
HAL Id: hal-01590394
https://inria.hal.science/hal-01590394

Submitted on 19 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Problem of Conceptual Incompatibility
Simon Mcginnes

To cite this version:
Simon Mcginnes. The Problem of Conceptual Incompatibility. 1st Availability, Reliability and Security
(CD-ARES), Aug 2011, Vienna, Austria. pp.69-81, �10.1007/978-3-642-23300-5_6�. �hal-01590394�

https://inria.hal.science/hal-01590394
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

The Problem of Conceptual Incompatibility

Exploring the Potential of Conceptual Data Independence

to Ease Data Integration

Simon McGinnes

Trinity College Dublin, Dublin 2, Ireland

simon.mcginnes@tcd.ie

Abstract. Application interoperability and data exchange are desirable goals,

but conventional system design practices make these goals difficult to achieve,

since they create heterogeneous, incompatible conceptual structures. This

conceptual incompatibility increases system development, maintenance and

integration workloads unacceptably. Conceptual data independence (CDI) is

proposed as a way of overcoming these problems. Under CDI, data is stored

and exchanged in a form which is invariant with respect to conceptual

structures; data corresponding to multiple schemas can co-exist within the same

application without loss of integrity. The use of CDI to create domain-

independent applications could reduce development and maintenance

workloads and has potential implications for data exchange. Datasets can be

merged without effort if stored in a conceptually-independent manner, provided

that each implements common concepts. A suitable set of shared basic-level

archetypal categories is outlined which can be implemented in domain-

independent applications, avoiding the need for agreement about, and

implementation of, complex ontologies.

Keywords. Data integration, domain-independent design, conceptual data

independence, archetypal categories.

1 Introduction: The Problem of Conceptual Incompatibility

The present massive proliferation of databases, web pages and other information

resources presents a data integration problem. There is a need to use data in a joined-

up way, but mechanisms are lacking that allow easy data integration in the general

case; it is often hard to combine data resources. A prime reason for this is that

different datasets typically have incompatible conceptual structures. Common practice

in information systems (IS) design leads each organisation or software vendor to

create its own idiosyncratic data structures that are incompatible with those created by

others; commercial pressures can have the same effect. Standard conceptual structures

are normally used only in limited circumstances, when imposed by enterprise

software platforms, legislative requirements or other external constraints. In the rush

2 Simon McGinnes

to create ever-more comprehensive and powerful IS, the increasing problem of

heterogeneous, incompatible conceptual structures has been left for future technology

to solve.

1.1 Why Do Current Methods of Integration Not Solve the Problem?

Developers have historically faced two issues with regard to integration of systems

that have distinct conceptual data structures: physical incompatibility and conceptual

incompatibility. Thankfully, many technologies now exist to resolve the first issue, by

physically interconnecting heterogeneous platforms; these include RPC, CORBA and

web services. Programs can also be linked simply by exchanging files using a

common format such as XML. However, progress on physical compatibility has

exposed the deeper second issue of conceptual or semantic compatibility: the problem

of reconciling implicit conceptual models.

 If we wish to use several data resources in an integrated way, they must share both

a common vocabulary and a common conceptual framework. This fundamental and

unavoidable principle of semiotics [1] may be understood by analogy to human

communication: if two people wish to exchange information effectively they must

speak the same language, but they must also possess shared concepts. Conceptual

compatibility thus runs deeper than mere language; for people to communicate they

must interpret words identically, or nearly so, and there is no guarantee that this will

be the case. Meaning is essentially personal and subjective, affected by context,

culture, and so on.

 Getting two programs to exchange data involves a similar problem. A common,

recognisable vocabulary must be used by both sides, and the two programs must also

have been programmed with common concepts, so that they can act on the data

appropriately. Computers cannot yet understand data in the sense that a human does,

but they can be programmed to deal sensibly with specific items of data provided that

the data is of a known type; this is what we mean when we say that a program

―understands‖ a particular concept. In practice, however, most IS share neither

vocabulary nor concepts. It would be surprising if they did, given they ways they are

developed and the rarity with which standard conceptual structures are applied. For

this reason, linking real-world IS that have heterogeneous conceptual schemas is

rarely a simple matter.

 In trivial cases it can seem straightforward to map the conceptual models of

distinct systems to one another. For example, two programs which manage data about

customers might well use similar data structures and common terms such as name,

address and phone number. But semantic complexity lurks even in apparently

straightforward situations. Is a customer a person or an organisation? Are business

prospects regarded as customers, or must we already be trading with someone for

them to be considered a customer? What about ex-customers? Many such questions

can be asked, highlighting the inconvenient truth that most concepts are more

complex than they seem, when one scratches the surface, and certainly far more

complicated and esoteric than the trivial example quoted above. Uniting separately-

developed conceptual structures can be challenging even for expert developers

The Problem of Conceptual Incompatibility 3

working with systems in closely-related domains [2]; it can be difficult to discern

what data structures are intended to signify and what unstated assumptions have been

made.

 Another approach to data integration involves the use of automated schema

matching, and tools for this purpose have been developed with some success [3]. But

there is an inherent limit to the ability of automated matching strategies to operate

reliably in the general case. Software cannot easily call upon context, domain

expertise and general knowledge to understand and disambiguate the meaning of

conceptual structures [4]. Again, the analogy of human understanding is relevant.

When conversing with others, we draw upon our prior knowledge to understand what

is meant. A person without prior knowledge has no hope of understanding what

somebody else says. This analogy suggests that automated schema matching

strategies must first overcome the grand challenge of accumulating and applying

general knowledge before they can be expected to extract the semantics in arbitrary

schemas with sufficient reliability [5].

 In summary, semantic issues make it difficult, as a rule, to match conceptual

models between IS—especially since most IS have idiosyncratic designs and complex

conceptual structures that are based on unstated assumptions [6]. Conceptual

incompatibility therefore presents a major barrier when we attempt to link IS. And

this ignores the scalability problem, that integrating systems typically requires a good

deal of interface code which must be crafted, onerously, by hand.

 Conceptual incompatibility is also a problem for end users [7]. It means that we

must adopt a different mental model of reality each time we use a different program.

For example, consider how the concept person is treated in different software

products from the same vendor. In Microsoft Word, people are represented merely as

―users‖. In Microsoft Project, people are considered from a management perspective

as ―resources‖. In Microsoft Outlook people are considered as ―contacts‖. Although

these different treatments refer to the same underlying entity (a person), they are in

fact three quite distinct mental concepts, each with its own meaning and implications.

 The same applies to most software applications: each application takes a unique

perspective on reality to suit its own purpose. The user is left to mentally reconcile the

various perspectives. This is at best confusing, since the concepts may be overlapping

or orthogonal, and applications rarely spell out precisely what they mean by any given

term. It can also be a problem for developers, who often lack understanding of the

domain concepts in applications [8].

2 Standardisation of Conceptual Structures

The reliance on post-hoc system integration implicitly facilitates the trend towards

growth in conceptual incompatibility. By allowing heterogeneous applications to

proliferate, we are effectively supporting the development of incompatible conceptual

structures. This is a major concern [9]; ―the Semantic Web should not sit on the

Tower of Babel‖ [10]. Some means is needed of limiting heterogeneity or at least of

facilitating the job of reconciling heterogeneous conceptual structures.

4 Simon McGinnes

An alternative to the idea of reconciling data structures is to design IS such that they

conform ab initio to standard conceptual structures. The use of standardised

conceptual structures could have benefits for a software industry which is

experiencing uncontrolled growth in conceptual incompatibility and its associated

costs. This is an idea with some support, and many competing standards, formats and

ontologies have been developed over the years for use in different application

domains.

 Parallels can be drawn with the development of other industries. For example, in

the early railway industry, locomotives and track were crafted individually, resulting

in a variety of incompatible gauges and coupling mechanisms [11]. At first, the

absence of standards was unimportant, because railways were not linked. But when

integration of the network became important, the existing ad hoc design practices

soon became a barrier to progress. Standards were needed, addressing not just

infrastructure but also more fundamental concepts such as time [12]. Competing

standards faced resistance and controversy. For example, broad gauge was regarded

as technically superior, but lost out to standard gauge in some regions after decades of

competition.

 Table 1 lists other spheres in which integration has led to the need for standards,

often despite conflict and opposition. In all of these domains, growth led to increasing

interconnection and this in turn created a need for standardisation. In retrospect, the

inevitability of such standards is obvious, given the need for interoperability, and the

alternative is unthinkable. Nevertheless, the adoption of standards is often painful

because it requires that some or all participants give up their own solutions. We argue

that the software industry has yet to fully confront this issue with regard to conceptual

structures.

Table 1. Examples of Standards.

Sphere Examples of standards

Finance Accounting conventions

International payment systems

Law Legal harmonisation within the European Union

International double taxation treaties

Electricity Adoption of AC with standard frequency and voltage

Use of standard electrical connectors

Electronic media VHS (despite alleged technical inferiority to Betamax)

Blu-Ray

A common argument against standardisation is that a single solution cannot possibly

be the best technical choice for every situation. Yet many IT standards have emerged

despite superior competition. SQL became the standard database query language,

despite the existence of languages considered more powerful and easier to use [13].

TCP/IP is dominant despite widespread promotion of the OSI standard [14]. The

QWERTY keyboard layout remains the standard despite the development of more

ergonomic layouts [15].

The Problem of Conceptual Incompatibility 5

In all of these cases, adopting standards has provided widespread benefits despite the

pain involved for those with vested interests. We suggest that the IS field could obtain

similar benefits by standardising conceptual structures. Implementation of standard

conceptual structures could make interoperation more straightforward, perhaps even

offering the ability to integrate information resources in a plug-and-play fashion. The

alternative is a future of information islands, multiple interfaces, frequent schema

translation operations, with attendant complexity and opportunities for conceptual

confusion.

 Much current thinking on data integration centres on tagging, using technologies

such as the Semantic Web, RDF, linked data, ontologies and microformats [16]. The

hope is that tagging will allow applications to exchange and process data without

intervention. ―We’re not that far from the time when you can click on the web page

for the meeting, and your computer, knowing that it is indeed a form of appointment,

will pick up all the right information, and understand it enough to send it to all the

right applications‖ [17].

 How feasible is this? Referring to the discussion in Section II, this kind of

interoperability would require both a shared vocabulary and a shared conceptual

framework. That means that each piece of data must be named in a recognisable way

(vocabulary) and its name must refer to some shared meaning (concept).

Organisations wishing to exchange tagged data must therefore agree on a common

terminology, which they can map to their proprietary data structures, and they must

also agree on common concepts, which they can code into their applications. For an

application to possess a concept means that the application recognises what to do with

data pertaining to that concept. Asking two software applications to exchange data in

the absence of common concepts is rather pointless, since the receiving application

can do little with the data except store it.

 Microformats offer an illustration. They provide a common terminology (hRecipe,

hCard, etc.) and also a series of common, if rather simplistic, concepts that

applications can be programmed to share. The development of microformats is

perhaps a pragmatic reaction against large-scale ontology development, the seemingly

never-ending effort to create universal ―conceptual models of everything‖ [18].

Microformats offer the potential for quick wins because they are intended as simple,

uncontroversial conceptual model snippets. They are couched at an ―everyday‖ level

of generality and therefore easy to understand [19]. By definition, microformats

ignore most of the complexity of real-life conceptual structures. In particular, they

neglect the relationships between concepts, which is where most conceptual

complexity lies. This is what allows developers to use microformats so readily.

 But, while it is easy to envisage agreement on simple, well-known concepts such

as recipes and appointments, it is in the nature of conceptual structures to quickly

become complex. Efforts to create reusable, generic structures can soon result in hard-

to-understand abstractions that are less useful for any particular application.

Microformats remain useful while they remain simple and disconnected from one

another, but when there is a need for integration to reflect the real-world relationships

between concepts, the complications associated with larger-scale ontologies quickly

arise [20].

6 Simon McGinnes

In summary, it remains difficult to agree on standards for the domain-specific

concepts found in much enterprise data, particularly when IS are viewed as a source

of competitive advantage and best practice in IS design begins with idiosyncratic

conceptual structures. Historically, previous efforts at conceptual standardisation have

encountered similar problems for similar reasons [21].

2.1 Ontologies as a Potential Solution to Conceptual Incompatibility

Ontologies are a current focus of attention in conceptual standardisation. Domain

(industry-specific) ontologies are now available or in development, each created more

or less in isolation to suit the needs of a particular business area. Domain ontologies

are normally incompatible with one another and lack common concepts. As a result,

matching two arbitrary domain ontologies can be challenging. In contrast, upper

ontologies are more wide-ranging; so as to encompass a range of application domains

they typically include broad and generic abstractions. One approach to ontology

matching makes use of this by mapping domain ontologies to one another using the

high-level abstractions in upper ontologies [22].

 Ontologies offer a potential source of common conceptual structures and may

therefore present a solution to the problem of conceptual incompatibility. They can be

used to integrate applications in two primary ways. One is by acting as a design

blueprint, so that applications are constructed to share a common conceptual model.

This automatically renders applications compatible provided that they do not

introduce extensions or subtle variations in semantics to suit their own needs. It is

therefore possible that conceptual incompatibility could be resolved, if all applications

were built to conform to a single upper ontology, linked in turn to an agreed set of

domain ontologies, if the ontologies in question remained relatively static. However,

the task would be enormous, even if everyone could agree on a single set of

ontologies to suit all purposes. Given that reality can be modelled in an infinite

variety of ways, this seems unlikely. As one researcher succinctly put it, ―knowledge

cannot be standardised, since each day more sprouts‖ [23]. Others have observed that

it might be more practical to have a flexible means of interpreting concepts at runtime

rather than a conceptual language that is rigidly defined a priori.

 The other way in which ontologies can be used to integrate applications is for each

application to use its own conceptual structure or ontology, as at present, but to match

up the distinct ontologies, so allowing translation and exchange of data. This is in

effect the commonly-used approach. However, it seems unlikely that this approach

can provide a lasting solution to the problem of integration on a large scale. It does

not address the fundamental problem of conceptual fragmentation; as in schema

matching, ontology matching is labour-intensive and fully-automated matching is

currently infeasible in the general case.

The Problem of Conceptual Incompatibility 7

3 Conceptual Data Independence

Below we propose an alternative solution to the problem of conceptual

incompatibility. Our solution is based on conceptual data independence (CDI), which

refers to the storage of data in a format that is invariant with respect to conceptual

structures. A primary benefit of CDI is that it reduces the knock-on effects of changes

to conceptual structures, so that development and maintenance costs can be reduced.

However, CDI also offers the prospect of easier data integration. Below we give a

brief explanation of CDI and how it can be achieved, and then discuss how it can

assist in the data integration task. The scheme outlined below is not presented as the

only or best way of implementing CDI, but as an example for illustrative purposes.

We hope that it will stimulate discussion on alternative ways of achieving CDI and

their respective advantages.

 An aim of CDI is to avoid the need to modify applications whenever underlying

conceptual structures change. This suggests that applications and databases should be

designed using software structures which are independent of conceptual structures.

For example, to store data about customers, one would have to construct a database

structure without referring to the concept customer, or anything like it. This

requirement contradicts current design practice, since one would normally expect to

store data about customers in a ―Customers‖ table or equivalent.

 A step in the right direction is to find some invariant aspect of customers to use as

a data structuring mechanism. The idea of a role is helpful here. If customers are

people, then the concept customer is a role that people play. Roles are, by definition,

transient and overlapping—we play them from time to time. The idea of a person is

also a concept, but a less volatile and more universal one. Accordingly, it may help to

base our data structure on the concept person rather than the role customer [24].

 In general, mental concepts may be divided into roles and non-roles. Non-roles can

be recorded as invariant knowledge whilst roles may be better recorded as variant or

volatile data. This idea is represented in the conceptual structures shown in Figure 1.

The first structure shows concepts customer and supplier. In the second, substitution

of these concepts with more general ones (person and organisation) transforms the

role into a relationship.

The distinction between variant and invariant knowledge is not a very rigorous one.

However, there can be practical value in distinguishing concepts, which are relatively

Person Organisation
is a customer of

0..m 0..m

Fig. 1. Conceptual structure representing a role as a relationship

Customer Supplier
purchases goods from

0..m 0..m

8 Simon McGinnes

permanent, from roles, which are relatively impermanent. For example, without

negotiation there is unlikely to be universal agreement on what a customer is and how

a customer is defined. But it is possible to assume agreement that people exist, and

this agreement is all that is needed to allow the most basic level of data exchange.

Once again, the analogy of human communication is helpful; two individuals can

converse effectively if they can safely assume that common basic-level concepts are

shared (such as the idea of a person or a place) even if they have slightly different

ideas about how these things might be defined in detail.

 A more complex example follows. Consider a software application that handles

information about product types, suppliers, stores, customers and the purchases that

customers make. In a classically-designed database, the process of normalisation

would lead to a separate table representing each entity type. A possible solution is

illustrated in Figure 2.

We can simplify the structure as before by replacing the entity types with more

general categories. To do this, we observe that customers are people, stores are places,

suppliers are organisations, purchases are activities, and product types are categories.

The result is illustrated in Figure 3. We now have a more general model with

potentially wider applicability. Role-based concepts like customer and supplier have

been replaced by more generic categories and encapsulated in relationships.

Activity Place Person

Category

1 0..*

0..*

0..* 1

1..*

0..* 1..*

involves

Organisation
supplies

product

makes
purchase

purchase
made at

Fig. 3. Roles replaced with archetypal categories

Purchase Store Customer

Supplier
Product

type

1 0..* 0..* 1

supplies

involves

made at make
s

1..*

0..
*

0..* 1..*

Fig. 2. Normalised conceptual structure

The Problem of Conceptual Incompatibility 9

Of course, this model is still subject to volatility, because the relationships are likely

to alter over time. If these relationships were implemented in a database structure they

would ―fossilize‖ a particular snapshot of the conceptual structure, and make it hard

to modify or extend later on. One way of avoiding that is to represent the entity types

and relationships as data, using a structure similar to the one shown below.

This provides a structure which is effectively a meta-model; it is designed to store

conceptual models as data. We refer to a conceptual model stored in this manner as a

soft schema. Soft schemas can be stored using any appropriate means, including in

databases or as XML. The corresponding data described by each conceptual model

can also be stored in a variety of ways, but XML is an obvious candidate, as shown in

the example below.

<customer category=”person”>

 <name>Joanne Wall</name>

 <id>2012</id>

 <address>43 Tows Str</address>

</customer>

<customer category=”person”>

 <firstname>Maurice</firstname>

 <lastname>Smith</lastname>

 <id>2002</id>

 <address>3 Yannou Street</address>

 <phone>2273034397</phone>

</customer>

Fig. 5. Data fragment

Note that this XML fragment exhibits CDI, because it does not conform to any

particular conceptual structure. In effect, each instance of data carries its own

conceptual structure. The example shows two data instances, and although both refer

to the same concept (customer), the concept is defined differently in each instance. In

a conventional database or application, this would be evidence of a failure of data

integrity, and would probably cause the application to fail. But in a system with CDI,

Relationship
role

Relationship

Concept
(entity type)

0..*

0..* 1

1

0..* 1

involves

Category
describes

Fig. 4. Concepts and relationships represented as data

(for clarity, provision for storage of attributes is omitted)

10 Simon McGinnes

it merely reflects the fact that the conceptual structure has evolved over time, or is

contingent on context, or data has been merged from heterogeneous applications, or

some other circumstance. In other words, such differences in conceptual structure

between data instances are natural and entirely to be expected. Any software

application which uses this data would be required to cope smoothly with the

difference in structure between the two instances.

 With appropriate management software (analogous to database management

software) domain-level semantic constraints can be enforced including referential

integrity, subject to the constraint that data relating to multiple schema versions must

be able to co-exist. It is envisaged that this layer of systems software would mediate

between the data storage and applications which access it, in much the same way that

database management software does.

 This ability to store data instances corresponding to multiple schemas alongside

one another provides a unique advantage. Because the architecture is not specific to

any particular conceptual structure, it allows for the storage of data pertaining to any

conceptual structure, and therefore any application domain. The logical consequence

is that data could be stored for any and all domains using a single datastore. In other

words, a single datastore could concurrently hold data corresponding to any number

of distinct schemas. By implication, a single application could consult this datastore,

responding in real time to the embedded conceptual structures to provide suitable

functionality across multiple domains. We refer to applications with this property as

domain independent [25]. The potential for domain-specific design in such an

application would be reduced and the consistency of application design would be

increased, relative to current practice. This may or may not be an advantage and is a

subject for further research. We note also in passing that the functions of such an

application could easily be incorporated into an operating system or other system

software.

4 Archetypal Categories as a Basis for Integration

The example above refers to a number of basic-level concepts which are considered

relatively invariant. They include people, places, organisations, activities, and

categories. This is not an arbitrary list of concepts; it stems from research into the

cognitive aspects of conceptual modelling and system design [26]. The list also

includes documents, physical objects, conceptual objects and systems. These basic-

level concepts are termed archetypal categories.

 According to one view of cognition, meaning is generated in the brain by

unconscious feature-driven classification of perceptual inputs on the basis of

similarity and associative recall. While it had been thought that the brain’s neural

networks were structurally indifferent to categories, evidence suggests that the mind

has evolved to give preference to certain concepts in particular; examples from

different studies include people, activities, tools and locations. It has been proposed

that human memory tends to converge on such basic-level concepts, which are neither

highly specific nor particularly generic [19]. Physical evidence from brain imaging

The Problem of Conceptual Incompatibility 11

studies also suggests that we may possess a limited number of hard-wired semantic

regions into which perceptions are routed [27], corresponding again to categories

pitched at a basic, everyday level [28]. We suggest that IS could exploit the

familiarity of these innate categories by storing and presenting data in terms of them.

Further, we suggest that their use would make data exchange easier.

 Ontologies typically include thousands of classes, but only a subset correspond to

basic-level concepts. For example, the ontology SUMO contains the hierarchy

sentient agent → cognitive agent → human → internet user [29]. The class internet

user is a role, and the classes sentient agent and cognitive agent are abstract; this

leaves human as the only basic-level concept (essentially identical to our person). In a

similar vein, animal might be more easily understood than organism, and man easier

to deal with than hominid. In our list of archetypal categories person and organisation

could be replaced by the more general concept party, but again this would not be

pitched at a basic level and would therefore not be so understandable.

 It should now be apparent how CDI and archetypal categories can offer a solution

to the problem of conceptual incompatibility, allowing the exchange of conceptually-

incompatible data. IS could use a small vocabulary of archetypal categories, reflecting

the mind’s basic-level concepts. This would provide the common conceptual

framework required for meaningful exchange of information [1]. If data is expressed

in terms of a small list of shared archetypal categories, it can be understood by both

parties in the exchange even if no concepts per se are shared.

 The example in Figure 5 is a simple illustration of this principle. Both instances of

customer refer to the archetypal category person. To deal with the data, the receiving

application would need to ―understand‖ what people are and how to handle data about

people—without expecting any particular conceptual structure attached to instances of

the category person. The receiving application would thus not need to share a

conceptual model or ontology with the sending application. The same argument

applies for data corresponding to the other archetypal categories: places,

organisations, documents and so on. Implementation of this simple set of archetypal

categories in the context of domain-independent applications could therefore offer a

convenient ―middle road‖, allowing data to be exchanged meaningfully without the

need for complex shared conceptual models or ontologies.

5 Conclusion and Further Work

To summarise, the argument for conceptual data independence is as follows.

Interoperability between applications and easy exchange of data are desirable goals,

but heterogeneous design makes them difficult to achieve. Standard design practices

create ad hoc, incompatible conceptual structures. This was acceptable when there

were relatively few applications and change was infrequent. However, as a result of

the creation of many applications and increasingly rapid business change, conceptual

incompatibility is causing an unacceptable increase in system development,

maintenance and integration workloads.

12 Simon McGinnes

The idea behind CDI is that data is stored and exchanged in a form that is invariant

with respect to conceptual structures; each instance of data carries its own conceptual

structure, which can be interpreted at runtime. This implies that data corresponding to

multiple schemas can co-exist within the same datastore or application. When used in

application design, CDI therefore has potential to reduce development and

maintenance workloads substantially, because applications do not have to be domain-

specific. In effect, one application with CDI could fulfil the function of many of

today’s domain-specific, non-CDI applications; the result could be a substantial

reduction in cost and delay. CDI also has implications for data exchange; any two

datasets can be merged without effort if they are stored in a conceptually-independent

manner, provided that both use a common set of concepts. The use of archetypal

categories provides such a set of common concepts which can easily be implemented

in multiple domain-independent applications, because it does not rely on agreement

about, and implementation of, complex ontologies.

 Research is proceeding into the use of CDI. One project has produced a proof-of-

concept software prototype which demonstrates how the need to modify software

applications can be avoided as conceptual structures evolve [25]. Work is in progress

on usability testing. Next, it is planned to proceed with the development of a fully-

featured domain-independent application in order to test the impact of CDI on system

maintenance and data integration. Overall, CDI represents a fundamentally different

approach to information system construction; further empirical and theoretical

research will be needed to explore the significant possibilities that it affords.

6 References

1. Liebenau, J., Backhouse, J.: Understanding Information: An Introduction. Macmillan (1990)

2. Sowa, J.F.: The Challenge of Knowledge Soup. Vivo Mind Intelligence, Inc (2004)

3. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The

VLDB Journal The International Journal on Very Large Data Bases 10, 334-350 (2001)

4. Hauser, L.: Searle's Chinese box: debunking the Chinese room argument. Minds and

Machines 7, 199-226 (1997)

5. Kalfoglou, Y., Hu, B.: Issues with Evaluating and Using Publicly Available Ontologies.

(2006)

6. Taylor, P.: Adhocism in software architecture-perspectives from design theory. Software

Methods and Tools, 2000. SMT 2000. Proceedings. International Conference on 41-50

(2000)

7. Klein, M.: Combining and relating ontologies: an analysis of problems and solutions.

Workshop on Ontologies and Information Sharing, IJCAI 1, (2001)

8. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., Mockus, A.: Does code decay? Assessing

the evidence from change management data. Software Engineering, IEEE Transactions on

27, 1-12 (2001)

9. Fonseca, F.T., Martin, J.E.: Toward an Alternative Notion of Information Systems

Ontologies: Information Engineering as a Hermeneutic Enterprise. Journal of the American

Society for Information Science and Technology 56, 46-57 (2005)

10. Fensel, D.: Spinning The Semantic Web: Bringing the World Wide Web to Its Full

Potential. MIT Press (2005)

The Problem of Conceptual Incompatibility 13

11. Miller, R.C.B.: railway. com. Institute of Economic Affairs, London (2005)

12. Bartky, I.R.: Selling the True Time: Nineteenth-century Timekeeping in America. Stanford

University Press (2000)

13. Siau, K.L., Chan, H.C., Wei, K.K.: Effects of query complexity and learning on novice user

query performance with conceptual and logical database interfaces. Systems, Man and

Cybernetics, Part A, IEEE Transactions on 34, 276-281 (2004)

14. Maathuis, I., Smit, W.A.: The battle between standards: TCP/IP Vs OSI victory through

path dependency or by quality? Standardization and Innovation in Information Technology,

2003. The 3rd Conference on 161-176 (2003)

15. David, P.A.: Clio and the Economics of QWERTY. The American Economic Review 75,

332-337 (1985)

16. Craighead, C.W., Patterson, J.W., Roth, P.L., Segars, A.H.: Enabling the benefits of Supply

Chain Management Systems: an empirical study of Electronic Data Interchange (EDI) in

manufacturing. International Journal of Production Research 44, 135-157 (2006)

17. Hendler, J., Berners-Lee, T., Miller, E.: Integrating Applications on the Semantic Web.

Journal of the Institute of Electrical Engineers of Japan 122, 676-680 (2002)

18. Khare, R., Çelik, T.: Microformats: a pragmatic path to the semantic web. pp. 865-866.

ACM, (Year)

19. Pansky, A., Koriat, A.: The Basic-Level Convergence Effect in Memory Distortions.

Psychological Science 15, 52-59 (2004)

20. Heath, T., Motta, E.: Ease of interaction plus ease of integration: Combining Web2. 0 and

the Semantic Web in a reviewing site. Web Semantics: Science, Services and Agents on the

World Wide Web 6, 76-83 (2008)

21. Graham, I., Spinardi, G., Williams, R., Ivebster, J.: The dynamics of EDI standards

development. Technology Analysis & Strategic Management 7, 3-20 (1995)

22. Musen, M.A., Lewis, S., Smith, B.: Wrestling with SUMO and Bio-ontologies. Nature

Biotechnology 24, 21 (2006)

23. Guzman-Arenas, A., Olivares-Ceja, J.M.: Measuring the understanding between two agents

through concept similarity. Expert Systems With Applications 30, 577-591 (2006)

24. Wieringa, R., de Jonge, W., Spruit, P.: Roles and dynamic subclasses: a modal logic

approach. Proceedings of European Conference on Object-Oriented Programming (1994)

25. Kapros, E.: Multi-component Evaluation of an Adaptive User-interface for a "Generic

Application". Workshop on Experience, Usability, and Functionality, Irish HCI Conference

2009, 17th-18th September, (2009)

26. McGinnes, S., Amos, J.: Accelerated Business Concept Modeling: Combining User

Interface Design with Object Modeling. In: Harmelen, M.V., Wilson, S. (eds.) Object

Modeling and User Interface Design: Designing Interactive Systems, pp. 3-36. Addison-

Wesley, Boston (2001)

27. Mason, M.F., Banfield, J.F., Macrae, C.N.: Thinking About Actions: The Neural Substrates

of Person Knowledge. Cerebral Cortex 14, 209-214 (2004)

28. Eysenck, M.W., Keane, M.: Cognitive Psychology: A Student's Handbook. Psychology

Press(UK) (2005)

29. Niles, I.: Mapping WordNet to the SUMO Ontology. Proceedings of the IEEE International

Knowledge Engineering conference 23–26 (2003)

