2008) 43-50

[7] Kloft, M., Brefeld, U., D, P., essel, Gehl, C., Laskov, P.: Automatic feature selection for

anomaly detection.: Proceedings of the 1st ACM workshop on Workshop on AISec.

ACM, Alexandria, Virginia, USA (2008) 71-76

[8] Renchao, Q., Tao, L., Yu, Z.: An immune inspired model for obfuscated virus detection.:

2009 International Conference on Industrial Mechatronics and Automation, ICIMA 2009,

Chengdu, China (2009) 228-231

[9] Windows: Windows API Reference.: http://msdn.microsoft.com/en-us/library/

aa383749(VS.85).aspx

[10] Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data.

Biometrics 33 (1977)

[11] Holte, R.C.: Very simple classification rules perform well on most commonly used da-

tasets. Mach Learn 11 (1993) 63-91

[12] Moskovitch, R., Elovici, Y., Rokach, L.: Detection of unknown computer worms based

on behavioral classification of the host. Computational Statistics and Data Analysis 52

(2008) 4544-4566

[13] Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques

(second ed.). Morgan Kaufmann, San Francisco (2005)

[14] Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification (2nd Edition).

Wiley-Interscience (2000)

[15] Gostev, A.: Rustock and All That.: (2008)

