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Abstract. Application interoperability and data exchange are desirable goals, 

but conventional system design practices make these goals difficult to achieve, 

since they create heterogeneous, incompatible conceptual structures. This 

conceptual incompatibility increases system development, maintenance and 

integration workloads unacceptably. Conceptual data independence (CDI) is 

proposed as a way of overcoming these problems. Under CDI, data is stored 

and exchanged in a form which is invariant with respect to conceptual 

structures; data corresponding to multiple schemas can co-exist within the same 

application without loss of integrity. The use of CDI to create domain-

independent applications could reduce development and maintenance 

workloads and has potential implications for data exchange. Datasets can be 

merged without effort if stored in a conceptually-independent manner, provided 

that each implements common concepts. A suitable set of shared basic-level 

archetypal categories is outlined which can be implemented in domain-

independent applications, avoiding the need for agreement about, and 

implementation of, complex ontologies. 

Keywords. Data integration, domain-independent design, conceptual data 

independence, archetypal categories. 

1 Introduction: The Problem of Conceptual Incompatibility   

The present massive proliferation of databases, web pages and other information 

resources presents a data integration problem. There is a need to use data in a joined-

up way, but mechanisms are lacking that allow easy data integration in the general 

case; it is often hard to combine data resources. A prime reason for this is that 

different datasets typically have incompatible conceptual structures. Common practice 

in information systems (IS) design leads each organisation or software vendor to 

create its own idiosyncratic data structures that are incompatible with those created by 

others; commercial pressures can have the same effect. Standard conceptual structures 

are normally used only in limited circumstances, when imposed by enterprise 

software platforms, legislative requirements or other external constraints. In the rush 
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to create ever-more comprehensive and powerful IS, the increasing problem of 

heterogeneous, incompatible conceptual structures has been left for future technology 

to solve. 

1.1 Why Do Current Methods of Integration Not Solve the Problem? 

Developers have historically faced two issues with regard to integration of systems 

that have distinct conceptual data structures: physical incompatibility and conceptual 

incompatibility. Thankfully, many technologies now exist to resolve the first issue, by 

physically interconnecting heterogeneous platforms; these include RPC, CORBA and 

web services. Programs can also be linked simply by exchanging files using a 

common format such as XML. However, progress on physical compatibility has 

exposed the deeper second issue of conceptual or semantic compatibility: the problem 

of reconciling implicit conceptual models.  

 If we wish to use several data resources in an integrated way, they must share both 

a common vocabulary and a common conceptual framework. This fundamental and 

unavoidable principle of semiotics [1] may be understood by analogy to human 

communication: if two people wish to exchange information effectively they must 

speak the same language, but they must also possess shared concepts. Conceptual 

compatibility thus runs deeper than mere language; for people to communicate they 

must interpret words identically, or nearly so, and there is no guarantee that this will 

be the case. Meaning is essentially personal and subjective, affected by context, 

culture, and so on.  

 Getting two programs to exchange data involves a similar problem. A common, 

recognisable vocabulary must be used by both sides, and the two programs must also 

have been programmed with common concepts, so that they can act on the data 

appropriately. Computers cannot yet understand data in the sense that a human does, 

but they can be programmed to deal sensibly with specific items of data provided that 

the data is of a known type; this is what we mean when we say that a program 

―understands‖ a particular concept. In practice, however, most IS share neither 

vocabulary nor concepts. It would be surprising if they did, given they ways they are 

developed and the rarity with which standard conceptual structures are applied. For 

this reason, linking real-world IS that have heterogeneous conceptual schemas is 

rarely a simple matter. 

 In trivial cases it can seem straightforward to map the conceptual models of 

distinct systems to one another. For example, two programs which manage data about 

customers might well use similar data structures and common terms such as name, 

address and phone number. But semantic complexity lurks even in apparently 

straightforward situations. Is a customer a person or an organisation? Are business 

prospects regarded as customers, or must we already be trading with someone for 

them to be considered a customer? What about ex-customers? Many such questions 

can be asked, highlighting the inconvenient truth that most concepts are more 

complex than they seem, when one scratches the surface, and certainly far more 

complicated and esoteric than the trivial example quoted above. Uniting separately-

developed conceptual structures can be challenging even for expert developers 
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working with systems in closely-related domains [2]; it can be difficult to discern 

what data structures are intended to signify and what unstated assumptions have been 

made.  

 Another approach to data integration involves the use of automated schema 

matching, and tools for this purpose have been developed with some success [3]. But 

there is an inherent limit to the ability of automated matching strategies to operate 

reliably in the general case. Software cannot easily call upon context, domain 

expertise and general knowledge to understand and disambiguate the meaning of 

conceptual structures [4]. Again, the analogy of human understanding is relevant. 

When conversing with others, we draw upon our prior knowledge to understand what 

is meant. A person without prior knowledge has no hope of understanding what 

somebody else says. This analogy suggests that automated schema matching 

strategies must first overcome the grand challenge of accumulating and applying 

general knowledge before they can be expected to extract the semantics in arbitrary 

schemas with sufficient reliability [5]. 

 In summary, semantic issues make it difficult, as a rule, to match conceptual 

models between IS—especially since most IS have idiosyncratic designs and complex 

conceptual structures that are based on unstated assumptions [6]. Conceptual 

incompatibility therefore presents a major barrier when we attempt to link IS. And 

this ignores the scalability problem, that integrating systems typically requires a good 

deal of interface code which must be crafted, onerously, by hand.  

 Conceptual incompatibility is also a problem for end users [7]. It means that we 

must adopt a different mental model of reality each time we use a different program. 

For example, consider how the concept person is treated in different software 

products from the same vendor. In Microsoft Word, people are represented merely as 

―users‖. In Microsoft Project, people are considered from a management perspective 

as ―resources‖. In Microsoft Outlook people are considered as ―contacts‖. Although 

these different treatments refer to the same underlying entity (a person), they are in 

fact three quite distinct mental concepts, each with its own meaning and implications.  

 The same applies to most software applications: each application takes a unique 

perspective on reality to suit its own purpose. The user is left to mentally reconcile the 

various perspectives. This is at best confusing, since the concepts may be overlapping 

or orthogonal, and applications rarely spell out precisely what they mean by any given 

term. It can also be a problem for developers, who often lack understanding of the 

domain concepts in applications [8].  

2 Standardisation of Conceptual Structures 

The reliance on post-hoc system integration implicitly facilitates the trend towards 

growth in conceptual incompatibility. By allowing heterogeneous applications to 

proliferate, we are effectively supporting the development of incompatible conceptual 

structures. This is a major concern [9]; ―the Semantic Web should not sit on the 

Tower of Babel‖ [10]. Some means is needed of limiting heterogeneity or at least of 

facilitating the job of reconciling heterogeneous conceptual structures. 
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An alternative to the idea of reconciling data structures is to design IS such that they 

conform ab initio to standard conceptual structures. The use of standardised 

conceptual structures could have benefits for a software industry which is 

experiencing uncontrolled growth in conceptual incompatibility and its associated 

costs. This is an idea with some support, and many competing standards, formats and 

ontologies have been developed over the years for use in different application 

domains. 

 Parallels can be drawn with the development of other industries. For example, in 

the early railway industry, locomotives and track were crafted individually, resulting 

in a variety of incompatible gauges and coupling mechanisms [11]. At first, the 

absence of standards was unimportant, because railways were not linked. But when 

integration of the network became important, the existing ad hoc design practices 

soon became a barrier to progress. Standards were needed, addressing not just 

infrastructure but also more fundamental concepts such as time [12]. Competing 

standards faced resistance and controversy. For example, broad gauge was regarded 

as technically superior, but lost out to standard gauge in some regions after decades of 

competition.  

 Table 1 lists other spheres in which integration has led to the need for standards, 

often despite conflict and opposition. In all of these domains, growth led to increasing 

interconnection and this in turn created a need for standardisation. In retrospect, the 

inevitability of such standards is obvious, given the need for interoperability, and the 

alternative is unthinkable. Nevertheless, the adoption of standards is often painful 

because it requires that some or all participants give up their own solutions. We argue 

that the software industry has yet to fully confront this issue with regard to conceptual 

structures.  

Table 1. Examples of Standards. 

Sphere Examples of standards  

Finance Accounting conventions 

International payment systems 

Law Legal harmonisation within the European Union 

International double taxation treaties 

Electricity Adoption of AC with standard frequency and voltage 

Use of standard electrical connectors 

Electronic media VHS (despite alleged technical inferiority to Betamax) 

Blu-Ray 

 

A common argument against standardisation is that a single solution cannot possibly 

be the best technical choice for every situation. Yet many IT standards have emerged 

despite superior competition. SQL became the standard database query language, 

despite the existence of languages considered more powerful and easier to use [13]. 

TCP/IP is dominant despite widespread promotion of the OSI standard [14]. The 

QWERTY keyboard layout remains the standard despite the development of more 

ergonomic layouts [15].  
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In all of these cases, adopting standards has provided widespread benefits despite the 

pain involved for those with vested interests. We suggest that the IS field could obtain 

similar benefits by standardising conceptual structures. Implementation of standard 

conceptual structures could make interoperation more straightforward, perhaps even 

offering the ability to integrate information resources in a plug-and-play fashion. The 

alternative is a future of information islands, multiple interfaces, frequent schema 

translation operations, with attendant complexity and opportunities for conceptual 

confusion.  

 Much current thinking on data integration centres on tagging, using technologies 

such as the Semantic Web, RDF, linked data, ontologies and microformats [16]. The 

hope is that tagging will allow applications to exchange and process data without 

intervention. ―We’re not that far from the time when you can click on the web page 

for the meeting, and your computer, knowing that it is indeed a form of appointment, 

will pick up all the right information, and understand it enough to send it to all the 

right applications‖ [17].  

 How feasible is this? Referring to the discussion in Section II, this kind of 

interoperability would require both a shared vocabulary and a shared conceptual 

framework. That means that each piece of data must be named in a recognisable way 

(vocabulary) and its name must refer to some shared meaning (concept). 

Organisations wishing to exchange tagged data must therefore agree on a common 

terminology, which they can map to their proprietary data structures, and they must 

also agree on common concepts, which they can code into their applications. For an 

application to possess a concept means that the application recognises what to do with 

data pertaining to that concept. Asking two software applications to exchange data in 

the absence of common concepts is rather pointless, since the receiving application 

can do little with the data except store it.  

 Microformats offer an illustration. They provide a common terminology (hRecipe, 

hCard, etc.) and also a series of common, if rather simplistic, concepts that 

applications can be programmed to share. The development of microformats is 

perhaps a pragmatic reaction against large-scale ontology development, the seemingly 

never-ending effort to create universal ―conceptual models of everything‖ [18]. 

Microformats offer the potential for quick wins because they are intended as simple, 

uncontroversial conceptual model snippets. They are couched at an ―everyday‖ level 

of generality and therefore easy to understand [19]. By definition, microformats 

ignore most of the complexity of real-life conceptual structures. In particular, they 

neglect the relationships between concepts, which is where most conceptual 

complexity lies. This is what allows developers to use microformats so readily.  

 But, while it is easy to envisage agreement on simple, well-known concepts such 

as recipes and appointments, it is in the nature of conceptual structures to quickly 

become complex. Efforts to create reusable, generic structures can soon result in hard-

to-understand abstractions that are less useful for any particular application. 

Microformats remain useful while they remain simple and disconnected from one 

another, but when there is a need for integration to reflect the real-world relationships 

between concepts, the complications associated with larger-scale ontologies quickly 

arise [20].  
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In summary, it remains difficult to agree on standards for the domain-specific 

concepts found in much enterprise data, particularly when IS are viewed as a source 

of competitive advantage and best practice in IS design begins with idiosyncratic 

conceptual structures. Historically, previous efforts at conceptual standardisation have 

encountered similar problems for similar reasons [21]. 

2.1 Ontologies as a Potential Solution to Conceptual Incompatibility 

Ontologies are a current focus of attention in conceptual standardisation. Domain 

(industry-specific) ontologies are now available or in development, each created more 

or less in isolation to suit the needs of a particular business area. Domain ontologies 

are normally incompatible with one another and lack common concepts. As a result, 

matching two arbitrary domain ontologies can be challenging. In contrast, upper 

ontologies are more wide-ranging; so as to encompass a range of application domains 

they typically include broad and generic abstractions. One approach to ontology 

matching makes use of this by mapping domain ontologies to one another using the 

high-level abstractions in upper ontologies [22].  

 Ontologies offer a potential source of common conceptual structures and may 

therefore present a solution to the problem of conceptual incompatibility. They can be 

used to integrate applications in two primary ways. One is by acting as a design 

blueprint, so that applications are constructed to share a common conceptual model. 

This automatically renders applications compatible provided that they do not 

introduce extensions or subtle variations in semantics to suit their own needs. It is 

therefore possible that conceptual incompatibility could be resolved, if all applications 

were built to conform to a single upper ontology, linked in turn to an agreed set of 

domain ontologies, if the ontologies in question remained relatively static. However, 

the task would be enormous, even if everyone could agree on a single set of 

ontologies to suit all purposes. Given that reality can be modelled in an infinite 

variety of ways, this seems unlikely. As one researcher succinctly put it, ―knowledge 

cannot be standardised, since each day more sprouts‖ [23]. Others have observed that 

it might be more practical to have a flexible means of interpreting concepts at runtime 

rather than a conceptual language that is rigidly defined a priori.  

 The other way in which ontologies can be used to integrate applications is for each 

application to use its own conceptual structure or ontology, as at present, but to match 

up the distinct ontologies, so allowing translation and exchange of data. This is in 

effect the commonly-used approach. However, it seems unlikely that this approach 

can provide a lasting solution to the problem of integration on a large scale. It does 

not address the fundamental problem of conceptual fragmentation; as in schema 

matching, ontology matching is labour-intensive and fully-automated matching is 

currently infeasible in the general case. 
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3 Conceptual Data Independence 

Below we propose an alternative solution to the problem of conceptual 

incompatibility. Our solution is based on conceptual data independence (CDI), which 

refers to the storage of data in a format that is invariant with respect to conceptual 

structures. A primary benefit of CDI is that it reduces the knock-on effects of changes 

to conceptual structures, so that development and maintenance costs can be reduced. 

However, CDI also offers the prospect of easier data integration. Below we give a 

brief explanation of CDI and how it can be achieved, and then discuss how it can 

assist in the data integration task. The scheme outlined below is not presented as the 

only or best way of implementing CDI, but as an example for illustrative purposes. 

We hope that it will stimulate discussion on alternative ways of achieving CDI and 

their respective advantages. 

 An aim of CDI is to avoid the need to modify applications whenever underlying 

conceptual structures change. This suggests that applications and databases should be 

designed using software structures which are independent of conceptual structures. 

For example, to store data about customers, one would have to construct a database 

structure without referring to the concept customer, or anything like it. This 

requirement contradicts current design practice, since one would normally expect to 

store data about customers in a ―Customers‖ table or equivalent. 

 A step in the right direction is to find some invariant aspect of customers to use as 

a data structuring mechanism. The idea of a role is helpful here. If customers are 

people, then the concept customer is a role that people play. Roles are, by definition, 

transient and overlapping—we play them from time to time. The idea of a person is 

also a concept, but a less volatile and more universal one. Accordingly, it may help to 

base our data structure on the concept person rather than the role customer [24].  

 In general, mental concepts may be divided into roles and non-roles. Non-roles can 

be recorded as invariant knowledge whilst roles may be better recorded as variant or 

volatile data. This idea is represented in the conceptual structures shown in Figure 1. 

The first structure shows concepts customer and supplier. In the second, substitution 

of these concepts with more general ones (person and organisation) transforms the 

role into a relationship.  

 
The distinction between variant and invariant knowledge is not a very rigorous one. 

However, there can be practical value in distinguishing concepts, which are relatively 

Person Organisation 
is a customer of 

0..m 0..m 

Fig. 1. Conceptual structure representing a role as a relationship 

Customer Supplier 
purchases goods from  

0..m 0..m 
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permanent, from roles, which are relatively impermanent. For example, without 

negotiation there is unlikely to be universal agreement on what a customer is and how 

a customer is defined. But it is possible to assume agreement that people exist, and 

this agreement is all that is needed to allow the most basic level of data exchange. 

Once again, the analogy of human communication is helpful; two individuals can 

converse effectively if they can safely assume that common basic-level concepts are 

shared (such as the idea of a person or a place) even if they have slightly different 

ideas about how these things might be defined in detail. 

 A more complex example follows. Consider a software application that handles 

information about product types, suppliers, stores, customers and the purchases that 

customers make. In a classically-designed database, the process of normalisation 

would lead to a separate table representing each entity type. A possible solution is 

illustrated in Figure 2.  

 
We can simplify the structure as before by replacing the entity types with more 

general categories. To do this, we observe that customers are people, stores are places, 

suppliers are organisations, purchases are activities, and product types are categories. 

The result is illustrated in Figure 3. We now have a more general model with 

potentially wider applicability. Role-based concepts like customer and supplier have 

been replaced by more generic categories and encapsulated in relationships. 

 

Activity Place Person 

Category 

1 0..* 

0..* 

0..* 1 

1..* 

0..* 1..* 

involves 

Organisation 
supplies 

product  

makes 
purchase 

purchase 
made at 

Fig. 3. Roles replaced with archetypal categories 

Purchase Store Customer 

Supplier 
Product 

type 

1 0..* 0..* 1 

supplies 

 
involves 

made at make
s 

1..* 

0..
* 

0..* 1..* 

Fig. 2. Normalised conceptual structure 
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Of course, this model is still subject to volatility, because the relationships are likely 

to alter over time. If these relationships were implemented in a database structure they 

would ―fossilize‖ a particular snapshot of the conceptual structure, and make it hard 

to modify or extend later on. One way of avoiding that is to represent the entity types 

and relationships as data, using a structure similar to the one shown below. 

 
This provides a structure which is effectively a meta-model; it is designed to store 

conceptual models as data. We refer to a conceptual model stored in this manner as a 

soft schema. Soft schemas can be stored using any appropriate means, including in 

databases or as XML. The corresponding data described by each conceptual model 

can also be stored in a variety of ways, but XML is an obvious candidate, as shown in 

the example below. 

<customer category=”person”> 

 <name>Joanne Wall</name> 

 <id>2012</id> 

 <address>43 Tows Str</address> 

</customer> 

<customer category=”person”> 

 <firstname>Maurice</firstname> 

 <lastname>Smith</lastname> 

 <id>2002</id> 

 <address>3 Yannou Street</address> 

 <phone>2273034397</phone> 

</customer> 

Fig. 5. Data fragment 

Note that this XML fragment exhibits CDI, because it does not conform to any 

particular conceptual structure. In effect, each instance of data carries its own 

conceptual structure. The example shows two data instances, and although both refer 

to the same concept (customer), the concept is defined differently in each instance. In 

a conventional database or application, this would be evidence of a failure of data 

integrity, and would probably cause the application to fail. But in a system with CDI, 

Relationship 
role 

Relationship 

Concept 
(entity type) 

0..* 

0..* 1 

1 

0..* 1 

involves 

Category 
describes 

Fig. 4. Concepts and relationships represented as data 

(for clarity, provision for storage of attributes is omitted) 
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it merely reflects the fact that the conceptual structure has evolved over time, or is 

contingent on context, or data has been merged from heterogeneous applications, or 

some other circumstance. In other words, such differences in conceptual structure 

between data instances are natural and entirely to be expected. Any software 

application which uses this data would be required to cope smoothly with the 

difference in structure between the two instances. 

 With appropriate management software (analogous to database management 

software) domain-level semantic constraints can be enforced including referential 

integrity, subject to the constraint that data relating to multiple schema versions must 

be able to co-exist. It is envisaged that this layer of systems software would mediate 

between the data storage and applications which access it, in much the same way that 

database management software does.  

 This ability to store data instances corresponding to multiple schemas alongside 

one another provides a unique advantage. Because the architecture is not specific to 

any particular conceptual structure, it allows for the storage of data pertaining to any 

conceptual structure, and therefore any application domain. The logical consequence 

is that data could be stored for any and all domains using a single datastore. In other 

words, a single datastore could concurrently hold data corresponding to any number 

of distinct schemas. By implication, a single application could consult this datastore, 

responding in real time to the embedded conceptual structures to provide suitable 

functionality across multiple domains. We refer to applications with this property as 

domain independent [25]. The potential for domain-specific design in such an 

application would be reduced and the consistency of application design would be 

increased, relative to current practice. This may or may not be an advantage and is a 

subject for further research. We note also in passing that the functions of such an 

application could easily be incorporated into an operating system or other system 

software.  

4 Archetypal Categories as a Basis for Integration 

The example above refers to a number of basic-level concepts which are considered 

relatively invariant. They include people, places, organisations, activities, and 

categories. This is not an arbitrary list of concepts; it stems from research into the 

cognitive aspects of conceptual modelling and system design [26]. The list also 

includes documents, physical objects, conceptual objects and systems. These basic-

level concepts are termed archetypal categories.  

 According to one view of cognition, meaning is generated in the brain by 

unconscious feature-driven classification of perceptual inputs on the basis of 

similarity and associative recall. While it had been thought that the brain’s neural 

networks were structurally indifferent to categories, evidence suggests that the mind 

has evolved to give preference to certain concepts in particular; examples from 

different studies include people, activities, tools and locations. It has been proposed 

that human memory tends to converge on such basic-level concepts, which are neither 

highly specific nor particularly generic [19]. Physical evidence from brain imaging 
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studies also suggests that we may possess a limited number of hard-wired semantic 

regions into which perceptions are routed [27], corresponding again to categories 

pitched at a basic, everyday level [28]. We suggest that IS could exploit the 

familiarity of these innate categories by storing and presenting data in terms of them. 

Further, we suggest that their use would make data exchange easier. 

 Ontologies typically include thousands of classes, but only a subset correspond to 

basic-level concepts. For example, the ontology SUMO contains the hierarchy 

sentient agent → cognitive agent → human → internet user [29]. The class internet 

user is a role, and the classes sentient agent and cognitive agent are abstract; this 

leaves human as the only basic-level concept (essentially identical to our person). In a 

similar vein, animal might be more easily understood than organism, and man easier 

to deal with than hominid. In our list of archetypal categories person and organisation 

could be replaced by the more general concept party, but again this would not be 

pitched at a basic level and would therefore not be so understandable. 

 It should now be apparent how CDI and archetypal categories can offer a solution 

to the problem of conceptual incompatibility, allowing the exchange of conceptually-

incompatible data. IS could use a small vocabulary of archetypal categories, reflecting 

the mind’s basic-level concepts. This would provide the common conceptual 

framework required for meaningful exchange of information [1]. If data is expressed 

in terms of a small list of shared archetypal categories, it can be understood by both 

parties in the exchange even if no concepts per se are shared.  

 The example in Figure 5 is a simple illustration of this principle. Both instances of 

customer refer to the archetypal category person. To deal with the data, the receiving 

application would need to ―understand‖ what people are and how to handle data about 

people—without expecting any particular conceptual structure attached to instances of 

the category person. The receiving application would thus not need to share a 

conceptual model or ontology with the sending application. The same argument 

applies for data corresponding to the other archetypal categories: places, 

organisations, documents and so on. Implementation of this simple set of archetypal 

categories in the context of domain-independent applications could therefore offer a 

convenient ―middle road‖, allowing data to be exchanged meaningfully without the 

need for complex shared conceptual models or ontologies.  

5 Conclusion and Further Work 

To summarise, the argument for conceptual data independence is as follows. 

Interoperability between applications and easy exchange of data are desirable goals, 

but heterogeneous design makes them difficult to achieve. Standard design practices 

create ad hoc, incompatible conceptual structures. This was acceptable when there 

were relatively few applications and change was infrequent. However, as a result of 

the creation of many applications and increasingly rapid business change, conceptual 

incompatibility is causing an unacceptable increase in system development, 

maintenance and integration workloads. 
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The idea behind CDI is that data is stored and exchanged in a form that is invariant 

with respect to conceptual structures; each instance of data carries its own conceptual 

structure, which can be interpreted at runtime. This implies that data corresponding to 

multiple schemas can co-exist within the same datastore or application. When used in 

application design, CDI therefore has potential to reduce development and 

maintenance workloads substantially, because applications do not have to be domain-

specific. In effect, one application with CDI could fulfil the function of many of 

today’s domain-specific, non-CDI applications; the result could be a substantial 

reduction in cost and delay. CDI also has implications for data exchange; any two 

datasets can be merged without effort if they are stored in a conceptually-independent 

manner, provided that both use a common set of concepts. The use of archetypal 

categories provides such a set of common concepts which can easily be implemented 

in multiple domain-independent applications, because it does not rely on agreement 

about, and implementation of, complex ontologies. 

 Research is proceeding into the use of CDI. One project has produced a proof-of-

concept software prototype which demonstrates how the need to modify software 

applications can be avoided as conceptual structures evolve [25]. Work is in progress 

on usability testing. Next, it is planned to proceed with the development of a fully-

featured domain-independent application in order to test the impact of CDI on system 

maintenance and data integration. Overall, CDI represents a fundamentally different 

approach to information system construction; further empirical and theoretical 

research will be needed to explore the significant possibilities that it affords. 

6 References 

1. Liebenau, J., Backhouse, J.: Understanding Information: An Introduction. Macmillan (1990) 

2. Sowa, J.F.: The Challenge of Knowledge Soup. Vivo Mind Intelligence, Inc (2004) 

3. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The 

VLDB Journal The International Journal on Very Large Data Bases 10, 334-350 (2001) 

4. Hauser, L.: Searle's Chinese box: debunking the Chinese room argument. Minds and 

Machines 7, 199-226 (1997) 

5. Kalfoglou, Y., Hu, B.: Issues with Evaluating and Using Publicly Available Ontologies. 

(2006) 

6. Taylor, P.: Adhocism in software architecture-perspectives from design theory. Software 

Methods and Tools, 2000. SMT 2000. Proceedings. International Conference on 41-50 

(2000) 

7. Klein, M.: Combining and relating ontologies: an analysis of problems and solutions. 

Workshop on Ontologies and Information Sharing, IJCAI 1, (2001) 

8. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., Mockus, A.: Does code decay? Assessing 

the evidence from change management data. Software Engineering, IEEE Transactions on 

27, 1-12 (2001) 

9. Fonseca, F.T., Martin, J.E.: Toward an Alternative Notion of Information Systems 

Ontologies: Information Engineering as a Hermeneutic Enterprise. Journal of the American 

Society for Information Science and Technology 56, 46-57 (2005) 

10. Fensel, D.: Spinning The Semantic Web: Bringing the World Wide Web to Its Full 

Potential. MIT Press (2005) 



The Problem of Conceptual Incompatibility  13 

11. Miller, R.C.B.: railway. com. Institute of Economic Affairs, London (2005) 

12. Bartky, I.R.: Selling the True Time: Nineteenth-century Timekeeping in America. Stanford 

University Press (2000) 

13. Siau, K.L., Chan, H.C., Wei, K.K.: Effects of query complexity and learning on novice user 

query performance with conceptual and logical database interfaces. Systems, Man and 

Cybernetics, Part A, IEEE Transactions on 34, 276-281 (2004) 

14. Maathuis, I., Smit, W.A.: The battle between standards: TCP/IP Vs OSI victory through 

path dependency or by quality? Standardization and Innovation in Information Technology, 

2003. The 3rd Conference on 161-176 (2003) 

15. David, P.A.: Clio and the Economics of QWERTY. The American Economic Review 75, 

332-337 (1985) 

16. Craighead, C.W., Patterson, J.W., Roth, P.L., Segars, A.H.: Enabling the benefits of Supply 

Chain Management Systems: an empirical study of Electronic Data Interchange (EDI) in 

manufacturing. International Journal of Production Research 44, 135-157 (2006) 

17. Hendler, J., Berners-Lee, T., Miller, E.: Integrating Applications on the Semantic Web. 

Journal of the Institute of Electrical Engineers of Japan 122, 676-680 (2002) 

18. Khare, R., Çelik, T.: Microformats: a pragmatic path to the semantic web. pp. 865-866. 

ACM,  (Year) 

19. Pansky, A., Koriat, A.: The Basic-Level Convergence Effect in Memory Distortions. 

Psychological Science 15, 52-59 (2004) 

20. Heath, T., Motta, E.: Ease of interaction plus ease of integration: Combining Web2. 0 and 

the Semantic Web in a reviewing site. Web Semantics: Science, Services and Agents on the 

World Wide Web 6, 76-83 (2008) 

21. Graham, I., Spinardi, G., Williams, R., Ivebster, J.: The dynamics of EDI standards 

development. Technology Analysis & Strategic Management 7, 3-20 (1995) 

22. Musen, M.A., Lewis, S., Smith, B.: Wrestling with SUMO and Bio-ontologies. Nature 

Biotechnology 24, 21 (2006) 

23. Guzman-Arenas, A., Olivares-Ceja, J.M.: Measuring the understanding between two agents 

through concept similarity. Expert Systems With Applications 30, 577-591 (2006) 

24. Wieringa, R., de Jonge, W., Spruit, P.: Roles and dynamic subclasses: a modal logic 

approach. Proceedings of European Conference on Object-Oriented Programming (1994) 

25. Kapros, E.: Multi-component Evaluation of an Adaptive User-interface for a "Generic 

Application".  Workshop on Experience, Usability, and Functionality, Irish HCI Conference 

2009, 17th-18th September,  (2009) 

26. McGinnes, S., Amos, J.: Accelerated Business Concept Modeling: Combining User 

Interface Design with Object Modeling. In: Harmelen, M.V., Wilson, S. (eds.) Object 

Modeling and User Interface Design: Designing Interactive Systems, pp. 3-36. Addison-

Wesley, Boston (2001) 

27. Mason, M.F., Banfield, J.F., Macrae, C.N.: Thinking About Actions: The Neural Substrates 

of Person Knowledge. Cerebral Cortex 14, 209-214 (2004) 

28. Eysenck, M.W., Keane, M.: Cognitive Psychology: A Student's Handbook. Psychology 

Press(UK) (2005) 

29. Niles, I.: Mapping WordNet to the SUMO Ontology. Proceedings of the IEEE International 

Knowledge Engineering conference 23–26 (2003) 

 

 


