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Abstract. Building on the observation that finger orientation is an inherent part 

of human's interaction in the real world, exploiting finger orientation for multi-

touch tabletop interaction would facilitate more natural interaction techniques. 

We motivate this by means of examples where the finger orientation improves 

or enriches interaction. Afterwards, we present a simple and fast approach to 

detect the finger orientation reliably for multi-touch tabletop interaction. The 

steps involved are computationally cheap and therefore suit the needs of 

tracking software operating under time-critical conditions. We show that the 

presented approach enables the detection of finger orientation also for fingers 

that touch the tabletop surface only slightly. Further, recognition rates on real 

data gained from the camera within a multi-touch tabletop are presented in 

order to give a measure for the precision and reliability of the presented 

approach. 
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1   Introduction 

Over the last years, various multi-touch sensing technologies evolved and have 

matured out of their infancy, for example vision-based techniques [1-5] or techniques 

based on electrical capacitance [6-8]. Such technologies attracted a lot of attention not 

only from the research community, but also from the general public as well as the 

industry. Consequently, commercial products based on these technologies became 

publicly available, for example in the form of horizontal tabletops [6, 9, 10, 11], large 

displays [12], desktop computers [13, 14], notebooks [13, 14], or smartphones and 

tablet-sized devices [8]. Particularly smartphones and small multi-touch devices are 

now commonplace and more and more users become familiar with multi-touch 

interaction. Commercial horizontal tabletops are not as widespread as small mobile 

devices mainly because of their higher costs. However, they laid the foundation for 

multi-touch interaction design and still pose a rich playground for interaction research 

due to their experimental character and the possibilities of the bigger input space for 

interaction. 



The novelty of those technologies is primarily attributed to interaction techniques 

and applications involving direct-touch with bare fingers and also in combination with 

physical artifacts representing digital information. Such interaction techniques are 

entitled to be natural since users may use their fingers to interact with digital objects 

in the same way as they would do with physical objects. Indeed, directly touching 

objects and manipulating them with multiple fingers pose a natural form of interaction 

that benefits from users' manual dexterity. Direct interaction with fingers allows to 

use a multi-touch tabletop computer straight away without learning how to use the 

input device. Humans use their fingers every day for any number of tasks and 

therefore they are used to interact with their fingers in the real world. To some extent, 

humans consciously make use of directions in this interaction to complement or 

convey their intention, for instance when pointing at objects or indicating a direction.  

From a software application's point of view, the sensing technologies provide 

touch properties which have to be interpreted correctly by the application so as to 

enable the expected natural interaction. Common touch properties used therefor 

include finger position [6, 15], contact shape [16, 17], or contact area's size [18]. In 

[19], the authors empirically evaluated and discussed several finger input properties 

and the usage of those for multi-touch tabletop interaction. Their evaluation yielded 

guidelines for widget-design and several proposals for widget-designs where finger 

orientation, that is the direction which the finger points to, plays an important role. To 

our knowledge, the finger orientation has not been used for interaction in multi-touch 

applications as also claimed in [19]. One possible reason may be the unavailability of 

finger orientation in freely available tracker software, such as [15] or [20], which 

provide only the aforementioned common touch properties. Reliable methods to 

detect finger orientation unambiguously and with high precision would foster 

integration of finger orientation detection into tracker software. 

Apparently, employing finger orientation to extend or complement natural 

interaction would offer valuable potential for a more natural form of interaction, since 

finger orientation is an inherently integrated aspect in human's interaction in the real 

world.  

This paper is structured as follows: In the next two sections, we motivate the use of 

finger orientation for natural interaction by giving design examples for user interfaces 

and interaction techniques. Section 4 introduces into the technical background 

followed by a description of a naive approach and our new approach for detection of 

finger orientation. In Section 6, we present recognition rates for the presented 

approaches and discuss benefits and issues. Finally, we summarize and conclude our 

work in Section 7. 

2   Usage of Finger Orientation 

Incorporating finger orientation into natural interaction poses chances for 

improvements for several issues pertaining to touch user interfaces and interactions: 

manipulation, occlusion, selection, and adaptation. Both interaction techniques and 

user interfaces can be designed to account for finger orientation as exemplified 

follows. 



Manipulation. Wang and colleagues [21] present a variety of interaction 

techniques, such as orientation-sensitive widgets, that would be enabled by robust 

techniques to recognize finger orientations. Such widgets take the finger orientation 

into account and enable function selection combined with parameter adjustment 

requiring only little space for interaction. Another example for this interaction 

technique could be a rotary switch that offers only two states to pin or release objects 

on the workspace, see Figure 1. 

 

 

Fig. 1. Rotary switch (left); Adaptation of reported input point (right). 

 

Occlusion. Information about finger orientation would allow us to determine areas 

that are potentially occluded by the hand and adapt the display of graphical objects 

accordingly. For instance, widgets could be re-oriented in such a way that they are 

visible for the most part. Further, techniques such as occlusion-aware pop-ups or 

occlusion-aware dragging presented for pen or stylus interaction in [22] could be 

afforded by means of the finger orientation and realized for interaction with bare 

fingers. Thereby, hierarchical menus or tooltips might appear in non-occluded area or 

occluded text segments could be shown in callouts to support selection tasks.  

 

Selection. If the orientation of fingers was recognized, users would be able to use 

their fingers of either one hand or both hands for pointing at objects displayed on the 

surface allowing them to select distant objects in a more natural manner as depicted in 

Figure 2 at the left-hand side. Users could also use thumb and index finger of one 

hand to span an open angle for object selection. Another option opens up if users 

make use of both hands to span two open angles as sketched in Figure 2 at the right-

hand side. The two selected areas may intersect with each other and create a third 

selection area which might be used for object selection.  

 

Adaptation. Vogel and colleagues [23] show that the reported input point from a 

finger touch differs from the intended target location by an offset. This offset is due to 

the fact that users perceive an input point different than the real target location. Based 

on this observation, they suggest an adaptation to correct the reported input point by 

this offset. Here, the finger orientation could provide the direction in which the 



adaptation should be applied. As an example, the interaction with a virtual keyboard 

on small touchscreens would benefit from such an adaptation as sketched in Figure 1. 

Without adaptation, the reported input point (gray filled circle) would result in 

ambiguous key selection whereas with an adaptation, the reported input point would 

better fit the perceived input point (black filled circle). 

 

 

 

Fig. 2. Distant object selection (left); Fingers spanning open angles for selection (right). 

 

From a pragmatic point of view, user interfaces and interaction techniques that 

integrate finger orientation would help mitigate one of the main issues in natural 

interaction, namely the arm fatigue issue [24, 25]. By reducing the overall hand and 

arm movements for manipulation or selection tasks, users' hand and arm fatigue 

would be diminished as well. Not only single interaction techniques can be improved 

but also higher-level recognition tasks, such as the distinction between one- and two-

handed interactions [26], would be enabled by reliable detection of finger orientation. 

In [26], we present a mechanism to distinguish hands based only on the location and 

orientation of finger contact areas. 

3   Related Work 

Much work has been done on detecting finger orientation in 3D space employing 

multiple cameras or color images, for example [27, 28, 32], whereas only less work 

covers detection of finger orientation for 2D touch sensing technologies or in 

combination with infrared images. 

 

Malik and colleagues [29] presented the Visual Touchpad which utilized two color 

cameras mounted above the touchpad to detect user's hands and fingers. They 

identified fingers' positions through computer vision methods to find the fingertips on 

a hand contour. The hand contour is also used to determine the finger orientation for 

each fingertip. Their approach is based on color images and a direct view on the 



hands which is quite different from prevalent multi-touch sensing technologies 

employing infrared images and a bottom view on the sensing surface. 

Wang et al. [21] proposed an approach to unambiguously determine the finger 

orientation that is based on the contact areas produced by finger touches. They fit an 

ellipse into the contact shape and use the longer ellipse axis for determination of the 

finger orientation. Moreover, they observe the center point's variation of the contact 

areas when a finger lands on the surface to disambiguate the finger orientation. Their 

approach is suitable for sensing technologies that provide only finger contact areas, 

whereas sensing technologies such as Diffused Illumination offer more potential for 

detection of finger orientation with a higher precision. In their work, they also show 

that finger orientation is a useful input property that can be employed to enhance user 

interactions. 

A rather simple and inexpensive way to integrate finger orientation in multi-touch 

tabletop interaction was conducted by Marquardt et al. [30]. They employed the 

Microsoft Surface table [9] and a glove which was tagged with several fiduciary 

markers. The tabletop system was able to detect the markers together with their 

orientation, thus allowed them to derive finger orientation and to identify individual 

parts of the hand and their orientations. Wearing gloves is contrary to natural 

interaction, but Marquardt's approach allows for rapid prototyping of interaction 

techniques and they indicated that integrating more properties from fingers and hands 

provide rich opportunities for interaction design. 

 

We pointed out that finger orientation poses meaningful chances to extend or 

complement natural interaction. In order to be used for user interaction, finger 

orientation must be determined reliably and with high precision. For this purpose, we 

present and discuss a simple approach that reliably detects the finger orientation for 

tabletop setups which employ sensing techniques similar to Diffused Illumination. 

This approach even detects the finger orientation for difficult cases, where the finger 

touches the surface only slightly. 

4   Diffused Illumination 

A lot of multi-touch sensor technologies employing infrared light emerged during 

recent years [1, 2, 3, 5, 33, 34]. In this paper, we refer to the Diffused Illumination 

approach which operates on raw images that are comparable with those created by 

technologies such as DSI or LLP [5]. Diffused Illumination setups have infrared 

sources mounted in the interior of the table which emit infrared light towards the 

tabletop surface. Objects such as fingers or physical artifacts on or above the tabletop 

surface reflect the infrared light back into the table. This reflected infrared light 

exposes a camera sensor inside the table which delivers images that show the 

illuminated objects. Therefore, when users' fingers approach the tabletop surface, the 

captured images show the whole hand with its fingers where the brightness of the 

hands' and fingers' pixels indicate the closeness to the tabletop surface, for example 

Figure 3 on the left-hand side. Hence, they offer rich possibilities for object detection 

through computer-vision methods that take the pixel values into account. 



 

Fig. 3. Infrared image (left) and corresponding contour image (right). 

 

The contact area's pixels of a finger that touches the surface are brighter than the 

pixels of non-contact areas. Hence, a typical process chain to find finger contact areas 

and to locate the fingers' coordinates exploits this fact and utilizes a brightness 

threshold to distinguish contact area from non-contact area. The steps comprise of 

converting the raw camera image into a blob image based on the brightness threshold 

and afterwards converting the blob image into a contour image. Within the resulting 

contour image, each contour represents a contact area of one finger that touches the 

tabletop surface as shown in Figure 3 on the right-hand side. Finally, the coordinates 

of each finger contact can be determined as the corresponding contour's center 

location. 

5   Finger Orientation Detection 

In this section, we will first outline a straightforward way to determine finger 

orientation which serves as a baseline for the performance comparison in Section 6.3. 

The remainder of this section starting from Section 5.2 illustrates our new approach in 

detail in order to ease integration in tracker software. 

5.1   A Naive Approach 

A naive approach to determine finger orientation bases on the aforementioned contour 

image. The steps therefor can be accomplished easily with high-level functions that 

are part of the computer vision package OpenCV [31]. We will further use the term 

ellipse method to denote the approach described in the following. 

 

When considering the contour image in Figure 3, we can spot each finger contour 

as an ellipse representing the finger contact area. Apparently, such a matter of fact 

enables to fit an ellipse into each detected contour and take the angles between x-axis 

and the corresponding longer ellipse axis to determine finger orientations as 

exemplarily sketched in Figure 4 for only one contour. 



 

Fig. 4. Angle to x-axis (left). A circular contour (right). 

However, this approach suffers from inherent weaknesses since it relies only on the 

contour of a finger contact. For instance, it produces ambiguous results for circular 

contours because the axes in a circle can point towards any direction. Furthermore, a 

detected finger orientation could be wrongly skewed by 180° since the longer axis of 

an ellipse possesses two possible directions. 

 

180° Adjustment. With the aid of the raw camera image, we are able to resolve the 

finger orientation in case it is wrongly skewed by 180°. We detect this kind of 

ambiguity by walking the longer ellipse axis into both directions while looking for the 

direction that shows up a non-finger pixel at first. The thereby detected direction is 

where the fingertip ends, thus we adjust the afore-detected finger orientation if it is 

wrongly skewed. Henceforth, we will use the term ellipse method + 180-adjust to 

denote this addition to the ellipse method. 

 

Discussion. Ellipse method and ellipse method + 180-adjust represent a straight 

forward way, but there are common cases in which finger interaction produces 

problematic contours for both methods. For instance, let us consider a child with 

small fingers touching the surface or finger touches that stem from users touching the 

surface only slightly.  In these cases, the detected contour is very small and features a 

circular shape in the worst case which leads to imprecise or high deviant finger 

orientations as exemplarily depicted in Figure 4. This is due to the fact that for small 

contours, the fewer pixels that contribute to the contour, the more effect one pixel has 

on the detected finger orientation. This is even more worse if we consider that camera 

noise always randomly affect pixels of the contour which results in jumping values 

for the detected finger orientation. 

 

To overcome these issues and furthermore increase precision and stability of the 

detected finger orientation, we make use of the difference in brightness of proximate 

pixels kept in the raw image. We draw on that information to determine the finger 

contour and derive the finger orientation from only a part of the finger contour. 

5.2   A Simple and Precise Detection Algorithm 

When considering images produced by Diffused Illumination setups, we can identify 

each finger with its outer contour as depicted in Figure 5. What each finger contour 



has in common are two quasi axially symmetrical lines that converge circularly at the 

fingertip. 

 

 

Fig. 5. Finger contours marked with white lines. 

 

Our approach exploits these symmetrical running lines to calculate the finger 

orientation. For each finger, we are able to detect these two lines and they always 

point into the direction of the finger orientation, thus the thereby identified finger 

orientation is reliable. Our algorithm comprises of three essential steps, each 

consecutively applied in the given order to each detected finger position. The 

detection of finger position was described in Section 4. 

 

1. Detect the finger contour. 

2. Determine the symmetrical lines. 

3. Determine the angles in which the tracks point to and average them. 

1. Detection of Finger Contour. As a first step, the outer finger contour for a given 

finger position has to be identified. This task is decisive for the remaining steps 

because the points of the contour intrinsically contribute to the precision of the finger 

orientation to be determined. Initially, we span a circle with the radius R pixels 

around the finger contact position and distribute points on that circle at an interval of 

5° as depicted in Figure 6. We have chosen R = 40 pixels for our images in order to 

cover at least two times the finger width of small people’s fingers and one time and a 

half the finger width of people with chubby fingers. This value must be adjusted for 

other tabletop setups depending on the resolution of the raw images and the projection 

size of the tabletop. For higher resolution cameras, the amount of points on the circle 

might be increased for a higher precision of detection. 

 

The next step is to perform a search for a contour pixel starting from the finger 

contact's center position to each point that was distributed on the circle. To be precise, 

we process 72 paths at an interval of 5°. Within each search run, we compare the pixel 



value of each point on the path with the pixel value of the center position. Once the 

difference of their values exceeds a certain threshold, the search terminates and the 

pixel coordinate on the path is noted in a list. 

 

 

 

 

Fig. 6. Points on circles spanned around the finger contacts. 

For our implementation, we used the value 18 for the threshold. This threshold may 

vary for other DI settings depending on the brightness and contrast of the captured 

images. Here, adaptive threshold calibration based on a histogram of the image could 

compensate for environments with varying light conditions. The result of this step is a 

list which denotes whether a contour point was found or not for each of the 72 points 

on the circle. In particular, the list has the following properties: 

Definition 1. Properties of contour-point list  

1. The ordered entries enumerated from 1 to 72 correspond to the points on the 

circle from 0° to 355° at an interval of 5°. 

2. Each entry contains the coordinate (x, y) of a contour pixel. 

3. If no contour pixel was found, then the entry contains the value (-1, -1). 

 

This procedure guarantees that in theory the finger contour found contains only the 

contour of the finger we consider and not a contour point of an adjacent finger. Since 

we start the search from the finger contact's center position, the first pixel that 

terminates the search must belong to the same finger. Furthermore, most of the 

searches terminate quickly because the distances between the finger contour and the 

finger contact's center position are short, see Figure 6. 

 

2. Determine Symmetrical Lines. The following step operates only on the list 

defined in the previous section and determines the two quasi-symmetrical lines that 

contribute to the finger orientation. 



In what follows, we treat the list as a ringbuffer where the subsequent entry of 

entry 72 points at entry 1 and vice versa. Furthermore, the defined names in italic type 

denote indexes into the list corresponding to the usage in Figure 7 unless otherwise 

noted. The name list denotes the afore defined list of points, where a single point can 

be retrieved by means of squared brackets as used in the programming language C. 

 

At first, we perform a search for the biggest range that only consists of values of  

(-1, -1). This range is defined as the gate gstart, ..., gend and represents the part where 

the finger is connected to the hand as depicted in Figure 7. The complementary range 

cstart = gend + 1, ..., cend = gstart - 1 is defined as the finger contour.  

 

 

 

Fig. 7. Finger contour with start and end points (left). List of contour points and its allocation 

(right). 

 

When considering the finger contour as two parts with cmid: cstart < cmid < cend, there 

are two contour tracks that have to be cut back in order to remove the part 

representing the fingertip. The fingertip part can only be used for detection of finger 

orientation if the contour tracks are absolutely symmetrical to each other. This cannot 

be guaranteed due to different finger or hand pose which may destroy symmetry of 

the fingertip contour. Therefore, the fingertip part of the contour has to be removed as 

far as possible. We empirically determined that considering only 60% of the points in 

each contour track suffices to remove the fingertip points. That is the amount of 

points to include in each contour track is defined as amountc = 0.6 * (cend - cstart) / 2. 

This can be used independent of image resolution because higher resolution would 

result in more contour pixels, but the relationship between finger and fingertip 

remains the same. Considering only 60% of the finger contour is a tradeoff between 

including the contour that contributes to the finger orientation and omitting the 

fingertip contour. For the following steps, we further define the left contour track as 

trackleft = cstart, ..., cmid - amountc and the right contour track as trackright = cend, ..., cmid 

+ amountc, see Figure 7. 

 



We have to catch a rare case in this step: if the list does not contain a gate range, 

then we have an elliptical finger contour as exemplified in Figure 8. 

 

 

Fig. 8. Elliptical finger contour caused by low contrast. 

 

This case happens rarely and is caused by low contrast of the raw image which leads 

to falsely detected contour points stored in the list. In such a case, we skip the next 

step and proceed with the ellipse method + 180-adjust to detect finger orientation, 

which was described in Section 5.1. 

 

3. Determine Average Angle. Both afore ascertained contour tracks of a finger 

contact contribute to the finger orientation based on the properties of the list defined 

in Definition 1. The properties imply that cstart is the starting point of the left contour 

track and cend is the starting point of the right contour track. Because of that, we also 

know that the tracks trackleft and trackright point into the direction where the finger is 

pointing to as well. Therefore, the last step serves to calculate the angles to the x-axis 

for trackleft and trackright and average them afterwards to determine the final finger 

orientation. 

Here, two methods with differing complexity may be applied. A computationally 

complex method bases on linear regression, whereby the points of a contour track are 

considered as a point cloud. A linear regression model is then fitted on this point 

cloud using least squares and the resulting slope of the regression line contributes to 

the finger orientation. This method is applicable for time-critical conditions if 

sufficient processing power is available. 

 

A much simpler and faster approach that requires linear time draws on the slopes 

for each point of a contour track. For this approach, the coordinate denoted by the 

index cstart or cend is defined as the anchor point respectively depending on the contour 

track to work on. That is either anchorx = list[cstart]x, anchory = list[cstart]y if we 

consider trackleft and otherwise anchorx = list[cend]x, anchory = list[cend]y. The 

following instructions have to be applied on trackleft and trackright independently. At 

first, the differences in x-value and y-value from the anchor point to all other contour 

track points are summed up and the resulting summed x-values and y-values are 

considered as the slope for the line running through the point cloud for the contour 

track. This is formally specified with equations 1, 2 and 3 where tstart and tend are the 



indexes into the contour point list of the corresponding contour track. Finally, both 

slopes have to be averaged to determine the finger orientation.  
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The simpler approach admittedly is prone to errors due to wrong initialization of 

the anchor point. However, the results we present in Section 6.3 show that this simple 

method still produces recognition rates that are quite close to those of the linear 

regression method. 

6   Recognition Rates  

In order to obtain recognition rates that have relevance for real data and that would 

occur in real tabletop interaction, we have captured a raw videostream from an 

infrared camera that was mounted in the table directed towards the surface. The video 

shows hands and fingers from a user who touches the surface the same way as he 

would do to interact with an application. Thereby, he uses combinations of one hand 

and two hands and with different finger combinations multiple times. 

 

 

Fig. 9. From left to right: (1) move object with index finger, (2) move object with multiple 

fingers, (3) grasping with all fingers. 

 



For example, the finger combinations included combinations used to move objects 

with the index finger (Figure 9, Nr. 1) or multiple fingers (Figure 9, Nr. 2), grasping 

with all fingers (Figure 9, Nr. 3) or zooming with fingers of one hand (Figure 10, Nr. 

1) or both hands (Figure 10, Nr. 2). As a result of this, the video contains multiple 

repeats of parallel landing and lifting fingers of multiple adjacent fingers. While the 

camera captured the video, the tabletop showed a black screen and gave no visual 

feedback to the finger contacts. Furthermore, the fingers in some of the captured 

images were blurry due to quick continuous hand and finger movements. Hence, the 

video shows images that occur in multi-touch tabletop setups for realistic continuous 

interaction situations. In addition to the video, we created reference finger orientations 

for each frame of the video that were used to evaluate the accuracy of the detected 

finger orientations. 

   

 

Fig. 10. From left to right: (1) zoom with fingers of one hand, (2) zoom with fingers of both 

hands. 

 

We chose a different method to test the performance of our approach than Wang 

did in [21] because of two reasons. First, Wang evaluated his finger orientation 

approach with an FTIR table which poses higher contrast and less noise thus creates 

lower challenges than DI tables. Second, he evaluated his approach by investigating 

to what extent the system's response was in line with the user's objectives when 

conducting a set of pre-defined tasks with the index finger. 

In the present work, we propose a different evaluation approach which compares 

the finger orientation found by our algorithm with the finger orientation perceived and 

determined by three independent human judges. The advantage of our method is that 

it enables a task-independent evaluation and gives a measure for the precision that is 

more focused on continuous interaction. 

6.1   Reference 

The video for the reference finger orientations was available in an uncompressed 

format to preserve the raw data and comprises of 749 frames captured at 30 fps with a 

resolution of 640x480 pixels for each frame. The resolution covers a physical surface 



space of 60x80 cm. For creating the reference, each frame was converted to a blob 

image and the center position of each recognized blob was stored with its frame 

number in an XML-file. In all, 2007 finger contacts were detected. To ease the 

annotation of finger orientations and to generate the reference automatically, we have 

developed a graphical tool with the following functionality. Each frame along with 

the position of the detected finger contacts was presented to the annotator and the 

annotator had to manually adjust the finger orientations, which were detected through 

the ellipse method + 180-adjust approach. Overall, three persons annotated 6021 

finger orientations and hence for each finger contact three finger orientations were 

created. The annotators were instructed to repeat an adjustment as often as required if 

they were not absolutely sure about the correctness of the visually perceived finger 

orientation and their adjusted finger orientation. The data gained through the 

annotations were used to build the reference finger orientations by calculating an 

average finger orientation for each finger contact.  

6.2   Accuracy of the Reference Orientations 

The reason why we averaged annotations procured from three different persons is that 

different persons may determine slightly different finger orientations due to camera 

noise, image contrast and image resolution. Our tool enabled the annotator to adjust 

the finger orientation angle with a precision of two decimal points as depicted in 

Figure 11. 

 

Fig. 11. Annotated index-finger and thumb. 

 

 

Figure 11 also shows that the raw images are blurry and with low contrast. This 

makes it difficult to pinpoint an absolute finger orientation. Therefore, the annotation 

tool supplied a colored visual line alike to a ruler which assisted the annotator in 

gauging a proper finger orientation by choosing the mid of the acceptable angle 

ranges. This process enabled us to procure data from multiple annotators and take the 



averages for the reference. Overall, the reference finger orientations had a standard 

deviation of 3.34°. 

6.3   Results 

The precision of our approach is illustrated by comparing its recognition rates with 

the recognition rates of the ellipse method and the ellipse method + 180-adjust that 

are explained in Section 5.1. As for our approach, we implemented both variants 

described in Section 5.2 to find a line running through the contour track. The term 

Contourtrack denotes our approach within this section. Table 1 shows the recognition 

rates for all four approaches and their standard deviation from the finger orientation in 

the reference. The table lists the recognition rates for four cases: 5°, 10°, 15°, and 25°. 

The recognition rate in the 5° column shows the percentage of recognized finger 

orientations at which the difference to the reference is less than 5°. The same 

interpretation applies to the 10°, 15°, and 25° column. 

Table 1.  Recognition rates and standard deviation for four methods: 1 = ellipse method, 2 = 

ellipse method + 180-adjust, 3 = Contourtrack + simple slope, 4 = Contourtrack + regression 

line.  

Method < 5° < 10° < 15° < 25° SD 

1 41.5% 60.49% 68.81% 74.39% 86.46° 

2 49.58% 74.34% 84.65% 92.53% 23.19° 

3 75.29% 93.02% 96.86% 99.3% 6.17° 

4 75.24% 94.87% 97.81% 98.9% 6.43° 

 

 

The naive ellipse method shows low recognition rates (60.49% at 10°-error) and a 

high standard deviation of 86.46° which mainly stems from the wrongly 180° twisted 

finger orientations. This method hugely benefits from correcting the wrongly 180° 

twisted finger orientations (ellipse method + 180-adjust) as shown in the second row 

of Table 1. The extension improved the recognition rates (74.34% at 10°-error) and 

reduced the standard deviation significantly to 23.19°. However, the recognition rates 

of the naive methods ellipse method and ellipse method + 180-adjust show that their 

precision is not reliable enough to be used in realistic applications. 

 

In the third row and the fourth row, the recognition rates of our new approach are 

shown, which are much better than the naive ellipse methods. Both methods’ values 

show good results which exceeds 93% for a maximum error of 10°. If we accept a 

maximum error of 25°, then both methods provide recognition rates over 98%. Both 

standard deviations are less than or equal to 6.43° which is only 3.09° worse than the 

standard deviation in the human reference data with 3.34°. 

 

Discussion. The precision of our approach increases with higher image resolution and 

image contrast. The more pixels that can be used for a finger contour, the better the 

precision. The better the image contrast, the better a finger contour can be detected. 

Preprocessing steps to reduce image noise or to improve image contrast would 



improve the performance, but we have not included such steps so as to keep the 

approach simple and fast. This way, the approach can be used as a lightweight add-on 

to already established tracker software. The deviation of our detected finger 

orientations from the reference orientations was mainly attributed to insufficient 

contrast of the raw image. Figure 12 illustrates two cases where the finger contour 

could not be determined correctly. In these cases, the difference between a finger 

pixel value and a background pixel value was too small, thus finger and background 

was not distinguishable with the threshold in use. 

 

 

Fig. 12. Error cases with wrongly detected finger contour. 

 

Here, increasing the image resolution and image contrast improves the recognition 

rates of our approach. Nevertheless, the empirical data clearly shows that the 

presented approach detects finger orientation reliably and with high precision even 

with low-resolution images (1cm
2
 covered by less than 64 pixels) and low contrast. 

Our implementation was evaluated on a PC with Core2Duo (2.83GHz) running at 

30fps where it added only marginal latency (~0.19ms per finger contact for 

Contourtrack + regression line). Hence, latency does not have a negative impact on 

the perceived speed of user interaction. 

 

In Wang's approach [21], few limitations exist which are handled correctly by our 

approach. First, their algorithm usually detects a wrong finger orientation if users 

touch the surface with the side face of the thumb due to the center displacement of the 

contact area that is different from the other fingers. Second, if users perform a "sliding 

down" gesture while touching the surface, the center displacement is again different 

from the center displacement of an index finger's landing process resulting in wrong 

detection of finger orientation. Our approach is based on the finger contour which 

shows the correct finger orientation in such cases. The Microsoft Surface [9] tabletop 

also supports detection of finger orientation and would have been a suitable candidate 

for performance comparisons. Unfortunately, it lacks of application support for 

providing unprocessed raw images from each single camera, which is required for a 

meaningful performance comparison. Therefore, we have chosen to utilize a self-

made multi-touch table employing the Diffused Illumination technique. 



7   Conclusions 

Our work enriches natural interaction by considering finger orientation for user 

interface design as well as for interaction techniques. As we have shown, both can be 

extended in a meaningful sense regarding manipulation, occlusion, selection, 

adaptation and also for high-level tasks. Natural interaction will benefit from human's 

inherent understanding of direction, in particular finger orientation, that they practice 

every day. A basic requirement to enable further research in this topic is that the 

detection of finger orientation has to be reliable, precise and stable for continuous 

interaction. Therefor, our presented approach (Contourtrack) to detect finger 

orientation has proven to be accurate enough with recognition rates over 93%. 

Because of the approach's low algorithmic complexity, it suits the needs of time-

critical processing thus foster availability of finger orientation in tracker software. 
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