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Abstract. Gestural interfaces are now a familiar mode of user interaction and 

gestural input is an important part of the way that users can interact with such 
interfaces. However, entering gestures accurately and efficiently can be chal-

lenging. In this paper we present two styles of visual gesture autocompletion for 

2D predictive gesture entry. Both styles enable users to abbreviate gestures. We 

experimentally evaluate and compare both styles of visual autocompletion 

against each other and against non-predictive gesture entry. The best perform-
ing visual autocompletion is referred to as SimpleFlow. Our findings establish 

that users of SimpleFlow take significant advantage of gesture autocompletion 

by entering partial gestures rather than whole gestures. Compared to non-

predictive gesture entry, users enter partial gestures that are 41% shorter than 

the complete gestures, while simultaneously improving the accuracy (+13%, 
from 68% to 81%) and speed (+10%) of their gesture input. The results provide 

insights into why SimpleFlow leads to significantly enhanced performance, 

while showing how predictive gestures with simple visual autocompletion im-

pacts upon the gesture abbreviation, accuracy, speed and cognitive load of 2D 

predictive gesture entry. 

1 Introduction 

Gestural interfaces are now a familiar mode of user interaction and gestural input is 

an important part of the way that users can interact with such interfaces. Gestural in-

put accommodates a style of interaction that goes beyond the point -and-click of tradi-

tional WIMP-based interfaces and allows users to interact in a more intuitive and effi-

cient [28, 31, 9, 16]. For example, simple swiping motions  (whether mouse pointer, 

trackpad, or direct screen-contact) can be used as more intuitive navigation controls, 

circumventing the precision that is demanded by more traditional point-and-click in-

teractions [33]. A range of more sophisticated gestures, such as a two-fingered 'pinch' 

for zooming, are now an increasingly familiar part of gesture-based interaction dic-

tionaries [13, 15]. 
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Fig. 1. Example of SimpleFlow. Shown is the visual feedback displayed when entering a trian-

gle gesture. Star is starting point of gesture entry. Black line is the gesture entered so far by the 

user - (a) is time point 1, (b) time point 2, (c) time point 3. Red line is the real-time predicted 

gesture. 

 

Fig. 2. Example of Scale Free Dynamic Paths 

shown when entering a triangle gesture. Star, 

black line & red line have the same meaning 

as in Figure 1. 

 

Fig. 3. Example of erroneous gesture predic-

tions that could be shown when entering a tri-

angle gesture. (a) SimpleFlow, (b) SF-Path. 

 

Ultimately, gesture-based interaction promises to provide users with a more intu i-

tive and richer interaction vocabulary, offering greater interaction bandwidth for lo w-

er input effort [33, 11]. However, this is not always the case and certainly the ques t 

for more expressive gestures can lead to suboptimal gestures that are difficult for u s-

ers to produce reliably, leading to interaction failures and frustration. One way to help 

users as they produce gestures is to provide autocompletion sugges tions as the gesture 

unfolds [4, 30, 5, 13]. If this can be done efficiently and accurately then the user will 

benefit in a number of ways. For example, by accepting a gesture suggestion the user 

can complete their gesture early and so gestural input can be made more efficient [27, 

11, 6]. Moreover, by encouraging early gesture completion it removes the risk of e r-

rors that might have occurred if the gesture had to be manually completed. At the 

same time there may be additional costs for the user, especially if they find the ges-

ture completions to be difficult to accommodate into the work-flow; if completion 

suggestions are inaccurate, for example, then users will quickly become frustrated by 

such inconvenient interruptions. 

In this paper we describe two approaches to gesture autocompletion (we refer to 

these as predictive gestures), both of which present the user with visual feedback as a 

gesture is entered (Figure 1 & 2). Both also provide the user with an option to auto-

complete the target gesture early. In addition, we describe the results of a detailed us-

er evaluation, in which the predictive gestures are compared to manual (non -

predictive) gesture input, focusing on the gesture shortening, accuracy, speed and 

cognitive load characteristics of these techniques. In part icular we demonstrate and 

explain how predictive gesture techniques can lead users to significantly abbreviate 

gestures while improving the speed and accuracy of their gesture input; along with 
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users stating a clear preference for the predictive gesture input over non-predictive en-

try. 

The contributions of this work are: 

1. Based on the visual autocompletion styles in this paper, our results establish that 

users will shorten predictive gestures by a significant amount. For predictive text 

entry it is well established that users will significantly shorten words during text 

entry. Previous to this it had not been established whether users of predictive ges-

ture entry systems will enter shorter gestures, nor had it been established by how 

much they will shorten the gestures by. 

2. Does allowing gesture abbreviation and showing visual autocompletion during ges-

ture entry increase the cognitive demands on users? Unexpectedly, we find that the 

cognitive load does not increase for the autocompletion styles. 

3. We introduce SimpleFlow, an effective style of visual autocompletion, which sub-

tly but for users importantly differs from the simplest form of visual feedback 

(Scale Free Dynamic Paths). 

4. Are there significant trade-offs between predictive versus non-predictive gesture 

entry and the speed and accuracy with which gestures are entered and recognised? 

We establish interactions and tradeoffs between gesture autocompletion, gesture 

abbreviation, input speed and input accuracy for SimpleFlow and Scale Free Dy-

namic Paths. 

2 Related Work 

Entering gestures accurately and quickly can be challenging [3, 32, 26]. Some of the 

challenges arise because of the need for algorithms that accurately recognise gestures 

[32, 25]. Other challenges include questions about what interface designs provide 

beneficial visual feedback before, during and after gesture entry [5, 3]. 

Visual Feedback For Predictions 

Various styles of visual feedback have been proposed for gesture entry [13, 31, 5, 18, 

2, 30, 33, 22]. Often the feedback styles are for enhancing pre- and post-gesture entry. 

Research on pre-gesture feedback aims to help users know and remember what set of 

gestures are available, while post-gesture feedback helps users understand whether 

they successfully entered a gesture, and if not what went wrong during gesture entry.  

ShadowGuides [13], OctoPocus [5], Fluid Sketches [4] and others [18, 24, 2] are 

examples of interaction techniques which provide real-time visual feedback during 

gesture entry. These aim to help users learn the gestures better and help them under-

stand how well they are entering the gestures. Other forms of real-time feedback help 

the user understand what the results of the gesture will be, such as telling them what 

actions will be performed, e.g. show the user where a dragged icon will end up [6], or 

what action will be performed [5]. 

Bau et al. [5] propose a very useful classification framework for the various styles 

of visual feedback. Within their classification framework SimpleFlow is a dynamic 
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guide, with feedback that has a continuous update rate, a real recognition value, a ges-

ture filter and a gesture representation. 

Applying Gestures 

Recently there has been a surge in applications of gestures without visual feedback 

and in more novel contexts, such as using human skin as a gesture input surface [16], 

or moving your hands freely in the air as a form of bimanual gesture entry [15].  

Other styles of gesture input which are less obviously gesture prediction include 

Drag-and-Pop / Drag-and-Pick [6], Push-and-Pop [11], Escape [33], Dasher [31] and 

marking menus [23]. In those examples the effects of users' physical actions are en-

hanced, so they can perform shorter and less actions than normally required for the 

tasks, which can be thought of as forms of gesture prediction and abbreviation. 

Modeling Gesture Interaction 

Models of human performance when following trajectories have also been investiga t-

ed [1], and could prove useful for modeling gesture input [10, 20], as models and met-

rics of human performance have proven useful for predictive text input [27, 29]. Re-

lated to modeling gestures is research around measuring and modeling the complexity 

of gestures [26], which could be applied to quantifying the predictability of gestures. 

3 Visual Autocompletion & Predictive Gestures 

In this section we present1 two styles of predictive visual feedback, which are shown 

during gesture entry. Both styles show visual predictions of the target gesture a user is 

inputting. In this way they allow the autocompletion of gestures and thus encourage 

quicker and more efficient gesture input. We also outline the non-predictive visual 

feedback commonly found in many gesture entry applications [12, 8, 14], which we 

experimentally compare the predictive visual feedback against . 

3.1 Visual Autocompletion 

We implemented two styles of visual autocompletion for predictive gestures. Both 

styles are closely related and subtly but importantly differ in how they provide the re-

al-time visual feedback. The first style of visual autocompletion is called SimpleFlow, 

as shown in Figure 1, and the second style is called Scale Free Dynamic Paths (SF-

Path), as shown in Figure 2. 

The purpose of SimpleFlow and SF-Path is to keep the user informed during ges-

ture input, such that they know as early as possible which of the trained gestures (ex-

amples in Figure 4) matches their input. 

Both styles are designed to enhance user performance during gesture entry, by im-

proving the speed and accuracy with which gestures are entered. Both are also d e-

                                                                 
1 For a video demonstration of the visual autocompletion styles please view the video accom-

panying this paper. 
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signed to enable users to abbreviate gestures. The ability to enter abbreviated gestures 

resembles predictive text entry systems - where users can enter complete words by 

only typing the first few letters of the words [27, 29]. 

Figures 1 & 2 show examples of what users see on-screen while using SimpleFlow 

and SF-Path. The stars and arrow-heads in these figures are for illustrative purposes 

only; they indicate the start and current end points of the gesture being entered. Ges-

ture entry starts when the user presses the mouse button and begins moving the 

mouse. When entering predictive gestures, users are simultaneously shown two forms 

of visual feedback. First, they see the gesture path they have entered so far, i.e. the 

gesture ink. Secondly, they see the gesture prediction drawn in red. The gesture pre-

diction is automatically scaled to match the shape and scale of the gesture ink. If a u s-

er chooses to stop entering the gesture at any time (by releasing the mouse button), 

then the currently predicted gesture is entered - as though the user drew the full ges-

ture themselves. 

Unlike the OctoPocus [5] and ShadowGuides [13] systems, SimpleFlow and SF-

Path only show one gesture prediction at a time. If another prediction is more suitable, 

then the existing prediction is instantly switched out for the new prediction. Only one 

gesture prediction is shown because participants in our initial pilot studies voiced 

strong concerns about the high level of visual complexity that occurs when showing 

multiple simultaneous SimpleFlow predictions. 

Another key reason for not showing multiple gesture predictions is we strongly 

suspect that the style of visual design used to show multiple gestures has a very sig-

nificant impact upon user performance and preferences. The reason for this suspicion 

is due to research findings in psychology and perception around visual search, i.e. 

subjects search for a target stimulus (gesture) amongst distractor stimuli (predictions). 

3.2 Standard Non-Predictive Visual Feedback 

The non-predictive style of visual feedback evaluated in this work is Standard Feed-

back . Standard Feedback is included because it is the typical gesture input mechanism 

and visual feedback used in many real-world gesture UIs, e.g. StrokeIt [12] for Win-

dows, wayV [8] for Linux, FireGestures [14] for Firefox.  

Standard Feedback does not give predictive visual feedback to users. When ente r-

ing a gesture only the gesture ink is drawn on-screen. The gesture ink shows users the 

shape of the gesture they have entered, but no feedback about predictions are provid-

ed. Standard Feedback does not provide pre- or post-gesture information about 

whether the gestures are entered correctly or incorrectly. 

For our experiment, during the course of Standard Feedback gesture input, gesture 

prediction does still take place but the predictions are not shown to the participants. 

This is done to ensure that the algorithm for recognising gestures is the same across 

all forms of predictive and non-predictive feedback. In this paper, Standard Feedback 

serves as a control for comparing and evaluating SimpleFlow and SF-Path.  
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3.3 SimpleFlow 

SimpleFlow provides real-time visual feedback during gesture entry and always sug-

gests a complete gesture. As soon as a user begins entering a gesture they start to re-

ceive continuously updated gesture predictions. A gesture prediction is drawn in red 

underneath the gesture ink (Figure 1). The predicted gesture is automatically scaled so 

it underlays the gesture ink and visually appears to continue the path of the gesture 

ink. Often the gesture ink and predicted gesture do not perfectly align on top of each 

other. 

Figure 1 shows a full walk-through of SimpleFlow in action. In Figure 1(a), the us-

er has started to enter their gesture, in this case, a triangle shaped gesture (Figure 4, 

Gesture 1). SimpleFlow suggests and displays a fully scaled triangle underneath the 

gesture ink. As the user continues to extend the edge of their input ges ture (as shown 

in Figure 1(b)) the SimpleFlow feedback scales up to accommodate the change. Fig-

ure 1(c) depicts the final stage of entering the triangle. The user draws the base of the 

triangle gesture, and decides that the full gesture prediction provided by SimpleFlow 

satisfies their needs. Now they cease their gesture input, safe in the knowledge that 

the correct complete gesture has been recognised. 

SimpleFlow is scale and position invariant, however there is a limitation on the 

minimum size of the gesture predictions. If there was no minimum size limitation, the 

predicted gestures could be too small to see. For more details on the gesture predic-

tion algorithm see the Appendix. 

3.4 Scale Free Dynamic Paths 

Scale Free Dynamic Paths (SF-Path) is like SimpleFlow. As with SimpleFlow, SF-

Path is scale and position independent, and has an imposed limitation on the min i-

mum size of the gesture predictions. The critical difference between SF-Path and 

SimpleFlow is how much of the predicted gesture is shown as visual feedback. As the  

results show, this visually subtle and small difference between SF-Path and Sim-

pleFlow has a very significant impact on user performance and preferences. 

Figure 2 shows the visual feedback provided while entering the triangle gesture 

with SF-Path. As with SimpleFlow the gesture ink is black, and the predicted gesture 

is shown in red. Unlike SimpleFlow, the complete gesture prediction is not shown on -

screen by SF-Path. Instead the prediction and gesture ink are merged to form a single 

combined gesture, so that the gesture prediction looks to be a continuation of the ges-

ture ink. 

SF-Path is less visually complex than SimpleFlow, as there are no red lines under-

lying the gesture ink (Figure 2). When the gesture predictions are wrong the visual 

complexity of SimpleFlow is beneficial. For example, Figure 3 shows a side by side 

example of the differences between SimpleFlow and SF-Path when a visual prediction 

is wrong. In this example a user is trying to enter a triangle gesture. The prediction a l-

gorithm is mistakenly suggesting the gesture C. In Figure 3(a), with SimpleFlow, it is 

clear that the prediction algorithm is mistakenly suggesting the C gesture. Unfortu-

nately, with SF-Path (Figure 3(b)) it is not at all clear which predicted gesture is 

merged with the gesture ink to form the combined gesture. 
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SF-Path resembles the visual feedback provided by OctoPocus [5] - if OctoPocus is 

altered to show one gesture suggestion at a time, its gesture suggestions are made 

scale and aspect invariant, and gesture abbreviation is allowed. 

4 Experiment 

Our experiment tests whether there are significant user performance and preference 

differences between predictive gestures and non-predictive gestures. It also establish-

es whether there are significant differences between the two styles of predictive visual 

autocompletion (SF-Path and SimpleFlow). 

4.1 Hypothesis  

For each of these hypotheses we are interested in understanding whether they do or do 

not hold true between the three styles of visual feedback and autocompletion, i.e. 

Standard Feedback, SF-Path and SimpleFlow. For example, are SF-Path gestures fast-

er than SimpleFlow gestures? We hypothesise that:  

 

 H1 Shorten: Predictive gestures enable users to reduce gestures to a shorter form, 

by entering abbreviated gestures rather than full gestures. Like predictive text entry 

systems. 

 H2 Accuracy: Predictive gestures with visual autocompletion improves the accu-

racy with which users enter gestures. 

 H3 Speed: Inputting predictive gestures with visual autocompletion is slower. 

 H4 Cognitive Load: Cognitive load is higher for predictive gestures. Visual auto-

completion places higher cognitive demands on users during gesture entry. 

 

For H1 Shorten we expect that the continuous predictive visual feedback provided 

during the course of gesture entry will enable users to significantly shorten the ges-

tures they enter. If true, users will enter abbreviated short partial gestures rather than 

whole gestures. Of particular interest is how much do they shorten the gestures by, a 

small amount or large amount? 

Accuracy is an important feature of gesture input. Providing effective real-time 

gesture feedback should improve users' ability to enter gestures correctly. Whether 

SimpleFlow and SF-Path are effective forms of visual feedback is established with the 

H2 hypothesis. 

The speed with which gestures are entered is important. If gesture entry takes too 

long it could be distracting and interfere with workflows. With the H3 hypothesis we 

expect a speed / accuracy tradeoff, where speed is how long it takes to enter a gesture. 

Predictive gesture entry may be slower because users spend time evaluating and 

adapting their gesture input based on the real-time feedback. 

Hypothesis 4 establishes whether predictive visual autocompletion requires more 

cognitive resources than no predictive visual feedback. Ideally, well-designed forms 

of visual feedback should not increase cognitive load during gesture entry. 
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4.2 Design 

The experiment task was to input a series of gestures correctly. A gesture was deemed 

correctly entered when the gesture inputted by the participant matched the target ges-

ture they had been instructed to enter. Whether a gesture matched was evaluated by 

the gesture recognition algorithm. 

A within-subjects experiment design was used. The experiment was 3x1, where the 

independent variable was the style of visual gesture autocompletion and the depen d-

ent variable was gesture input accuracy. The three levels of the independent variable 

were Standard Feedback, SF-Path and SimpleFlow. While the two levels of the de-

pendent variable were Correct or Incorrect, corresponding to whether the entered ges-

ture correctly or incorrectly matched the target gesture. 

All participants were presented with three randomly ordered blocks of randomly 

ordered gestures. Each block was presented once and corresponded to a level of the 

independent variable, i.e. Standard Feedback, SF-Path, or SimpleFlow. Within each 

block each gesture was repeated three times, distributed randomly within a block. At 

the start of each block participants practiced inputting three gestures. The visual auto-

completion drawn during practice gestures was based on the level of the independent 

variable. 

 Participants completed the experiment in a single session. Each participant co m-

pleted a short post-hoc questionnaire, where they provided their rank preferences for 

the visual autocompletion styles. 

Participants 

Eighteen volunteer participants took part, three of which did the pilot experiments and 

the remaining fifteen completed the main experiment. Of those fifteen  10 were male 

and 5 female. Participants' average age was 26.5 years, with a standard deviation of 

3.8 years. All participants naturally used their right hand to control the mouse. The 

fifteen participants entered 2295 gestures, of which 135 were practice gestures. 

Materials 

Figure 4 shows the sixteen gestures used for the experiment. The ges tures are from 

the work on the $1 Recognizer [32]. We picked those gestures as they were inde-

pendently created and have been used in other gesture experiments [32]. Using an in-

dependently created set of gestures helps avoid introducing an experiment bias, as the 

experiment did not run with a set of gestures specifically designed for the experiment 

task. 

The gesture recognition algorithm was kept the same between the three levels. 

What differed between the levels was whether visual feedback was shown, and what 

kind of visual feedback it was. Details about the gesture recognition algorithm are  

provided in the Appendix. 

Procedure 

The experiment took place in a private room, free from external stimuli. A PC run-

ning Windows XP was used to run the experiment, and the same mouse was used  by 

all participants. The PC monitor was equipped with a Tobii T60 eyetracker, which  
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was used to capture pupil dilation at 60Hz. The eyetracker data was used to calculate 

cognitive load (Section 5.4). Pixels on the monitor were square. 

Participants were first calibrated on the Tobii eye tracker, with Tobii's standard cal-

ibration and eye tracking software. Then each participant was given time to practice 

inputting gestures using the mouse, during which no predictions were displayed. The 

participants then practiced the stimulus-response gesture input task three times, with 

gestures from Figure 4. At the start of each block participants also practiced inputting 

gestures, during which they saw the visual autocompletion specific to the block. 

The gesture input stimulus-response task consisted of presenting a target gesture to 

the participants, which was displayed centered on-screen for two seconds. During the 

two seconds the mouse pointer was not shown on-screen. Text above the target ges-

ture instructed participants to look at the gesture. After the two seconds expired the 

screen was blanked, a text message appeared informing participants to draw the ges-

ture, and the mouse pointer appeared centered on-screen. The mouse pointer was cen-

tered on-screen to prevent a carryover effect occurring between tasks, which could 

arise if the mouse pointer location was carried between gesture tasks. 

Participants then inputted a gesture by pressing and holding the left mouse button 

down and moving the mouse. When the participant released the mouse button, the 

gesture was considered complete. 

Statistical Techniques 

To analyse hypothesis H1 and H3 we use Balanced Repeated Measures Within -

Subjects ANOVAs with Bonferroni pairwise comparisons. For H4 we first apply a 

standard log transform to the results, as tests of normality indicated the results had a 

non-normal distribution until transformed. Then we apply the same analysis tech-

niques as for H1 and H3. 

For hypothesis H2 we use Repeated Measures Logistic Regression (RMLR) with 

Bonferroni pairwise comparisons. RMLR is used because gesture accuracy is a cate-

gorical binary variable, i.e. gestures are either entered Correctly or Incorrectly. 

 

Fig. 4. Unistroke gestures used in the experiment, from [32]. Black points are the starting point 

for drawing the gestures. 



10      Mike Bennett1,2, Kevin McCarthy2, S ile O'Modhrain3, and Barry Smyth2 

 

A Bonferroni test compares each level with every other level, and establishes 

whether performance between the levels is significantly different. Balancing is per-

formed by selecting a subset of results randomly distributed in the results. For exam-

ple, if there are 600 results for Standard Feedback (Standard), 550 for SF-Path and 

500 for SimpleFlow, then 500 results are randomly selected from each of the levels 

and pairwise comparisons are performed on those results. 

Rather than reporting every p value, we report the meaningful p values, i.e. the 

highest significant p values out of each three way pairwise comparison. There are 

nine p values generated per set of results (Standard vs SF-Path, Standard vs Sim-

pleFlow, SF-Path vs SimpleFlow) * (All, Correct, Incorrect gestures). 

Accepting Gesture Predictions 

For the blocks where participants saw predictive visual autocompletion (SF-Path and 

SimpleFlow), they were informed they could accept a gesture prediction without hav-

ing to enter the full gesture. Accepting a gesture prediction was achieved by stopping 

gesture entry. Participants stopped gesture entry by releasing the mouse button. For 

example, in Figure 1 a participant could stop entering a gesture at time point (a) if 

they wanted to accept the prediction and input a triangle gesture. 

5 Results 

Overall, users of SimpleFlow automatically shorten gestures by 41%, while simulta-

neously improving the accuracy (+13%, from 68% to 81%) and speed (+10%) of ges-

ture input - and this is achieved with no significant increase in cognitive load. Results 

from the post-hoc questionnaire indicate that participants prefer SimpleFlow over SF-

Path and Standard Feedback. 

A total of 135 training gestures and 21 error gestures were removed from the 

results, leaving 2139 gestures available for analysis, with 714 gestures in Standard 

Feedback, 713 in SF-Path and 712 in SimpleFlow conditions. Gestures were classified 

as errors where participants accidentally clicked the mouse button and did not move 

the mouse. 

5.1 Hypothesis: H1 Shorten 

Users can and do take advantage of the gesture predictions. Participants enter 39%+ 

shorter gestures with SimpleFlow and SF-Path, hypothesis H1 is true. SimpleFlow 

and SF-Path successfully enable users to enter abbreviated short partial gestures rather 

than whole gestures. This implies that the predictive gesture algorithm makes accurate 

predictions early and continuously during the course of gesture entry. 

Abbreviated Gestures  

To establish whether participants abbreviate gestures, we analyse the pixel path length 

of entered gestures. Gesture path length is a measure of how many pixels are travelled 

when entering a gesture. Gesture path length is significantly (p < 0.037) shorter for 
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Fig. 5. Pixel path length of entered gesture. 

Error bars are 95% Wald confidence interval, 

dashed lines standard deviation 

 

Fig. 6. How long was the accepted gesture 

stable on screen, as percentage of gesture in-

put time. 

 All, Correct and Incorrect SF-Path (39%, All) and SimpleFlow (41%, All) gestures, 

compared to No Feedback (Figure 5). No significant difference exists between SF-

Path and SimpleFlow. H1 is true, based on the gesture pixel path length. 

A shorter gesture pixel path length does not definitively establish that participants 

abbreviate gestures. Shorter path lengths could mean participants enter smaller ges-

tures. To rule out this possibility, we measure and analyse the entered path length di-

vided by the predicted path length. We refer to this measure as the Partial Gesture Ra-

tio (PGR). The lower the PGR the better. A PGR < 1 means the entered gesture is 

shorter than the predicted gesture, PGR > 1 means the entered gesture is longer than 

the predicted gesture, and PGR = 1 means the gestures are the same length. 

Based on the PGR we find that All, Correct and Incorrect gestures entered with SF-

Path and SimpleFlow are significantly (p < 0.002) shorter than Standard Feedback 

(Table 1). This further confirms that participants do abbreviate gestures. 

Early And Continuous Predictions 

Do participants enter partial gestures because the prediction algorithm generates accu-

rate predictions early and continuously during gesture entry? We analyse whether the 

gesture predictions stabilise early and stop changing. Early stabilisation is measured 

by dividing the time when gesture predictions stop changing by the time taken to in-

put the gesture. 

Predictions do stabilise early and stop changing during gesture entry (Figure 6). 

For All gestures Standard Feedback is stable for 39% of gesture input time, while SF-

Path and SimpleFlow are stable for 47% of input time. All and Incorrect gestures are 

stable significantly (p < 0.001) longer for SF-Path and SimpleFlow. There are no sig-

nificant differences for Correct gestures. 

Number Of Predictions 

How often the predictions change before stabilisation could effect whether users enter 

partial gestures. Ideally a prediction does not change too often, as too many changes 



12      Mike Bennett1,2, Kevin McCarthy2, S ile O'Modhrain3, and Barry Smyth2 

 

Table 1. Path length of entered gestures, as PGR. 

 All Correct Incorrect 

Standard 1.014 (0.288) 0.994 (0.057) 1.125 (0.535) 

SF-Path 0.733 (0.395) 0.668 (0.314) 0.901 (0.542) 

SimpleFlow 0.697 (0.323) 0.685 (0.297) 0.791 (0.393) 
 

Table 2.  Number of times gesture prediction changed. 

 All Correct Incorrect 

Standard 6.51 (3.73) 6.01 (3.69) 7.74 (3.50) 

SF-Path 5.84 (4.30) 5.28 (4.02) 7.82 (4.93) 

SimpleFlow 5.48 (3.88) 5.13 (3.71) 6.94 (3.87) 
 

 

could make it harder for a user to judge which prediction is emerging as the winning 

prediction. 

SF-Path and SimpleFlow generate 5.84 and 5.48 prediction changes for All ges-

tures (5.28 and 5.13 for Correct), which are significantly less gesture prediction 

changes, for All (p < 0.003) and Correct (p < 0.017) gestures. No significant differ-

ences occur for Incorrect gestures. Shown in Table 2 are the mean number of times 

the gesture predictions changed. 

5.2 Hypothesis: H2 Accuracy 

By more than 10% both SimpleFlow and SF-Path significantly (p < 0.003) improve 

gesture entry accuracy, compared to Standard Feedback. Hypothesis H2 is true, pre-

dictive gestures with visual autocompletion does improve the accuracy with which 

users enter gestures. 

As shown in Figure 7, for Standard Feedback participants correctly entered ges-

tures 68.1% (SD 15.8%) of the time. The gesture accuracy increased to 78.6% (SD 

10.9%) and 81% (SD 12.2%) for SF-Path and SimpleFlow respectively. Performance 

is not significantly (p < 0.05) different between SF-Path and SimpleFlow. In Figure 7 

the dot is the mean accuracy, the error bars are the 95% Wald confidence interval and 

the dashed lines the standard deviation. 

5.3 Hypothesis: H3 Speed 

Unexpectedly, SimpleFlow is more than quarter of a second faster (+10%, p < 0.012) 

for entering gestures than Standard Feedback and SF-Path. Entering gestures with SF-

Path is as fast as with Standard Feedback (Figure 8). Hypothesis 3 is rejected, as visu-

al autocompletion does not slow gesture input. 
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Fig. 7. Predictive gestures with visual auto-

completion improves performance when en-

tering gestures. 

 

Fig. 8. Length of time taken to input gestures 

varies based on visual autocompletion. 

 

Time Taken To Enter Gestures 

Focusing on the results for Correctly entered gestures - SF-Path is 344 milliseconds 

faster (p < 0.006) than Standard Feedback, and SimpleFlow is faster (p < 0.038) than 

both (Figure 8). H2 is rejected again. 

When gestures are entered Incorrectly, then Standard Feedback is faster (p < 0.009) 

than both SF-Path and SimpleFlow. For Incorrect gestures H3 is true. No significant 

time differences exist between SF-Path and SimpleFlow for Incorrect gestures. 

Rate Of Gesture Input 

Is SimpleFlow the fastest input style because participants' rate of input is higher? 

When entering gestures how fast do users move the on-screen mouse pointer? Rate of 

input is calculated as the average number of pixels travelled by the mouse pointer per 

millisecond during gesture input. 

Standard Feedback leads to a significantly (p < 0.0001) higher rate of gesture input 

than both SF-Path and SimpleFlow; for All, Correct and Incorrect gestures (Figure 9). 

There are no significant differences between SF-Path and SimpleFlow.  

This confirms that the speed improvement for SimpleFlow is not due to an im-

proved rate of input. The speed improvement occurs because participants enter abbre-

viated gestures, which means it takes less time to enter the partial gestures. 

5.4 Hypothesis: H4 Cognitive Load 

Does the visual autocompletion place higher cognitive demands on users, than no vis-

ual feedback? Or does the visual feedback even decrease the cognitive load? Surpris-

ingly H4 is rejected, SF-Path and SimpleFlow do not lead to increased cognitive load. 

There are no significant differences (p < 0.05) in cognitive load between Standard 

Feedback, SF-Path and SimpleFlow (Figure 10). This result applies to All, Correct 

and Incorrect gestures.  
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Fig. 9. Rate of input. 

 

Fig. 10. TEPR Peak Dilation measures of 

Cognitive Load. 

We measured cognitive load by measuring Task-Evoked Pupillary Response 

(TEPR), which is known to be a reliable indicator of cognitive load [7, 19, 21]. Task-

Evoked Pupillary Response is a measure of how much the pupil dilates over time as a 

function of task hardness. The larger the change in pupil dilation the larger the cogn i-

tive load. 

As recommended in the literature we removed blink artifacts, applied a low-pass 

filter to the dilation measures, used a 500ms baseline and used TEPR Peak Dilation to 

calculate cognitive load [7, 21]. The baseline was captured each time participants en-

tered a gesture, right before they began entering the gesture. Measuring TEPR with a 

non-contact eyetracker enables us to measure real-time non-subjective quantifications 

of cognitive load, as an alternative to subjective work load assessments such as 

NASA TLX [17]. 

5.5 User Preferences 

Participants preferred SimpleFlow 2.2 times more often than SF-Path, and 2.75 times 

more often than Standard Feedback (Figure 11). In the post-hoc questionnaire partici-

pants ranked Standard Feedback, SF-Path and SimpleFlow on a scale from 1 to 3, 

where 1 is most preferred and 3 least preferred. They could assign equal ranks. 

Figure 11 shows the number times each rank was assigned to Standard Feedback, 

SF-Path and SimpleFlow. Participants ranked SimpleFlow 1st eleven times, SF-Path 

1st five times, and Standard Feedback 1st four times. SF-Path is most often ranked 

2nd, and Standard Feedback is most often ranked 3rd. 

6 Discussion & Limitations 

Our design aim for SimpleFlow, was to keep the complexity of the visual prediction 

feedback as simple as possible, while improving user performance. A related goal was 

to enhance gestural interaction without significantly changing it; in an effort to avoid 

requiring users to spend considerable amounts of time skilling up on a new interaction 
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Fig. 11. User preferences as indicated in post-study questionnaire. 

 technique. Two further key aims were to enable users to take advantage of the ges-

ture predictions without forcing them to use the predictions, and enable users to enter 

shorter gestures, rather than having to input full gestures. Looking at the results we 

find that SimpleFlow performs best out of all three forms of visual feedback, while al-

so achieving our goals and aims. During the experiment users had few practice oppo r-

tunities with the predictive gestures, yet they performed significantly better with pre-

dictive gestures versus non-predictive, while also preferring the predictions over no 

predictions. 

Of particular interest we found that SimpleFlow is faster and more preferred to SF-

Path, which is the same style of visual feedback as OctoPocus (when one gesture su g-

gestion is shown at a time and the suggestions are scale and aspect invariant). This is 

interesting because the visual difference between SimpleFlow's visual feedback and 

SF-Path's visual feedback is very small, even though it has a critical impact. Sim-

pleFlow shows a whole gesture suggestion in conjunction with the partial gesture a 

user has entered, while SF-Path completes the gesture for a user (Figure 3). When we 

followed up with users and informally asked them why they preferred SimpleFlow 

over SF-Path, the general consensus was that showing whole gestures clearly tells the 

users exactly which predicted gesture is getting matched with their partial gesture. 

While when partial gestures are completed in SF-Path, it is not always clear to the us-

er why a gesture is completed the way it is, especially when the gesture prediction is 

wrong. 

An interesting limitation of this work, which strongly suggests worthwhile future 

directions, is that we treat the users' performance and the performance of the gesture 

prediction algorithm as a combined system. This leaves open questions about the rela-

tionship between a user's performance, and what would happen if a better or worse 

gesture prediction algorithm is used? For example, if a perfect gesture recognition a l-

gorithm is used would we find that users enter even shorter gestures? If so, what is the 

absolute lowest bound on how much users will abbreviate gestures by? Does that in-

teract with the number of available gestures? Related questions include what, if any, 

are the effects of other performance characteristics of the gesture prediction algo-

rithm, e.g. stability of predictions. Ultimately, what are the desirable characteristics of 

gesture prediction algorithms? Another interesting question arises around the set of 

gestures we ran the experiment with, as the range of gesture shapes could impact on 

user performance. For example, in Figure 4 gesture 2, 11 and 12 all share a common 
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initial stroke (downward diagonal left stroke) - what would happen if a set of gestures 

is used that is optimised to minimize the shared starting strokes? 

There are many other possibilities for future research, including extending Sim-

pleFlow to handle multi-stroke gestures, creating UI techniques that enable users to 

interactively refuse and cancel a gesture suggestion, establishing what styles of pre- 

and post-gesture feedback is beneficial with visual predictions, and enabling users to 

quickly select from a set of gesture suggestions without having to complete the ges-

tures. Finally, understanding more about why and how users decide to shorten predic-

tive gestures would be very useful. Understanding this would help us further enhance 

and influence gesture abbreviation, i.e. enable users to enter even  shorter gestures 

more quickly. 

7 Conclusions 

We found that users of predictive gestures with SimpleFlow and SF-Path visual feed-

back will significantly shorten gestures (like predictive text entry systems), with no 

significant increase in cognitive load. Further, SimpleFlow successfully enhances u s-

ers' gesture entry, both speeding it up and improving the accuracy; along with users 

preferring SimpleFlow the most. The visual feedback provided by SimpleFlow is vis-

ually simple and minimal, and could easily be added to existing gesture entry systems 

without requiring significant changes to them. 
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Appendix: Gesture Prediction Algorithm 

For experimental reproducibility this appendix outlines the gesture prediction algorithm (Figure 

12), which is composed of a gesture concatenation algorithm and a gesture recognition algo-
rithm. When a user enters part of a gesture, the gesture concatenation algorithm generates a 
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complete gesture based on the partially entered gesture. Then the complete gesture is sent to a 
gesture recognition algorithm, to check whether it matches any of the trained gestures. The best 

matching gesture is used as the gesture prediction. 

 

Gesture Concatenation Algorithm The gesture concatenation algorithm is easy to imple-

ment, though the computational efficiency of it is open to improvement. The algorithm assumes 
that gestures start from the same points, like the $1 Recognizer [32]. Unlike OctoPocus [5] and 

ShadowGuides [13] however, the algorithm is scale independent. Like $1 Recognizer and Oc-

toPocus, and unlike ShadowGuides, our algorithm is for single stroke continuous gestures. The 

algorithm also handles different gesture aspect ratios, like Protractor [25], but like OctoPocus 

and ShadowGuides it is not rotational invariant to gesture orientations. Below are the seven 
steps in the algorithm (see Figure 12): 

1. During gesture entry, continuously capture the path of the incoming gesture, generating a 

partial gesture P (Figure 12(a)). 

2. Measure the width w, height h and calculate the length l of the partial gesture P (Figure 

12(b)). 
3. Scale the trained gestures (Figure 12(c)) so they share the same width w and height h as the 

partial gesture P. We refer to this set of scaled gestures as SC (Figure 12(d)). 

4. For each scaled gesture in SC (Figure 12(d)), remove a path length l from the start of each 

gesture. This generates a set of cropped gestures CG (Figure 12(e)). 

5. Merge the partial gesture P with every cropped gesture in CG. This generates a new set of 
gestures PG, as shown in Figure 12(f). Each gesture in PG is a gesture prediction. The merg-

ing should be done such that the end of P is merged with the start of each cropped gesture in 

CG. 

6. If the gesture recognition algorithm is scale dependent, then the gestures in PG may need to 

be rescaled to match the scale of the gestures used to train the gesture recognition algorithm. 
7. To find the winning gesture prediction send each gesture prediction in PG to the gesture 

recognition algorithm. The best scoring gesture in PG is the gesture prediction. 

 
We imposed a constraint on the above algorithm, such that the predicted gesture cannot be 
scaled below a specific size. Without that constraint gestures could be scaled to only a few pix-

els wide or high, which would make the gestures visually indistinguishable. 
 

 
Fig. 12. Gesture Concatenation: (a) Current state of the user gesture is sampled; (b) height, 

width & length of the sample is measured; (c) the training gesture templates; (d) scale the train-

ing templates to match the partial gesture;  (e) remove the sampled gesture from each of the 
scaled templates; (f) a is merged with each of e to produce new templates. 

 

Gesture Recognition Algorithm The gesture recognition algorithm used is a scale and aspect 

invariant template matching algorithm. The code for which is based on wayV’s gesture recog-

nition algorithm [8]. wayV’s algorithm accounts for bounding box issues that can arise where 
the input starts off purely vertical or horizontal. 


