
HAL Id: hal-01591833
https://inria.hal.science/hal-01591833

Submitted on 22 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Usage and Recognition of Finger Orientation for
Multi-Touch Tabletop Interaction

Chi Tai Dang, Elisabeth André

To cite this version:
Chi Tai Dang, Elisabeth André. Usage and Recognition of Finger Orientation for Multi-Touch Table-
top Interaction. 13th International Conference on Human-Computer Interaction (INTERACT), Sep
2011, Lisbon, Portugal. pp.409-426, �10.1007/978-3-642-23765-2_28�. �hal-01591833�

https://inria.hal.science/hal-01591833
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Usage and Recognition of Finger Orientation for

Multi-Touch Tabletop Interaction

Chi Tai Dang, and Elisabeth André

Augsburg University, Human Centered Multimedia, Department of Computer Science,

Universitaetsstr. 6a, 86159 Augsburg, Germany

{LastName}@informatik.uni-augsburg.de

Abstract. Building on the observation that finger orientation is an inherent part

of human's interaction in the real world, exploiting finger orientation for multi-

touch tabletop interaction would facilitate more natural interaction techniques.

We motivate this by means of examples where the finger orientation improves

or enriches interaction. Afterwards, we present a simple and fast approach to

detect the finger orientation reliably for multi-touch tabletop interaction. The

steps involved are computationally cheap and therefore suit the needs of

tracking software operating under time-critical conditions. We show that the

presented approach enables the detection of finger orientation also for fingers

that touch the tabletop surface only slightly. Further, recognition rates on real

data gained from the camera within a multi-touch tabletop are presented in

order to give a measure for the precision and reliability of the presented

approach.

Keywords: Finger Orientation, Multi-Touch, Tabletop, Tracking, Interaction

1 Introduction

Over the last years, various multi-touch sensing technologies evolved and have

matured out of their infancy, for example vision-based techniques [1-5] or techniques

based on electrical capacitance [6-8]. Such technologies attracted a lot of attention not

only from the research community, but also from the general public as well as the

industry. Consequently, commercial products based on these technologies became

publicly available, for example in the form of horizontal tabletops [6, 9, 10, 11], large

displays [12], desktop computers [13, 14], notebooks [13, 14], or smartphones and

tablet-sized devices [8]. Particularly smartphones and small multi-touch devices are

now commonplace and more and more users become familiar with multi-touch

interaction. Commercial horizontal tabletops are not as widespread as small mobile

devices mainly because of their higher costs. However, they laid the foundation for

multi-touch interaction design and still pose a rich playground for interaction research

due to their experimental character and the possibilities of the bigger input space for

interaction.

The novelty of those technologies is primarily attributed to interaction techniques

and applications involving direct-touch with bare fingers and also in combination with

physical artifacts representing digital information. Such interaction techniques are

entitled to be natural since users may use their fingers to interact with digital objects

in the same way as they would do with physical objects. Indeed, directly touching

objects and manipulating them with multiple fingers pose a natural form of interaction

that benefits from users' manual dexterity. Direct interaction with fingers allows to

use a multi-touch tabletop computer straight away without learning how to use the

input device. Humans use their fingers every day for any number of tasks and

therefore they are used to interact with their fingers in the real world. To some extent,

humans consciously make use of directions in this interaction to complement or

convey their intention, for instance when pointing at objects or indicating a direction.

From a software application's point of view, the sensing technologies provide

touch properties which have to be interpreted correctly by the application so as to

enable the expected natural interaction. Common touch properties used therefor

include finger position [6, 15], contact shape [16, 17], or contact area's size [18]. In

[19], the authors empirically evaluated and discussed several finger input properties

and the usage of those for multi-touch tabletop interaction. Their evaluation yielded

guidelines for widget-design and several proposals for widget-designs where finger

orientation, that is the direction which the finger points to, plays an important role. To

our knowledge, the finger orientation has not been used for interaction in multi-touch

applications as also claimed in [19]. One possible reason may be the unavailability of

finger orientation in freely available tracker software, such as [15] or [20], which

provide only the aforementioned common touch properties. Reliable methods to

detect finger orientation unambiguously and with high precision would foster

integration of finger orientation detection into tracker software.

Apparently, employing finger orientation to extend or complement natural

interaction would offer valuable potential for a more natural form of interaction, since

finger orientation is an inherently integrated aspect in human's interaction in the real

world.

This paper is structured as follows: In the next two sections, we motivate the use of

finger orientation for natural interaction by giving design examples for user interfaces

and interaction techniques. Section 4 introduces into the technical background

followed by a description of a naive approach and our new approach for detection of

finger orientation. In Section 6, we present recognition rates for the presented

approaches and discuss benefits and issues. Finally, we summarize and conclude our

work in Section 7.

2 Usage of Finger Orientation

Incorporating finger orientation into natural interaction poses chances for

improvements for several issues pertaining to touch user interfaces and interactions:

manipulation, occlusion, selection, and adaptation. Both interaction techniques and

user interfaces can be designed to account for finger orientation as exemplified

follows.

Manipulation. Wang and colleagues [21] present a variety of interaction

techniques, such as orientation-sensitive widgets, that would be enabled by robust

techniques to recognize finger orientations. Such widgets take the finger orientation

into account and enable function selection combined with parameter adjustment

requiring only little space for interaction. Another example for this interaction

technique could be a rotary switch that offers only two states to pin or release objects

on the workspace, see Figure 1.

Fig. 1. Rotary switch (left); Adaptation of reported input point (right).

Occlusion. Information about finger orientation would allow us to determine areas

that are potentially occluded by the hand and adapt the display of graphical objects

accordingly. For instance, widgets could be re-oriented in such a way that they are

visible for the most part. Further, techniques such as occlusion-aware pop-ups or

occlusion-aware dragging presented for pen or stylus interaction in [22] could be

afforded by means of the finger orientation and realized for interaction with bare

fingers. Thereby, hierarchical menus or tooltips might appear in non-occluded area or

occluded text segments could be shown in callouts to support selection tasks.

Selection. If the orientation of fingers was recognized, users would be able to use

their fingers of either one hand or both hands for pointing at objects displayed on the

surface allowing them to select distant objects in a more natural manner as depicted in

Figure 2 at the left-hand side. Users could also use thumb and index finger of one

hand to span an open angle for object selection. Another option opens up if users

make use of both hands to span two open angles as sketched in Figure 2 at the right-

hand side. The two selected areas may intersect with each other and create a third

selection area which might be used for object selection.

Adaptation. Vogel and colleagues [23] show that the reported input point from a

finger touch differs from the intended target location by an offset. This offset is due to

the fact that users perceive an input point different than the real target location. Based

on this observation, they suggest an adaptation to correct the reported input point by

this offset. Here, the finger orientation could provide the direction in which the

adaptation should be applied. As an example, the interaction with a virtual keyboard

on small touchscreens would benefit from such an adaptation as sketched in Figure 1.

Without adaptation, the reported input point (gray filled circle) would result in

ambiguous key selection whereas with an adaptation, the reported input point would

better fit the perceived input point (black filled circle).

Fig. 2. Distant object selection (left); Fingers spanning open angles for selection (right).

From a pragmatic point of view, user interfaces and interaction techniques that

integrate finger orientation would help mitigate one of the main issues in natural

interaction, namely the arm fatigue issue [24, 25]. By reducing the overall hand and

arm movements for manipulation or selection tasks, users' hand and arm fatigue

would be diminished as well. Not only single interaction techniques can be improved

but also higher-level recognition tasks, such as the distinction between one- and two-

handed interactions [26], would be enabled by reliable detection of finger orientation.

In [26], we present a mechanism to distinguish hands based only on the location and

orientation of finger contact areas.

3 Related Work

Much work has been done on detecting finger orientation in 3D space employing

multiple cameras or color images, for example [27, 28, 32], whereas only less work

covers detection of finger orientation for 2D touch sensing technologies or in

combination with infrared images.

Malik and colleagues [29] presented the Visual Touchpad which utilized two color

cameras mounted above the touchpad to detect user's hands and fingers. They

identified fingers' positions through computer vision methods to find the fingertips on

a hand contour. The hand contour is also used to determine the finger orientation for

each fingertip. Their approach is based on color images and a direct view on the

hands which is quite different from prevalent multi-touch sensing technologies

employing infrared images and a bottom view on the sensing surface.

Wang et al. [21] proposed an approach to unambiguously determine the finger

orientation that is based on the contact areas produced by finger touches. They fit an

ellipse into the contact shape and use the longer ellipse axis for determination of the

finger orientation. Moreover, they observe the center point's variation of the contact

areas when a finger lands on the surface to disambiguate the finger orientation. Their

approach is suitable for sensing technologies that provide only finger contact areas,

whereas sensing technologies such as Diffused Illumination offer more potential for

detection of finger orientation with a higher precision. In their work, they also show

that finger orientation is a useful input property that can be employed to enhance user

interactions.

A rather simple and inexpensive way to integrate finger orientation in multi-touch

tabletop interaction was conducted by Marquardt et al. [30]. They employed the

Microsoft Surface table [9] and a glove which was tagged with several fiduciary

markers. The tabletop system was able to detect the markers together with their

orientation, thus allowed them to derive finger orientation and to identify individual

parts of the hand and their orientations. Wearing gloves is contrary to natural

interaction, but Marquardt's approach allows for rapid prototyping of interaction

techniques and they indicated that integrating more properties from fingers and hands

provide rich opportunities for interaction design.

We pointed out that finger orientation poses meaningful chances to extend or

complement natural interaction. In order to be used for user interaction, finger

orientation must be determined reliably and with high precision. For this purpose, we

present and discuss a simple approach that reliably detects the finger orientation for

tabletop setups which employ sensing techniques similar to Diffused Illumination.

This approach even detects the finger orientation for difficult cases, where the finger

touches the surface only slightly.

4 Diffused Illumination

A lot of multi-touch sensor technologies employing infrared light emerged during

recent years [1, 2, 3, 5, 33, 34]. In this paper, we refer to the Diffused Illumination

approach which operates on raw images that are comparable with those created by

technologies such as DSI or LLP [5]. Diffused Illumination setups have infrared

sources mounted in the interior of the table which emit infrared light towards the

tabletop surface. Objects such as fingers or physical artifacts on or above the tabletop

surface reflect the infrared light back into the table. This reflected infrared light

exposes a camera sensor inside the table which delivers images that show the

illuminated objects. Therefore, when users' fingers approach the tabletop surface, the

captured images show the whole hand with its fingers where the brightness of the

hands' and fingers' pixels indicate the closeness to the tabletop surface, for example

Figure 3 on the left-hand side. Hence, they offer rich possibilities for object detection

through computer-vision methods that take the pixel values into account.

Fig. 3. Infrared image (left) and corresponding contour image (right).

The contact area's pixels of a finger that touches the surface are brighter than the

pixels of non-contact areas. Hence, a typical process chain to find finger contact areas

and to locate the fingers' coordinates exploits this fact and utilizes a brightness

threshold to distinguish contact area from non-contact area. The steps comprise of

converting the raw camera image into a blob image based on the brightness threshold

and afterwards converting the blob image into a contour image. Within the resulting

contour image, each contour represents a contact area of one finger that touches the

tabletop surface as shown in Figure 3 on the right-hand side. Finally, the coordinates

of each finger contact can be determined as the corresponding contour's center

location.

5 Finger Orientation Detection

In this section, we will first outline a straightforward way to determine finger

orientation which serves as a baseline for the performance comparison in Section 6.3.

The remainder of this section starting from Section 5.2 illustrates our new approach in

detail in order to ease integration in tracker software.

5.1 A Naive Approach

A naive approach to determine finger orientation bases on the aforementioned contour

image. The steps therefor can be accomplished easily with high-level functions that

are part of the computer vision package OpenCV [31]. We will further use the term

ellipse method to denote the approach described in the following.

When considering the contour image in Figure 3, we can spot each finger contour

as an ellipse representing the finger contact area. Apparently, such a matter of fact

enables to fit an ellipse into each detected contour and take the angles between x-axis

and the corresponding longer ellipse axis to determine finger orientations as

exemplarily sketched in Figure 4 for only one contour.

Fig. 4. Angle to x-axis (left). A circular contour (right).

However, this approach suffers from inherent weaknesses since it relies only on the

contour of a finger contact. For instance, it produces ambiguous results for circular

contours because the axes in a circle can point towards any direction. Furthermore, a

detected finger orientation could be wrongly skewed by 180° since the longer axis of

an ellipse possesses two possible directions.

180° Adjustment. With the aid of the raw camera image, we are able to resolve the

finger orientation in case it is wrongly skewed by 180°. We detect this kind of

ambiguity by walking the longer ellipse axis into both directions while looking for the

direction that shows up a non-finger pixel at first. The thereby detected direction is

where the fingertip ends, thus we adjust the afore-detected finger orientation if it is

wrongly skewed. Henceforth, we will use the term ellipse method + 180-adjust to

denote this addition to the ellipse method.

Discussion. Ellipse method and ellipse method + 180-adjust represent a straight

forward way, but there are common cases in which finger interaction produces

problematic contours for both methods. For instance, let us consider a child with

small fingers touching the surface or finger touches that stem from users touching the

surface only slightly. In these cases, the detected contour is very small and features a

circular shape in the worst case which leads to imprecise or high deviant finger

orientations as exemplarily depicted in Figure 4. This is due to the fact that for small

contours, the fewer pixels that contribute to the contour, the more effect one pixel has

on the detected finger orientation. This is even more worse if we consider that camera

noise always randomly affect pixels of the contour which results in jumping values

for the detected finger orientation.

To overcome these issues and furthermore increase precision and stability of the

detected finger orientation, we make use of the difference in brightness of proximate

pixels kept in the raw image. We draw on that information to determine the finger

contour and derive the finger orientation from only a part of the finger contour.

5.2 A Simple and Precise Detection Algorithm

When considering images produced by Diffused Illumination setups, we can identify

each finger with its outer contour as depicted in Figure 5. What each finger contour

has in common are two quasi axially symmetrical lines that converge circularly at the

fingertip.

Fig. 5. Finger contours marked with white lines.

Our approach exploits these symmetrical running lines to calculate the finger

orientation. For each finger, we are able to detect these two lines and they always

point into the direction of the finger orientation, thus the thereby identified finger

orientation is reliable. Our algorithm comprises of three essential steps, each

consecutively applied in the given order to each detected finger position. The

detection of finger position was described in Section 4.

1. Detect the finger contour.

2. Determine the symmetrical lines.

3. Determine the angles in which the tracks point to and average them.

1. Detection of Finger Contour. As a first step, the outer finger contour for a given

finger position has to be identified. This task is decisive for the remaining steps

because the points of the contour intrinsically contribute to the precision of the finger

orientation to be determined. Initially, we span a circle with the radius R pixels

around the finger contact position and distribute points on that circle at an interval of

5° as depicted in Figure 6. We have chosen R = 40 pixels for our images in order to

cover at least two times the finger width of small people’s fingers and one time and a

half the finger width of people with chubby fingers. This value must be adjusted for

other tabletop setups depending on the resolution of the raw images and the projection

size of the tabletop. For higher resolution cameras, the amount of points on the circle

might be increased for a higher precision of detection.

The next step is to perform a search for a contour pixel starting from the finger

contact's center position to each point that was distributed on the circle. To be precise,

we process 72 paths at an interval of 5°. Within each search run, we compare the pixel

value of each point on the path with the pixel value of the center position. Once the

difference of their values exceeds a certain threshold, the search terminates and the

pixel coordinate on the path is noted in a list.

Fig. 6. Points on circles spanned around the finger contacts.

For our implementation, we used the value 18 for the threshold. This threshold may

vary for other DI settings depending on the brightness and contrast of the captured

images. Here, adaptive threshold calibration based on a histogram of the image could

compensate for environments with varying light conditions. The result of this step is a

list which denotes whether a contour point was found or not for each of the 72 points

on the circle. In particular, the list has the following properties:

Definition 1. Properties of contour-point list

1. The ordered entries enumerated from 1 to 72 correspond to the points on the

circle from 0° to 355° at an interval of 5°.

2. Each entry contains the coordinate (x, y) of a contour pixel.

3. If no contour pixel was found, then the entry contains the value (-1, -1).

This procedure guarantees that in theory the finger contour found contains only the

contour of the finger we consider and not a contour point of an adjacent finger. Since

we start the search from the finger contact's center position, the first pixel that

terminates the search must belong to the same finger. Furthermore, most of the

searches terminate quickly because the distances between the finger contour and the

finger contact's center position are short, see Figure 6.

2. Determine Symmetrical Lines. The following step operates only on the list

defined in the previous section and determines the two quasi-symmetrical lines that

contribute to the finger orientation.

In what follows, we treat the list as a ringbuffer where the subsequent entry of

entry 72 points at entry 1 and vice versa. Furthermore, the defined names in italic type

denote indexes into the list corresponding to the usage in Figure 7 unless otherwise

noted. The name list denotes the afore defined list of points, where a single point can

be retrieved by means of squared brackets as used in the programming language C.

At first, we perform a search for the biggest range that only consists of values of

(-1, -1). This range is defined as the gate gstart, ..., gend and represents the part where

the finger is connected to the hand as depicted in Figure 7. The complementary range

cstart = gend + 1, ..., cend = gstart - 1 is defined as the finger contour.

Fig. 7. Finger contour with start and end points (left). List of contour points and its allocation

(right).

When considering the finger contour as two parts with cmid: cstart < cmid < cend, there

are two contour tracks that have to be cut back in order to remove the part

representing the fingertip. The fingertip part can only be used for detection of finger

orientation if the contour tracks are absolutely symmetrical to each other. This cannot

be guaranteed due to different finger or hand pose which may destroy symmetry of

the fingertip contour. Therefore, the fingertip part of the contour has to be removed as

far as possible. We empirically determined that considering only 60% of the points in

each contour track suffices to remove the fingertip points. That is the amount of

points to include in each contour track is defined as amountc = 0.6 * (cend - cstart) / 2.

This can be used independent of image resolution because higher resolution would

result in more contour pixels, but the relationship between finger and fingertip

remains the same. Considering only 60% of the finger contour is a tradeoff between

including the contour that contributes to the finger orientation and omitting the

fingertip contour. For the following steps, we further define the left contour track as

trackleft = cstart, ..., cmid - amountc and the right contour track as trackright = cend, ..., cmid

+ amountc, see Figure 7.

We have to catch a rare case in this step: if the list does not contain a gate range,

then we have an elliptical finger contour as exemplified in Figure 8.

Fig. 8. Elliptical finger contour caused by low contrast.

This case happens rarely and is caused by low contrast of the raw image which leads

to falsely detected contour points stored in the list. In such a case, we skip the next

step and proceed with the ellipse method + 180-adjust to detect finger orientation,

which was described in Section 5.1.

3. Determine Average Angle. Both afore ascertained contour tracks of a finger

contact contribute to the finger orientation based on the properties of the list defined

in Definition 1. The properties imply that cstart is the starting point of the left contour

track and cend is the starting point of the right contour track. Because of that, we also

know that the tracks trackleft and trackright point into the direction where the finger is

pointing to as well. Therefore, the last step serves to calculate the angles to the x-axis

for trackleft and trackright and average them afterwards to determine the final finger

orientation.

Here, two methods with differing complexity may be applied. A computationally

complex method bases on linear regression, whereby the points of a contour track are

considered as a point cloud. A linear regression model is then fitted on this point

cloud using least squares and the resulting slope of the regression line contributes to

the finger orientation. This method is applicable for time-critical conditions if

sufficient processing power is available.

A much simpler and faster approach that requires linear time draws on the slopes

for each point of a contour track. For this approach, the coordinate denoted by the

index cstart or cend is defined as the anchor point respectively depending on the contour

track to work on. That is either anchorx = list[cstart]x, anchory = list[cstart]y if we

consider trackleft and otherwise anchorx = list[cend]x, anchory = list[cend]y. The

following instructions have to be applied on trackleft and trackright independently. At

first, the differences in x-value and y-value from the anchor point to all other contour

track points are summed up and the resulting summed x-values and y-values are

considered as the slope for the line running through the point cloud for the contour

track. This is formally specified with equations 1, 2 and 3 where tstart and tend are the

indexes into the contour point list of the corresponding contour track. Finally, both

slopes have to be averaged to determine the finger orientation.




 
end

start

t

ti

xxx anchorilistsum][

(1)




 
end

start

t

ti

yyy anchorilistsum][

(2)

x

y

sum

sum
slope






(3)

The simpler approach admittedly is prone to errors due to wrong initialization of

the anchor point. However, the results we present in Section 6.3 show that this simple

method still produces recognition rates that are quite close to those of the linear

regression method.

6 Recognition Rates

In order to obtain recognition rates that have relevance for real data and that would

occur in real tabletop interaction, we have captured a raw videostream from an

infrared camera that was mounted in the table directed towards the surface. The video

shows hands and fingers from a user who touches the surface the same way as he

would do to interact with an application. Thereby, he uses combinations of one hand

and two hands and with different finger combinations multiple times.

Fig. 9. From left to right: (1) move object with index finger, (2) move object with multiple

fingers, (3) grasping with all fingers.

For example, the finger combinations included combinations used to move objects

with the index finger (Figure 9, Nr. 1) or multiple fingers (Figure 9, Nr. 2), grasping

with all fingers (Figure 9, Nr. 3) or zooming with fingers of one hand (Figure 10, Nr.

1) or both hands (Figure 10, Nr. 2). As a result of this, the video contains multiple

repeats of parallel landing and lifting fingers of multiple adjacent fingers. While the

camera captured the video, the tabletop showed a black screen and gave no visual

feedback to the finger contacts. Furthermore, the fingers in some of the captured

images were blurry due to quick continuous hand and finger movements. Hence, the

video shows images that occur in multi-touch tabletop setups for realistic continuous

interaction situations. In addition to the video, we created reference finger orientations

for each frame of the video that were used to evaluate the accuracy of the detected

finger orientations.

Fig. 10. From left to right: (1) zoom with fingers of one hand, (2) zoom with fingers of both

hands.

We chose a different method to test the performance of our approach than Wang

did in [21] because of two reasons. First, Wang evaluated his finger orientation

approach with an FTIR table which poses higher contrast and less noise thus creates

lower challenges than DI tables. Second, he evaluated his approach by investigating

to what extent the system's response was in line with the user's objectives when

conducting a set of pre-defined tasks with the index finger.

In the present work, we propose a different evaluation approach which compares

the finger orientation found by our algorithm with the finger orientation perceived and

determined by three independent human judges. The advantage of our method is that

it enables a task-independent evaluation and gives a measure for the precision that is

more focused on continuous interaction.

6.1 Reference

The video for the reference finger orientations was available in an uncompressed

format to preserve the raw data and comprises of 749 frames captured at 30 fps with a

resolution of 640x480 pixels for each frame. The resolution covers a physical surface

space of 60x80 cm. For creating the reference, each frame was converted to a blob

image and the center position of each recognized blob was stored with its frame

number in an XML-file. In all, 2007 finger contacts were detected. To ease the

annotation of finger orientations and to generate the reference automatically, we have

developed a graphical tool with the following functionality. Each frame along with

the position of the detected finger contacts was presented to the annotator and the

annotator had to manually adjust the finger orientations, which were detected through

the ellipse method + 180-adjust approach. Overall, three persons annotated 6021

finger orientations and hence for each finger contact three finger orientations were

created. The annotators were instructed to repeat an adjustment as often as required if

they were not absolutely sure about the correctness of the visually perceived finger

orientation and their adjusted finger orientation. The data gained through the

annotations were used to build the reference finger orientations by calculating an

average finger orientation for each finger contact.

6.2 Accuracy of the Reference Orientations

The reason why we averaged annotations procured from three different persons is that

different persons may determine slightly different finger orientations due to camera

noise, image contrast and image resolution. Our tool enabled the annotator to adjust

the finger orientation angle with a precision of two decimal points as depicted in

Figure 11.

Fig. 11. Annotated index-finger and thumb.

Figure 11 also shows that the raw images are blurry and with low contrast. This

makes it difficult to pinpoint an absolute finger orientation. Therefore, the annotation

tool supplied a colored visual line alike to a ruler which assisted the annotator in

gauging a proper finger orientation by choosing the mid of the acceptable angle

ranges. This process enabled us to procure data from multiple annotators and take the

averages for the reference. Overall, the reference finger orientations had a standard

deviation of 3.34°.

6.3 Results

The precision of our approach is illustrated by comparing its recognition rates with

the recognition rates of the ellipse method and the ellipse method + 180-adjust that

are explained in Section 5.1. As for our approach, we implemented both variants

described in Section 5.2 to find a line running through the contour track. The term

Contourtrack denotes our approach within this section. Table 1 shows the recognition

rates for all four approaches and their standard deviation from the finger orientation in

the reference. The table lists the recognition rates for four cases: 5°, 10°, 15°, and 25°.

The recognition rate in the 5° column shows the percentage of recognized finger

orientations at which the difference to the reference is less than 5°. The same

interpretation applies to the 10°, 15°, and 25° column.

Table 1. Recognition rates and standard deviation for four methods: 1 = ellipse method, 2 =

ellipse method + 180-adjust, 3 = Contourtrack + simple slope, 4 = Contourtrack + regression

line.

Method < 5° < 10° < 15° < 25° SD

1 41.5% 60.49% 68.81% 74.39% 86.46°

2 49.58% 74.34% 84.65% 92.53% 23.19°

3 75.29% 93.02% 96.86% 99.3% 6.17°

4 75.24% 94.87% 97.81% 98.9% 6.43°

The naive ellipse method shows low recognition rates (60.49% at 10°-error) and a

high standard deviation of 86.46° which mainly stems from the wrongly 180° twisted

finger orientations. This method hugely benefits from correcting the wrongly 180°

twisted finger orientations (ellipse method + 180-adjust) as shown in the second row

of Table 1. The extension improved the recognition rates (74.34% at 10°-error) and

reduced the standard deviation significantly to 23.19°. However, the recognition rates

of the naive methods ellipse method and ellipse method + 180-adjust show that their

precision is not reliable enough to be used in realistic applications.

In the third row and the fourth row, the recognition rates of our new approach are

shown, which are much better than the naive ellipse methods. Both methods’ values

show good results which exceeds 93% for a maximum error of 10°. If we accept a

maximum error of 25°, then both methods provide recognition rates over 98%. Both

standard deviations are less than or equal to 6.43° which is only 3.09° worse than the

standard deviation in the human reference data with 3.34°.

Discussion. The precision of our approach increases with higher image resolution and

image contrast. The more pixels that can be used for a finger contour, the better the

precision. The better the image contrast, the better a finger contour can be detected.

Preprocessing steps to reduce image noise or to improve image contrast would

improve the performance, but we have not included such steps so as to keep the

approach simple and fast. This way, the approach can be used as a lightweight add-on

to already established tracker software. The deviation of our detected finger

orientations from the reference orientations was mainly attributed to insufficient

contrast of the raw image. Figure 12 illustrates two cases where the finger contour

could not be determined correctly. In these cases, the difference between a finger

pixel value and a background pixel value was too small, thus finger and background

was not distinguishable with the threshold in use.

Fig. 12. Error cases with wrongly detected finger contour.

Here, increasing the image resolution and image contrast improves the recognition

rates of our approach. Nevertheless, the empirical data clearly shows that the

presented approach detects finger orientation reliably and with high precision even

with low-resolution images (1cm
2
 covered by less than 64 pixels) and low contrast.

Our implementation was evaluated on a PC with Core2Duo (2.83GHz) running at

30fps where it added only marginal latency (~0.19ms per finger contact for

Contourtrack + regression line). Hence, latency does not have a negative impact on

the perceived speed of user interaction.

In Wang's approach [21], few limitations exist which are handled correctly by our

approach. First, their algorithm usually detects a wrong finger orientation if users

touch the surface with the side face of the thumb due to the center displacement of the

contact area that is different from the other fingers. Second, if users perform a "sliding

down" gesture while touching the surface, the center displacement is again different

from the center displacement of an index finger's landing process resulting in wrong

detection of finger orientation. Our approach is based on the finger contour which

shows the correct finger orientation in such cases. The Microsoft Surface [9] tabletop

also supports detection of finger orientation and would have been a suitable candidate

for performance comparisons. Unfortunately, it lacks of application support for

providing unprocessed raw images from each single camera, which is required for a

meaningful performance comparison. Therefore, we have chosen to utilize a self-

made multi-touch table employing the Diffused Illumination technique.

7 Conclusions

Our work enriches natural interaction by considering finger orientation for user

interface design as well as for interaction techniques. As we have shown, both can be

extended in a meaningful sense regarding manipulation, occlusion, selection,

adaptation and also for high-level tasks. Natural interaction will benefit from human's

inherent understanding of direction, in particular finger orientation, that they practice

every day. A basic requirement to enable further research in this topic is that the

detection of finger orientation has to be reliable, precise and stable for continuous

interaction. Therefor, our presented approach (Contourtrack) to detect finger

orientation has proven to be accurate enough with recognition rates over 93%.

Because of the approach's low algorithmic complexity, it suits the needs of time-

critical processing thus foster availability of finger orientation in tracker software.

Acknowledgments. The work described in this paper is partially funded by the EU

under research grant eCUTE (Reference: 257666).

References

1. Takeoka, Y., Miyaki, T., Rekimoto, J.: Z-touch: an infrastructure for 3d gesture interaction

in the proximity of tabletop surfaces. In: Proceedings of the ACM International Conference

on Interactive Tabletops and Surfaces. ITS '10, pp. 91—94. ACM, New York (2010)

2. Han, J.Y.: Low-cost multi-touch sensing through frustrated total internal reflection. In:

UIST '05: Proceedings of the ACM symposium on User interface software and technology,

pp. 115—118. ACM, New York (2005)

3. Hofer, R., Naeff, D., Kunz, A.: Flatir: Ftir multi-touch detection on a discrete distributed

sensor array. In: Proceedings of the 3rd International Conference on Tangible and

Embedded Interaction, pp. 317—322. ACM, New York (2009)

4. Peltonen, P., Kurvinen, E., Salovaara, A., Jacucci, G., Ilmonen, T., Evans, J., Oulasvirta, A.,

Saarikko, P.: It's mine, don't touch!: interactions at a large multi-touch display in a city

centre. CHI '08, pp. 1285—1294. ACM, New York (2008)

5. NUIGroup: Multitouch techniques, http://nuigroup.com/forums/viewthread/1982

6. Dietz, P., Leigh, D.: Diamondtouch: a multi-user touch technology. In: UIST '01:

Proceedings of the ACM symposium on User interface software and technology, pp. 219—

226. ACM, New York (2001)

7. Rekimoto, J.: Smartskin: an infrastructure for freehand manipulation on interactive surfaces.

CHI '02, pp. 113-120. ACM, New York (2002)

8. Apple inc., iphone, ipad, magic trackpad, http://www.apple.com

9. Microsoft surface, http://www.surface.com

10. Smart table, Smarttechnologies, http://www.smarttech.com

11. Archimedes solutions, http://www.multi-touch.de

12. Evoluce, Multitouch lcd monitors, http://www.evoluce.com

13. Dell, Latitude xt2, dell studio one 19, http://www.dell.com

14. HP Touchsmart tx2, touchsmart 600-1050de, http://www.hp.com

15. NUIGroup: Community core vision, http://ccv.nuigroup.com

16. Moscovich, T.: Contact area interaction with sliding widgets. In: UIST '09: Proceedings of

the 22nd annual ACM symposium on User interface software and technology, pp. 13-22.

ACM, New York (2009)

17. Cao, X., Wilson, A.D., Balakrishnan, R., Hinckley, K., Hudson, S.E.: Shapetouch:

Leveraging contact shape on interactive surfaces. In: Tabletop 2008, pp. 129--136. (2008)

18.Benko, H., Wilson, A.D., Baudisch, P.: Precise selection techniques for multi-touch screens.

In: CHI '06: Proceedings of the SIGCHI conference on Human Factors in computing

systems, pp. 1263—1272. ACM, New York (2006)

19.Wang, F., Ren, X.: Empirical evaluation for finger input properties in multi-touch

interaction. In: CHI '09: Proceedings of the 27th international conference on Human factors

in computing systems, pp. 1063—1072. ACM, New York (2009)

20. NUIGroup: Touchlib, a multi-touch development kit, http://www.nuigroup.com/touchlib

21. Wang, F., Cao, X., Ren, X., Irani, P.: Detecting and leveraging finger orientation for

interaction with direct-touch surfaces. In: UIST '09: Proceedings of the 22nd annual ACM

symposium on User interface software and technology, pp. 23—32. ACM (2009)

22.Vogel, D., Balakrishnan, R.: Occlusion-aware interfaces. In: Proceedings of the 28th

international conference on Human factors in computing systems. CHI '10, pp. 263—272.

ACM, New York (2010)

23.Vogel, D., Baudisch, P.: Shift: a technique for operating pen-based interfaces using touch.

In: Proceedings of the SIGCHI conference on Human factors in computing systems. CHI

'07, pp. 657—666. ACM, New York (2007)

24.Wigdor, D., Perm, G., Ryall, K., Esenther, A., Shen, C.: Living with a tabletop: Analysis

and observations of long term office use of a multi-touch table. In: Horizontal Interactive

Human-Computer Systems, 2007. TABLETOP'07. Second Annual IEEE International

Workshop on. (2007), pp. 60 --67

25.Yee, W.: Potential limitations of multi-touch gesture vocabulary: Differentiation, adoption,

fatigue. In: Proceedings of the 13th International Conference on Human-Computer

Interaction. Part II: Novel Interaction Methods and Techniques, pp. 291—300. Berlin,

Heidelberg, Springer-Verlag (2009)

26.Dang, C.T., Straub, M., André, E.: Hand distinction for multi-touch tabletop interaction. In:

ITS '09: Proceedings of the ACM International Conference on Interactive Tabletops and

Surfaces, pp. 101—108. ACM, New York (2009)

27.Jennings, C.: Robust finger tracking with multiple cameras. In: Recognition, Analysis, and

Tracking of Faces and Gestures in Real-Time Systems, 1999. Proceedings. International

Workshop on. (1999)

28.Hung, Y.P., Yang, Y.S., Chen, Y.S., Hsieh, I.B., Fuh, C.S.: Free-hand pointer by use of an

active stereo vision system. In: Pattern Recognition, 1998. Proceedings. Fourteenth

International Conference on. Volume 2. (1998), pp. 1244 --1246 vol.2

29.Malik, S., Laszlo, J.: Visual touchpad: a two-handed gestural input device. In: ICMI '04:

Proceedings of the 6th international conference on Multimodal interfaces, pp. 289—296.

ACM (2004)

30.Marquardt, N., Kiemer, J., Greenberg, S.: What caused that touch? expressive interaction

with a surface through fiduciary-tagged gloves. In: Proceedings of the ACM International

Conference on Interactive Tabletops and Surfaces. ITS '10, pp. 139-142. ACM, NY (2010)

31. OpenCV, open computer vision library, http://sourceforge.net/projects/opencvlibrary

32.Tianding, C.: A solution of computer vision based real-time hand pointing recognition. In:

Control Conference, 2008. CCC 2008. 27th Chinese. (2008), pp. 384--388

33.Jackson, D., Bartindale, T., Olivier, P.: Fiberboard: compact multi-touch display using

channeled light. In: Proceedings of the ACM International Conference on Interactive

Tabletops and Surfaces, pp. 25—28. ACM, New York (2009)

34.Izadi, S., Hodges, S., Butler, A., Rrustemi, A., Buxton, B.: Thinsight: integrated optical

multi-touch sensing through thin form-factor displays. In: Proceedings of the 2007

workshop on Emerging displays technologies: images and beyond: the future of displays and

interacton. EDT'07, ACM, New York (2007)

http://sourceforge.net/projects/opencvlibrary

