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Abstract. In this paper authors present their new proposition of system for 

cognitive analysis of dynamic computer tomography perfusion maps (dpCT). 

The novel contribution of this article is introducing an augmented reality 

visualization module that supports real time volume rendering (VR) of derived 

data. Authors also presents the results of their researches on optimization of VR 

algorithm memory usage by dynamic computation of volume gradient instead 

of pre-generation of gradient Authors compare five different discrete gradient 

computation schemas taking into account image quality and processing speed 

on two VR algorithms: volume ray casting and texture based visualization with 

view aligned slices. 

Keywords: Pattern recognition, cognitive analysis, dynamic brain perfusion, 
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1   Introduction 

The ensuring of patient security during the health care is one of the basic duties of 

medical personnel [1]. Nowadays many dedicated diagnosis support systems (DSS) 

emerge on purpose to help physicians in everyday practice. The modern DSS has to 

satisfy many requirements in order to be accepted in medical society. It has to be not 

only a reliable tool (low total error rate coefficient) but also quickly generates the 

support information and has intuitive interface.  

In this article authors present their new proposition of system for cognitive analysis of 

dynamic computer tomography perfusion maps (dpCT) that satisfies all of those 

requirements. 

The proposed solution is the extension of previous works [2], [3], [4]. The novel 

contribution of this article is introducing an augmented reality visualization module 

that supports real time volume rendering (VR) of derived data. 

Authors also present the results of their researches on optimization of VR algorithm 

memory usage. The huge amount of GPU memory may be saved by dynamic 

computation of volume gradient instead of pre-generation of gradient. Authors 

compare five different discrete gradient computation schemas taking into account 

image quality and processing speed on two VR algorithms: volume ray casting and 



texture based visualization with view aligned slices. Many similar researches on the 

field of gradient reconstruction for VR were previously reported (for example in [5], 

[6], [7]). Authors intention was to compare the speed of two most popular VR 

algorithms with pre-generated and dynamically computed volume gradient on clinical 

data using different transfer function [8] in order to justify using one (or both) of them 

in their diagnosis support program. Despite the fact that transfer function is the factor 

that might highly affect the speed of the VR (especially when rendering algorithms 

utilizes acceleration techniques like early ray termination or empty-space skipping 

[9]) we did not found papers in which transfer function was taken into account during 

dynamic gradient computation. Because of that the presented comparison is also 

important contribution to state of art of VR visualization.  

2 Diagnosis support system architecture 

The authors system enables the quantitative and quality analysis of visualized 

symptoms like head injuries, epilepsy, brain vascular disease, ischemic and 

hemorrhagic stroke that changes blood perfusion. The new implementation of the 

DMD (detection measure and description system [2]) also includes intuitive 

augmented reality visualization module derived from [10]. The schema of the system 

is presented in Figure 1. 

 

Figure 1. Data flow in DMD system with augmented reality visualization module. Detailed 

description in text. 

The patient’s data (1) is kept in DICOM repository. It is consisted of neuroradiology 

images like dpCT, CT (computer tomography) and MR (magnetic resonance). The 

dpCT is used for generation of perfusion CBF and CBV maps (2). The next step (3) is 

detection of perfusion abnormalities and generation of ischemia prognosis for 

infarcted tissues. The CT (or RM) data is processed and visualized with VR 



algorithms (4). The data from (3) is superimposed into the 3D object (5). The result 

date is superimposed with augmented reality environment (6) onto image captured by 

digital camera (7). 

2.1 Detection of perfusion abnormalities 

The process of an analysis of dpCT proposed by authors is a fusion of image 

processing, pattern recognition and image analysis procedures. All of these stages will 

be described in this paragraph. The input data for the algorithm is cerebral blood flow, 

cerebral blood volume and CT image. 

Image processing. Image processing step is consisted of lesion detection algorithm 

and image registration algorithm. The algorithm used for detection of potential lesions 

is The Unified Algorithm detailed described in [2]. Lesion detection algorithm finds 

potentially pathologic tissues (regions of interests - ROI). Image registration 

algorithm is used for creating of deformable brain atlas in order to make detailed 

description of visible tissues. Potential lesions are compared with corresponding CT / 

MR image in order to check its presence there. This process enables proper treatment 

planning. For registration purpose authors have chosen free-from deformation 

algorithm proposed in [11]. The detailed (AA based) description of image in authors 

system has been presented elsewhere [12]. 

 

Image analysis. Defining the features of entire image after lesion detection step is an 

easy task. Algorithm measures some important from (medical point of view) features: 

- Perfusion in ROI in left and right hemisphere. 

- Relative perfusion (perfusion in ROI in left hemisphere divided by perfusion 

in ROI in right hemisphere and perfusion in ROI in right hemisphere divided 

by perfusion in ROI in left hemisphere). 

- Size of ROI. 

The scaling factors between perfusion map and “real brain” can be derived directly 

from DICOM files. 

 
Pattern recognition. In pattern recognition step algorithm determinate what type of 

lesion was detected and in which hemisphere. In order to do it is necessary to gather 

medical knowledge about average perfusion values. After image processing step two 

symmetric regions are detected in left and right hemisphere. Authors’ algorithm 

compares perfusion in left and right (symmetrical) ROI with average perfusion norms 

and place potential lesion in hemisphere where modulus of difference between 

average and ROI value is greater. After this it is an easy task to determinate the type 

of lesion (hemorrhagic or ischemic) simply by checking if perfusion in ROI is greater 

or smaller than average.  

The last step done by the algorithm is to state prognosis for lesion evolution in brain 

tissues. CBF and CBV have prognostic values in evaluation of ischemic evolution. In 

many cases simultaneous analysis of both CBF and CBV perfusion parameters 

enables accurate analysis of ischemia visualized brain tissues and predict its further 



changes permitting a not only a quality (like CT angiography) but also quantitative 

evaluation of the degree of severity of the perfusion disturbance which results from 

the particular type of occlusion and collateral blood. 

The algorithm analyze both perfusion maps simultaneously in order to detect: 

- Tissues that can be salvaged (tissues are present on CBF and CBV 

asymmetry map and values of rCBF did not drop beyond 0.48 [13]). 

- Tissues that will eventually become infracted (tissues are present on CBF 

and CBV asymmetry map and values of rCBF did drop beyond 0.48 [13]). 

- Tissues with an auto regulation mechanism in ischemic region (decreased 

CBF with correct or increased CBV). 

Summing up, the output data of the algorithm is consisted of: regions of perfusion 

abnormalities, AA description of brain tissues, measures of perfusion parameters and 

prognosis for infracted tissues. That information is superimpose onto volumetric CT 

data and displayed to radiologist. 

2.2 GPU-based volume rendering 

Volume rendering describes a wide range of techniques for generating images from 

three-dimensional scalar data [8]. These techniques are originally motivated by 

scientific visualization, where volume data (three dimension arrays of pixels) is 

acquired by measurement or numerical simulation of natural phenomena. Typical 

examples are medical data of the interior of the human body obtained by computed 

tomography (CT) or magnetic resonance imaging (MRI). The scalar data (often 

monochromatic) is mapped to color space by transfer function that is often 

implemented as lookup table. 

The power of GPUs is currently increasing much faster than that of CPUs. That trend 

forces many computer programmers to move the burden of algorithm computation to 

GPU processors. Also the hardware support for interpolation of not only 2D but also 

3D texture data enables the rendering of complex volumetric images in real time. 

Nowadays graphic programmers utilize high-level languages that support 

implementation of highly parallel algorithms that runs on programmable GPU’s 

shaders. The main obstacle that must be overcome during creation of volume 

rendering algorithm is the fact that contemporary computer hardware still does not 

support direct rendering of volumetric data. There are two main groups of the 

algorithms that support fast visualization of volumetric data with hardware 

accelerated interpolation. The first group is ray-casting algorithms the second one 

texture-based algorithms. Both groups are capable to produce almost identical 

visualization results but they have quite different schemas. Moreover algorithms 

differs much in performance speed, which is important factor that must be taken into 

account in case of augmented reality environment [14]. All algorithms described 

below use tri-linear interpolation hardware support. 

 
Volume ray-casting algorithms. In ray-casting process for each pixel in the image to 

render, algorithm casts a single ray from the eye through the pixel's center into the 

volume, and integrates the optical properties obtained from the encountered volume 



densities along the ray. Algorithm uses standard front to back blending equations in 

order to find color and opacity of rendered pixels: 

srcsrcdstdstdst CCC αα )1( −+=  (1) 

srcdstdstdst αααα )1( −+=  (2) 

Where dstC  and dstα  are the color and opacity values of the rendered pixels and 

srcC  and srcα  are the color and opacity values of the incoming fragment.  

The popular approach proposed in [9] includes standard acceleration techniques for 

volume ray casting like early ray termination and empty-space skipping. By means of 

these acceleration techniques, the framework is capable of efficiently rendering large 

volumetric data sets including opaque structures with occlusions effects and empty 

regions. 

 

Texture-based algorithms. The ray casting approach is a classical image-order 

approach, because it divides the resulting image into pixels and then computes the 

contribution of the entire volume to each pixel [8]. Image-order approaches, however, 

are contrary to the way GPU hardware generates images. Graphics hardware usually 

uses an object-order approach, which divides the object into primitives and then 

calculates which set of pixels primitive influences. 

In order to perform volume rendering in an object-order approach, the resampling 

locations are generated by rendering proxy geometry with interpolated texture 

coordinates.  

The most basic proxy geometry is a stack of planar slices, all of which are required to 

be aligned with one of the major axes of the volume (either the x, y, or z axis) [8]. 

During rendering, the stack with slices most parallel to the viewing direction is 

chosen. In order to minimize the switching artifacts inter-slice interpolation ought to 

be included [8]. 

The more complex proxy geometry is slices aligned with the viewport [8]. Such slices 

closely mimic the sampling used by the ray-casting algorithm. The sufficient number 

of slices required for accurate visualization can easily be adjusted during algorithm 

performance. 

2.3 Augmented reality 

Augmented reality (AR) is a technology that allows the real time fusion of computer 

generated digital content with the real world. Unlike virtual reality (VR), that 

completely immerses users inside a synthetic environment, augmented reality allows 

the user to see three-dimensional virtual objects superimposed upon the real word 

[15]. 

Augmented reality shows its usefulness especially in the field of the medicine [16]. 

The most notable examples are deformable body atlases, AR surgical navigation 

systems, interfaces and visualization systems. Pre, intra and post – operative 

visualization of clinical data is a major source of information for decision making. 



Augmented Reality aim at lifting this support to a new level by presenting more 

informative and realistic three-dimensional visualizations [17]. In our system AR is 

used as intuitive interface that enable easy and reliable manipulation of visualized 

objects.  

Augmented reality environment used by authors utilizes size - known square markers. 

The transformation matrices from these marker coordinates to the camera coordinates 

are estimated by image analysis. The details of the algorithm can be found in [15]. 

3 Gradient reconstructions for VR 

Illumination and shading within volume rendering refers to the same illumination 

models and shading techniques used in polygon rendering. The goal is to enhance the 

appearance of rendered objects, especially to emphasize their shape and structure, by 

simulating the effects of light interacting with the object [18].  

The most common local illumination model, which calculates light per pixel, is the 

Phong [19] lighting model. The Phong model is made up of three parts, ambient, 

diffuse and specular. 

speculardiffuseambient LLLL ++=  (3) 

ambientambientambient KIL ⋅=  (4) 

Where ambientI  is the constant intensity of the ambient light and ambientK  is the 

coefficient of the ambient reflection of the surface. The ambient term is a constant, 

which simulates indirect light on the parts of geometry where there is no direct light, 

they would otherwise be entirely black. 
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Where diffuseI  is light source intensity, diffuseK  is a material constant describing color 

and α is the angle between light source and surface normal. The diffuse term 

calculates the reflection of light from a surface without shininess, called a matte 

surface. The light is reflected at the same angle as it is striking the surface relative to 

the surface normal. 
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(6) 

where specularI  is the intensity of the incident light, specularK  is the coefficient of 

specular reflection for the material, β is the angle between the reflection vector and 

the viewing vector and m controls the extension of the highlight. The specular term is 



added to simulate the shininess of surfaces, it creates highlights, which give the 

viewer cues of light source positions and geometry details.  

An essential part of the illumination model is the surface normal. In VR case a surface 

normal is replaced by the gradient vector calculated at all points of interest [20]. 
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There are several methods for calculating the gradient vector. The most common are 

(see Appendix: 3D discrete gradient operators):  

- Intermediate difference operator (8) [20]. 

- Central difference operator (9) [20]. 

- Neumann gradient operator (10) [20]. 

- Zucker-Hummel operator (11) [21]. 

- Sobel operator (12) [18], [22]. 

Intermediate difference gradient takes as input four neighboring voxels, Central 

difference gradient takes as input six neighboring voxels, the rest of operators take as 

input 26 or 27 neighboring voxels. The 26/27 neighbors give usually a better 

estimation of the gradient, but take more time to calculate. Another disadvantage is 

that additional smoothing might be introduced [23]. 

There are two basic methods of gradient computation strategy [7]: pre-generation of 

volume gradient and passing it to GPU memory by 3D texture or dynamic 

computation during rendering process. The first method requires large amount of 

memory (for each volume voxel the three gradient coefficients must be stored). The 

second method does not require additional memory (that means it uses even four 

times less memory then pre-generation) but is more expensive computationally as the 

components are calculated separately. Capacity of GPU memory is still bottleneck in 

VR algorithm even in visualization of typical medium-sized medical data. The 

question that we answered in the next paragraph is what is the performance speed of 

VR algorithms with pre-generated versus dynamically computed volume gradient on 

typical (off-the-shelf) graphical hardware and if it is sufficient for our needs. 

4 Results and discussion 

The five gradients calculation methods from the previous paragraph where compared 

using three volume data (real CT images) of the size 256x256x221, 256x256x212 and 

256x256x207 voxels. All of those models were rendered with two transfer function: 

transfer function with huge amount of semi transparent pixels (Figure 2, top row) and 

function without semi transparent pixels (Figure 2, bottom row). Those are two 

boundary cases that might be considered in medicine practice. 

 



 

Figure 2. Three different models based on volume CT data. Top row – models with transfer 

function with semi transparent pixels. Bottom row – same models with transfer function 

without semi transparent pixels. 

For rendering purpose authors used two VR algorithms: volume ray casting (with 

early ray termination and empty space skipping) and texture based algorithm with 

view-aligned slices. The algorithms were implemented in .NET C#, XNA Framework 

2.0 (Direct X 9.0) with HLSL and executed on Intel Core 2 Duo CPU 3.00 GHz 

processor, 3.25 GB RAM, Nvidia GeForce 9600 GT graphic card with 32 – bit 

Windows XP Professional OS. 

The performance speed of VR was computed for three volume datasets mentioned 

above and then averaged. The gradient calculation methods were pre-computation and 

dynamic computation with 4-points, 6-point and 27-point method. The results are 

presented in Table 1 and Figure 3.  

Table 1. Average performance speed (fps) of 3D models as a function of rendering algorithm 

type, gradient computation method and transfer function. 

Transfer function Rendering 

algorithm 

Gradient 

computation method Semi-transparent 

pixels 

No semi-transparent 

pixels 

Pre-computation 38.00 38.00 

4 - points 28.33 15.67 

6 - points 24.67 12.33 

View-aligned slices 

27 - points 8.33 2.67 

Pre-computation 29.67 54.00 

4 - points 12.67 32.00 

6 - points 11.00 28.67 

Volume ray casting 

27 - points 2.67 9.67 

 



 

Figure 3. Data from Table 1 presented in the chart. Dependents of average performance speed 

(fps) of 3D models as a function of rendering algorithm type, gradient computation method and 

transfer function. 

The most time demanding operation is retrieving image data (voxel values) from 3D 

texture in GPU for computing of a gradient. This is the reason why algorithms with 

dynamic computed gradients are slower than with their pre-computed versions. The 

more points are needed for gradient calculation the slower the whole algorithm is. The 

very important factor that highly affects performance is a transfer function that is used 

for volume rendering. Volume ray casting is the fastest algorithm if the transfer 

function do not have many semi-transparent pixels. It is caused by the fact that in that 

case early ray termination quickly finishes the ray lookup loop. The texture-based 

algorithm has to render all slices no matter if there are visible or not. On the other 

hand if there are many semi-transparent pixels the empty space skipping and ray 

termination will not help the ray casting to improve program speed. The number of 

computation and references to 3D texture memory is higher than in texture-based 

algorithm, which becomes quicker.   

The second factor that we took into account during comparison of gradient 

computation methods is a quality of gradient reconstruction (Figure 4). The results 

was similar to those described in [5]. The intermediate difference and central 

difference operator are good low-pass filters. There are also highly visible quality 

differences between those two methods: intermediate difference generates much more 

lighting artifact then the 6-point methods. The Sobel gradient estimation method, as 

well as other 26/27-pixels gradient estimation approaches, produces less fringing 

artifacts than other methods. The differences between Sobel, Neumann, Zucker-

Hummel are nearly invisible and does not affect the image analysis process. What is 

more important the differences of quality (when taking into account fringing artifacts) 

between central difference and the high order estimation methods do not disqualify 



the 6-points method. Also visualization with central difference operator is 3 to 4 times 

faster than with high quality kernels. 

 

 

Figure 4. Volume rendering of example model with different methods of gradient estimation. 

From left to right: intermediate difference, central difference, Sobel, Neumann and Zucker-

Hummel. 

Knowing all of those results we decided to use in our solution both visualization 

algorithms with a dynamic central difference gradient computation method. After 

determining the transfer function an algorithm decides which of those method runs 

faster and uses it during session with program. That approach enables the 

visualization to run with the speed oscillating near 30 fps, which is an accepted value 

for our needs. The example visualization of superimposition of dpCT onto volume CT 

data in AR with our program is shown in Figure 5. 

 

 



Figure 5. The example visualization of superimposition of dpCT onto volume CT data in AR. 

(A) CBF map with marked perfusion abnormalities. (B) The detailed view of CBV and 

prognostic image. In the left top side of each image description done by DMD system. (C) The 

detailed view of prognostic image. In the left top side of each image description done by DMD 

system. (D) From left to right: CBV, CBF and Prognostic image. 

5 Conclusions and future work  

This papers presents and summarizes the results of the integration of cognitive image 

analysis and patter recognition algorithm with a high quality hardware accelerated 

volume renderer into an augmented reality visualization environment. Augmented 

reality supplies the system with more informative and realistic three-dimensional 

visualizations offering very intuitive image manipulation interface. The performance 

of the presented techniques was demonstrated and evaluated in several experiments 

by rendering real human CT data with different rendering techniques. The authors 

also took into account the quality and speed of volume gradient estimation methods 

considering transfer function type. 

There are many important aspects which future work should focus on. 

Superimposition the dpCT data onto volume CT / MR enables to perform more 

detailed diagnosis for example taking into account not only dynamic perfusion but 

also the state of the vascular system (brain angiography). The further researches 

should also be done in the field of real time large volume visualization that might be 

needed during superimposition of medical data of several modalities. Our augmented 

reality system should also be replaced by marker-less solution that would be more 

convenient for the end user. 
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Appendix: 3D discrete gradient operators 

Intermediate difference operator: 
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Central difference operator: 
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The kernel of Neumann gradient operator: 
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(10) 

The kernel of Zucker-Hummel operator: 
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The kernel of Sobel operator: 
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