
HAL Id: hal-01583914
https://inria.hal.science/hal-01583914

Submitted on 8 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Improved Usage Model for Web Application Reliability
Testing

Gregor V. Bochmann, Guy-Vincent Jourdan, Bo Wan

To cite this version:
Gregor V. Bochmann, Guy-Vincent Jourdan, Bo Wan. Improved Usage Model for Web Application
Reliability Testing. 23th International Conference on Testing Software and Systems (ICTSS), Nov
2011, Paris, France. pp.15-31, �10.1007/978-3-642-24580-0_3�. �hal-01583914�

https://inria.hal.science/hal-01583914
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Improved Usage Model for Web Application Reliability
Testing

Gregor v. Bochmann, Guy-Vincent Jourdan, Bo Wan

School of Information Technology & Engineering, University of Ottawa, Ottawa, Canada
{ bochmann, gvj, bwan080}@ site.uottawa.ca

Abstract. Testing the reliability of an application usually requires a good usage
model that accurately captures the likely sequences of inputs that the
application will receive from the environment. The models being used in the
literature are mostly based on Markov chains. They are used to generate test
cases that are statistically close to what the application is expected to receive
when in production. In this paper, we study the specific case of web
applications. We present a model that is created directly from the log file of the
application. This model is also based on Markov chains and has two
components: one component, based on a modified tree, captures the most
frequent behavior, while the other component is another Markov chain that
captures infrequent behaviors. The result is a statistically correct model that
exhibits clearly what most users do on the site. We present an experimental
study on the log of a real web site and discuss strength and weakness of the
model for reliability testing.

Keywords: Web applications, Usage models, Reliability testing, Markov chains

1 Introduction

Many formal testing techniques are directed towards what is sometimes called
“debug techniques”: the goal is to fulfill some given criteria (branch coverage, all-
uses coverage, all paths, all code and many others), or uncover every fault1 using
some restricted fault models (checking experiments). However, in practice, non-trivial
applications are simply not expected to ever be failure-free, thus the purpose of a
realistic testing campaign cannot be to find all the faults. Given that only some of the
failures will be uncovered, it only makes sense to question which ones will be found
by a testing method. Note that in a realistic setting, failures are always ranked by
importance.

1 In this document, a “fault” in the application source code leads to a “failure” at execution

time. A “test sequence” is a sequence of interactions between the testing environment (e.g.
the tester) and the tested application. “Test input data” is the data that is input during the
execution of the test sequence. A test sequence, valued with test input data, is a “test case”.
A test case may uncover a failure, due to one (or more) fault.

In this paper, we are interested in testing the reliability of an application. For a
material system, reliability is usually defined by the expected time of operation after
which the system will fail. In the case of a software system, it can be defined by the
expected number of usages before it will fail. A usage, in this context, may be a
request provided by the environment, or a complete usage session, for instance in the
case of an application with an interface to a human user. Clearly, the occurrence of a
failure of a software system is dependent on the input provided. In order to test the
reliability of an application, it is therefore important to apply inputs that reflect the
behavior of the environment of the application in the normal operating conditions.
This is sometimes called “operational testing”. In this context, it is important to test
first those behavior patterns that occur most frequently under normal operating
conditions. This idea has been applied with great success on certain large software
projects: Google was for example able to deliver an internet browser, Chrome, that
was remarkably reliable from its first release, not necessarily because it was tested
against more web pages than the other browsers, but because it was tested against the
web pages that Google knew people were most looking at2.

There are essentially two methods for obtaining a realistic model of the behavior of
the environment of the application to be tested for reliability:
1. Environment model based on the application model: If the functional behavior

requirements of the application are given in the form of an abstract model, for
instance in the form of a UML state machine model, this model can be easily
transformed into a model of the environment by exchanging input and output
interactions. However, for obtaining an environment model useful for reliability
testing, this functional model must be enhanced with statistical performance
information about the frequency of the different inputs applied to the application
in the different states of the environment. This may be formalized in terms of a
Markov model based on the states of the abstract functional application model.

2. Environment model extracted from observed execution traces in a realistic
environment: Independently of any model of the application that may be
available, a model of the dynamic behavior of the environment may be extracted
from the observation of a large number of execution traces that have occurred in
a realistic setting.

In this paper, we pursue the second approach. We assume that the application to be
tested is a Web application. We make the assumption that after each input by the user,
the response from the web server provides information about the functional state of
the application. In the case of traditional web applications, the state information is
given by the URL of the page that is returned. In the case of Rich Internet
Applications (RIA), we consider that the content of the returned web page, that is the
DOM of this page, represents the application state, assuming that there is no hidden
state information stored in the server.

In previous work on reliability testing, the user model is usually either given in the
form of a tree of possible execution sequences with associated probabilities for each
branching point [1][2], or in the form of a Markov model [3],[4],[5],[6]. We show in

2 See http://www.google.com/googlebooks/chrome/, page 10 for a graphical illustration.

this paper how one can extract, from a given set of execution sequences, a user model
that is a combination of an execution tree and a traditional Markov model. We first
construct the execution tree from the given set of execution sequences. The upper
branches of the tree have usually been executed a large number of times which means
that good statistical information is available for the branching probabilities. This part
of our model is called the “upper tree”. For the lower branches of the tree, however,
there are usually only one or a few executions that have been observed; therefore the
statistical information about branching probabilities is very weak. We therefore
remove these lower branches and combine them into a Markov model for which the
branching probabilities are obtained from the union of all the lower branches. This
part of our model is called “lower Markov model”. Our resulting user model is
therefore a Markov model which contains two parts, the “upper tree” and the “lower
Markov model”.

The “lower Markov model” is a traditional (first-order) Markov model where each
state of the model corresponds to a state of the application. However, the “upper tree”
is a higher-order Markov model which may contain several different Markov states
corresponding to the same application state; this is the case when the behavior of the
user does not only depend on the current application state, but also on the path which
was taken to get to this state. In contrast to other statistical modeling methods starting
out with observed execution sequences that can only model dependencies on previous
states up to a limited number of interactions [7],[8] our “upper tree” can model
dependencies on previous application state for arbitrarily long state sequences.

This paper is structured as follows. Section 2 presents an overview of Markov
usage models and their application in reliability testing, followed by a brief review of
previous work on Markov usage models in Web applications. Section 3 presents a
detailed description of our hybrid Markov usage model. In Section 4, we present the
results of experiments conducted with real data. In Section 5, we give our conclusions
and present our plans for future research.

2 Review Markov Usage Model

Markov models are commonly used to model usage patterns and to establish
reliability estimations because they are compact, simple to understand and based on
well-established theory. K. Goseva-Popstojanova and K. S. Trivedi used Markov
renewal processes to estimate software reliability [9],[10], but they did not use the
usage model. Markov chains have been used extensively over the past two decades in
the domain of statistical usage testing for software. In 1994, Whittaker and Thomason
[3] explained how to use a Markov-chain-based model of software usage to perform
statistical testing. Random walks on the model are performed to generate test
sequences. These test sequences are applied to the implementation and the test
experiment is run until enough data is gathered for the implementation under test.
More recently, MaTeLo, an industrial tool also used Markov chains to model usage
profiles, generate test cases, debug and estimate software reliability [4], [5], [11].

In Web applications reliability testing, a Markov chain model can be constructed
from log files. When users visit a Web site, Web servers record their interactions with
the Web site in a log file. The log file usually contains data such as the user’s IP
address, viewing time, required page URL, status, and browser agent. After some
massaging of the data, it is possible to infer from the log files a reliable set of user
sessions (see e.g. [12],[13],[14] for detailed explanations of how to obtain sessions
from Web log files). Figure 1(a) illustrates the principle of building a Markov chain
from log files. In this example, the Web pages being visited (identified in practice by
their URLs) belong to the set {1, 2, 3, 4, 5}. In the following, we call such pages
“application states”. From the log files, visiting sessions have been reconstructed.
Artificial starting state S and terminating state T are added to theses sessions for
simplicity. Some of the reconstructed sessions may be identical if several users have
followed the same sequence of pages on the Web site. We combine such sessions
going through the same sequence of application states, to obtain what we call
“application state sequences”. In the figure, the column Nb shows how many times
each application state sequence was followed. Figure 1.b presents the traditional
Markov chain model for these sessions. In the Markov chain, the edges are labeled
with probabilities representing the distribution of the user’s choice for the next state
from the current one.

Fig. 1. An example of a traditional Markov Chain model: (a) a collection of application state

sequences and (b) the corresponding traditional Markov chain model
Traditional Markov models are simple and compact, but they have also limitations

when used to model usage profiles. In Web applications, a traditional Markov model,
sometimes called first-order Markov model, captures the page-to-page transition
probabilities: p(x2|x1) where x1 denotes the current page and x2 denotes one of pages
reachable from x1. Such low order Markov models cannot capture behavior where the
choice of the next page to be visited depends on “history”, that is, on how the current
application state was reached. For example, in an e-commerce site, after adding an
item to the shopping card, the user would typically either “proceed to checkout” or
“continue shopping”. The probability of doing one or the other is certainly not
identical after adding one item, after adding two items etc. Another example is shown
in Figure 1: In the snippet of a traditional Markov usage model (b), we see that there
are three ways to reach state 3 (from state 1, from state 2 and from state S), and that
from state 3, there is 30% chance to go to state 4, and 70% chances to go the state 5.
However, looking at the provided application state sequences, we can see that users
reaching state 3 from state 1 never go to state 4 afterwards. What is shown in the
traditional Markov chain is misleading. Since it is reasonable that most Web
applications involve such history-dependent behavior, accurate models of user

behavior cannot be obtained with first order Markov chains [15]. The same problem is
also discussed by Deshpande and Karypis [16]. Thus, a good usage model requires
higher-order Markov chains.

A higher-order Markov model has already been explored by Borges and Levene in
2000 to extract user navigation patterns by using a Hypertext Probabilistic Grammar
model structure (HPG) and N-grams [7]. In their work, an N-gram captures user
behavior over a subset of N consecutive pages. They assume that only the N-1
previous pages have a direct effect on the probability of the next page selected. To
capture this, they reuse the concept of “gram” taken from the domain of probability
language learning [17]. Consider, for example, a web site composed of six states {A1,
A2, A3, A4, A5, A6}. The observed application state sequences are given in Table 1
(Nb denotes the number of occurrences of each sequence).

Table 1. A collection of application state sequences
Application State Sequences Nb

A1-A2-A3 3
A1-A2-A4 1
A5-A2-A4 3
A5-A2-A6 1

A bigram model is established using first-order probabilities. That is, the
probability of the next choice depends only on the current position and is given by the
frequency of the bigram divided by the overall frequency of all bigrams with the same
current position. In the example of Table 1, if we are interested in the probabilities of
choices from application state A2, we have to consider bigrams (sequences including
two application states) that start with state A2. This includes the following:
Segment A2-A3 has a frequency of 3, and other bigrams with A2 in their current
position include the segments A2-A4 and A2-A6 whose frequency are 4 and 1,
respectively; therefore, p(A3|A2)=3/(3+4+1)=3/8. It is not difficult to see that the 2-
gram model is a first-order Markov chain, the traditional Markov usage model. The
second-order model is obtained by computing the relative frequencies of all trigrams,
and higher orders can be computed in a similar way. Figure 2 shows the 3-gram
model corresponding the sessions in Table 1.

Fig. 2. 3-gram model corresponding to the sessions given in Table 1

Subsequently, the same authors showed in 2004 how to use higher-order Markov
models in order to infer web usage from log files [8]. In this paper, they propose to
duplicate states for which the first-order probabilities induced by their out-links
diverge significantly from the corresponding second-order probabilities. Take Table 1
again as example. Consider state 2 and its one-order probability p(A3|A2)=3/8, and its
two-order probability p(A3|A1A2)=3/4. The large difference between p(A3|A2) and

p(A3|A1A2) indicates that coming from state A1 to state A2 is a significant factor on
the decision to visit A3 immediately afterwards. To capture this significant effect, they
split state A2 as illustrated in figure 3. A user-defined threshold defines how much the
first and second order probabilities must differ to force a state splitting. A k-means
clustering algorithm is used to decide how to distribute a state’s in-links between the
split states.

Fig. 3. An example of the cloning operation in dynamic clustering modeling

All these approaches focus on the last N-1 pages and will thus ignore effects
involving earlier pages visited. In addition, the fixed-order Markov model also has
some limitations in accuracy as pointed out by Jespersen, Pedersen and Thorhauge
[18].

3 Hybrid Tree-Like Markov Usage Model

In this section, we introduce a new method to infer a probabilistic behavioral
model from a collection of sessions extracted from the logs of a Web application. The
model draws from both a traditional Markov chain usage model and a tree of
application state sequences which is introduced in the next Section. The new usage
model contains a modified tree of state sequences that captures the most frequent
behaviors, and a traditional Markov chain model recording infrequent behavior.

Table 2. A collections of Application state sequences
Application State Sequence Nb
S-1-1-3-5-T 1
S-1-3-2-1-2-4-T 4
S-1-3-2-2-4-T 9
S-2-3-4-2-2-4-T
S-2-3-4-4-T
S-2-3-4-2-3-4-T
S-3-3-4-2-4-T
S-3-3-4-2-T
S-3-3-4-4-T
S-3-2-2-3-4-T
S-3-2-2-5-T
S-3-2-4-5-T
S-3-2-4-3-5-T
S-3-T

4
21
14
23
4
33
4
4
4
4
2

The usage model is built from a collection of user sessions, to which we add a
common starting and terminating state. Again, different users can go over the same

application states during their sessions. We group sessions in “application state
sequences”, as discussed above. Table 2 shows an example, along with the number of
times each state sequence occurs in the log files.

3.1 Building the Tree of Sequences

The tree of sequences (TS for short) is constructed from the given state sequences
by combining their longest prefix. Each node in the tree, called model state,
corresponds to an application state (e.g. the URL of the current page), but each
application state has in general several corresponding model states. The tree captures
the application state sequence that was followed to reach a given model state; this
“history” corresponds to the path from the root of the tree to the model state. This is
unlike the traditional Markov chain usage model where there is a one-to-one mapping
between application states and model states. In addition, each edge of the tree is
labeled with the number of application state sequences that go over this particular
branch. Figure 4 shows the TS model built from the state sequences listed in Table 2.
One major advantage of the TS model is that it can be used to see the conditional
distribution of the next state choice based on the full history. For example, the
probability of choosing state 2 from state 4 after the state sequence 2-3-4 is p(2|2‐3‐
4)=18/39 while the probability of choosing state 4 under the same circumstances is
p(4|2‐3‐4)=21/39.

Fig. 4. The tree of sequences captured from Table 2

Despite its strengths, the TS model has many weaknesses. One major disadvantage
is the fact that the probabilities calculated for each transition might not be reliable if
the state sequences have not been followed very often. Since the tree tends to be very
wide there are many such sequences. And long sequences tend to be less and less
representative the longer they go (that is, many users may have followed a prefix of
the sequence, but few have followed it to the end). In addition, we mention that (a) it

tends to be fairly large, (b) it is not adequate for creating new test cases, and (c) it
does not pinpoint common user behavior across different leading state sequences.

3.2 Frequency-pruned TS model

To overcome some of the problems of the TS model, we first apply a simple
technique that we call “frequency pruning”. This is based on the observation that
model states that occur with low frequency in the application state sequences do not
carry reliable information from a statistical point of view. We note that, for such
states, the estimation of the conditional probabilities will not be reliable [16].
Consequently, these low frequency branches can be eliminated from the tree without
affecting much the accuracy of the model. However, just applying such pruning
would impact the coverage that can be inferred from the model, since it removes some
low frequency but still very real branches. To avoid this problem, we do not discard
these pruned branches, instead we include the corresponding state sequences in the
“lower Markov model” (introduced below), which is a traditional Markov usage
model.

Fig. 5. Frequency-pruned TS Model

The amount of pruning in the TS model is controlled by a parameter, called
“frequency threshold” θ. When the calculated conditional probability of a branch is
lower than the frequency threshold, the branch is cut. Figure 5 shows the result of
pruning of the TS model of figure 4, with θ set at 10%. For example, we have
p(1|1)=1/14 < θ , therefore the branch 1-3-5-T is cut from the tree and will be used
when building the “lower Markov model”. The grey nodes in figure 5 represent
access point from the TS model to this Markov model.

3.3 Hybrid Markov Usage model

Our goal is to strike the right balance between the traditional Markov chain model
and the TS model. We want to have separate model states for the instances of
applications states when the user behavior is statistically different, and we want to
merge them into a single model state when the user behavior cannot be statistically
distinguished (be it that the users behaves identically or that we do not have enough
information to make the difference). Working from the two previous models, one
could start from the traditional Markov usage model and “split” states for which a
statistically different behavior can be found depending on the history, or one could
start from the TS model and “merge” states that are instances of the same application
state for which no significant behavior difference can be found (or even iterate on
merges and splits).

In this paper, we work from the frequency-pruned TS model and merge states. The
goal is thus to look at different model states which represent the same application
state and decide whether the recorded user behavior is statistically significantly
different. If so, the states must be kept apart, and otherwise the states are candidates to
be merged.

3.4 Independence Testing and State Merging

As shown in the example of Figure 7, the TS model contains in general many
model states that correspond to the same application state. For instance, the states 4.a,
4.b and 4.c all correspond to the application state 4. To simplify the user behavior
model, we would like to combine such states in order to reduce the number of states
in the model. However, this should only be done if the user behavior is the same (or
very similar) in the different merged states. We therefore have to answer the
following question for any pair of model states corresponding to the same application
state: Is the recorded user behavior statistically significantly different on these two
states? In other words, is the users’ behavior dependant on how they have reached this
application state? – If the answer is yes, then the model states should be kept
separated, otherwise they should be merged. An example is shown Figure 6 (a) where
the statistical user behavior is nearly identical in the two states 1.a and 1.b, and these
two states could therefore be merged leading to Figure 6 (b).

Fig. 6. An example of merging two model states

We note that the model states that are the successors of the states to be merged
must be identical for the two states to be merged, as shown by the example of Figure

6. This implies that the merging operations must be applied from the bottom-up
through the original tree-like TS model. We note that the terminal states labeled T can
be merged (because they have the same user behavior). However, the model states
that precede the final state, and many of the other preceding states, have only few
occurrences in the application state sequences inferred from the log files. Therefore
the statistical significance of these occurrences is not so strong; therefore a decision
for merging is difficult to make.

There are a number of statistical methods to answer to these questions. We will use
in the following the so-called “test of independence”, itself based on the chi-square
test (see for instance [19]). However, we note that the test of independence gives only
reliable answers when there is enough statistical information. The so-called “Cochran
criterion” states that in order to apply the test of independence, at most 20% of the
possible alternatives should have fewer than six instances in the sample set. As
discussed above, many of the model states in the lower part of the TS model will fail
the Cochran criterion and thus cannot be used for the test of independence since they
do not carry enough information to be statistically significant.

We therefore propose to merge into a single model state all TS model states that
correspond to a given application state and do not satisfy the Cochran criterion. These
merged states form what we called “lower Markov model” in the Introduction. For
our running example of Figure 5, we obtain after the application of the Cochran
criterion the model of Figure 7. The grey nodes form the “lower Markov model”. For
example, the model states 2.a, 2.b, 2.c, etc of Figure 5 were merged into the state 2.e
of Figure 7. For state 2.d in Figure 5, for instance, there are two choices to go to state
2.e or to state 4.e with the frequencies of 8 and 8 respectively. They are represented in
Figure 7 as state 2.d to state 2.e or state 4.e with frequencies 8 and 8, respectively.

Fig. 7. The model after pruning based on Cochran criterion

We note that the final “lower Markov model” will also include the application state
sequences of the tree branches that were pruned during the frequency-pruning phase

described in Section 3.2. The frequency-pruning steps is applied first to avoid running
into situations in which a model state traversed by a large number of application state
transitions still fails the Cochran criterion because a few very infrequent behavior
have been observed there (for example because of sessions created by web crawler).

After applying the Cochran criterion and constructing the “lower Markov model”,
we check the remaining model states in the “upper tree” for the possibility of merging
by applying the chi-square-based independence test in a bottom-to-top order. We
apply this test pairwise, even if there are more than two model states corresponding to
the same application state.

The value of chi-square indicates how good a fit we have between the frequency of
occurrence of observations in an observation sample and the expected frequencies
obtained from the hypothesized distribution. Assuming that we have k possible
observations and have observed ݋௜ሺ݅ ൌ 1, … ݇ሻ occurrences of observation i while
the expected frequencies are ݁௜ሺ݅ ൌ 1, … ݇ሻ , the value of chi-square is obtained by
Formula (1)
 χଶ ൌ ∑ ሺ୭౟ିୣ౟ሻమ

ୣ౟

୩
୧ୀଵ (1)

χ2 is a value of a random variable whose sampling distribution is approximated
very closely by the chi-square distribution for (k-1) degrees of freedom [19].

Let us consider the example shown in Table 3 below. It shows the observed
choices to application states 2 and 4 from the model states 4.a and 4.b (see Figure 7).
If we assume that these two model states can be merged, that is, the branching
probabilities to states 2.c and 4.c is almost identical, we can calculate these branching
probabilities by considering the union of all observed sessions going through states
4.a and 4.b (see last row in the table). This leads to the expected number of choices
indicated in the last two columns of the table. For instance, the probability of
choosing application state 2 is 45/99, and therefore the expected number of choices of
state 2 from model state 4.a is 45/99 * 39 = 17.73.

Table 3. Example of chi-square calculation
 Observed occurrences Expected occurrences
Next State 4.a 4.b total 4.a 4.b

2 18 27 45 17.73 27.27
4 21 33 54 21.27 32.73
total 39 60 99 39 60

Then we use the numbers in the table to calculate χ2 according to formula (1) for
model states 4.a and 4.b and take the average. The result is the χ2 value that we can
use to determine whether our hypothesis is valid for a given confidence level, using a
table of the chi-square distribution for one degree of freedom. In the case of our
example, we get a χ2 value of 0.0124. Since this value is smaller than χ଴.଴ହ

ଶ = 3.841 we
can say with confidence level of 95% that the model states 4.a and 4.b represent the
same user behavior, and the states can be merged, as shown in Figure 8.

We apply such merging tests to all pairs of model states that correspond to the
same application state and that have outgoing transitions to the same set of model

states3. This is done from the bottom of the “upper tree” towards its root. The states at
the bottom have transitions that lead to states of the “lower Markov model”, which are
already merged, thus the test can always be applied to these bottom states. If these
bottom states are merged, then the test can be applied to their parents and this keeps
going until the test fails. As already explained, one example of two states that can be
merged is states 4.a and 4.b (see Figure 7 and Figure 8). Once they are merged, some
states higher in the tree may become candidates for merging. In this example, the
parent nodes of 4.a and 4.b, namely nodes 3.a and 3.b, respectively, can also be
merged (because they have only one successor which is the same). Once all
candidates for merging have either been merged or are determined not to satisfy the
merging condition, then we obtain our final performance model, as shown for our
example in Figure 8.

Fig.8. Hybrid Markov model constructed by sessions in table 2

4 Experiment

We experimented our approach on a web site called Bigenet
(http://www.bigenet.org). Bigenet is a genealogy web site allowing access to
numerous registers – birth, baptism, marriage, death and burials – in France. Two
international exchange students, Christophe Günst and Marie-Aurélie Fund,
developed a tool which is able to generate a list of visiting sessions from the access
log files of the web server and the functional model of the application. The tool
follows the approach presented in [12]. We had at our disposal the access log files for
the period from September 2009 to September 2010. Table 4 presents a summary of
the characteristics of the visiting sessions during this period.

3 If some model states are reached by only one of the two states being tested, we assume that

the other state also reaches to the same states but with a probability 0.

Table 4. Summary Statstic for the data set from Bigenet.
Characteristics Bigenet

Num. of Application States
Num. of Request
Num. of Sessions
Num. of Application State Sequences
Ave. Session length
Max. Session length

30
900689
108346
27778
8.3132
301

We have developed a second tool that implements the model construction approach
described in Section 3. It creates the TS model from the list of application state
sequences inferred from the reconstructed sessions, and then performs the pruning,
Cochran merging and state merging based on independence tests. The TS model
constructed from the whole year of visiting sessions is very large, containing 348391
nodes in the tree. Figure 9 shows the TS model based on 1000 visiting sessions.

Table 5. Summary of experimental results
 All Set-1 Set-2 Set-3 Set-4

Num. of states in TS 348391 38652 38463 38336 42039
Num. of states after
frequency pruning

81364 12493 11796 12438 13066

Num. of states in “lower
Markov model”

30 30 29 30 29

Num. of states in “upper
tree” before merging

426 78 79 76 82

Num. of states in “upper
tree” after merging

337 65 68 65 68

Num. of independence
tests applied

108 17 15 15 18

Num. of mergings
performed

89 13 11 11 14

Execution time without
optimization4

3937ms 313ms 328ms 297ms 328ms

Table 5 shows the results of our analysis of these 108346 user sessions (see column
labeled “All”). The following parameters were used during our analysis: (a) the
pruning threshold was 5%; (b) the confidence level for the independence test was
95%.
We note that frequency-pruning and Cochran criteria leads to a user performance
model that has a very much reduced “upper tree” and a “lower Markov model” that
corresponds to the states of the application which in this case contains 30 states. The
merging of non-independent states in the “upper tree” leads in our case to a further
reduction of 20% of the model states. Most of the applied tests for merging succeeded.
The “upper tree” is shown Figure 10.

4 We coded all algorithms in NetBeans 6.9.1 and performed experiments on a 2.53GHz Intel

Core 2 P8700 laptop computer with 2.93 GB RAM.

Table 5 also shows similar results for several smaller sets of user sessions that were
selected randomly from the original visiting sessions. Each subset has 10000 sessions.
The results obtained for the different subsets of sessions are very similar to one
another. The number of model states in the “upper tree” is smaller than in the case of
all sessions, since the Cochran criterion removes more states from the TS model
because of the lower number of observations. As can be seen, the model that we
obtain is quite stable with different sets of sessions. The number of states in the
obtained user models varies little for the different subsets of sessions. Since the
“upper tree” part of the model is the most interesting, we show in Figure 11 the
“upper trees” for the sets of sessions Set-1 and Set-2. One can also see that these trees
closely resemble the upper part of the “upper tree” for all sessions, as shown in Figure
10. Due to the difficulty of defining a feature space and measurement method, we do
not discuss the similarity between the re-constructed web sessions and the real data in
this paper.

Fig. 9. The TS model created by 1000 visiting sessions.

Fig.10. The upper tree part of usage model, down from originally 348,391 states.

Fig. 11. Upper-tree part of usage models generated from Set-1 and Set-2

5 Conclusion and Future Work

In this paper, we have presented a method that can be used to create an accurate
statistical usage model for Web applications. This model is created from the
application log file, and can be used for reliability testing. Our method uses a tree
structure to preserve statistically significant information on user behavior, as gathered
from the log files. The initially very large tree is reduced in three steps: first,
frequency pruning removes the branches that are almost never followed. Then, a test
called Cochran criterion is used to remove states that do not carry reliable statistical
information. States removed during these two steps are merged into a traditional
Markov chain model (the “lower Markov chain”) that captures infrequent behaviors.
The pruned tree is further reduced through merging of model states corresponding to
the same application states and on which user behavior is statistically similar. The test
for similarity is a classical test of independence, and the resulting “tree”, which we
call the “upper tree”, contains the most frequent behaviors, which are statistically
significant. In our experiments, the resulting hybrid Markov usage model is
drastically smaller than the original tree of sequences, but still contains all the
significant behavioral and coverage information.

This improves on lower-order Markov usage models that contain usually all the
application states but cannot capture the user behavior accurately since they have no
concept of history. In our model, in the upper tree the entire history is preserved.
Other history-preserving higher-order Markov models, such as N-grams, exist but
come with their own set of limitations. For N-Grams, they do retain history of length
N-1, but cannot capture sessions of length less than N [16].

Our model still has shortcomings. A main one is its inability to identify some of the
common behavior, if the behavior occurs on branches that must be kept apart because
they lead to statistically different behavior lower down in the tree. Indeed, our state
merging process tends to merge states that are mostly toward the bottom of the tree.
To overcome this, we are planning to use either extended Finite State Machine
models or hierarchical models, in order to merge parts that are statistically identical
but are included inside larger sequences that are not. One may also improve the model
by introducing some history dependence in the “lower Markov model” by using, for
instance, the N-gram approach. The other major shortcoming of our current model is
that user inputs are not captured. The model must be enhanced to accommodate for a
statistically accurate representation of the inputs and their relation with the followed
path.

Acknowledgments: The authors wish to thank Marie-Aurélie Fund and Christophe
Günst for their work on this project. This work was supported in part by grants from
the Natural Sciences and Engineering Research Council of Canada.

Reference

1. S.A. Vilkomir, D.L. Parnas, V.B. Mendiratta and Eamonn Murphy, “Segregated Failures
Model for Availability Evaluation of Fault-Tolerant Systems” 29th Australasian Computer
Science Conference. Vol. 48 (2006)

2. W.Wang and M.Tang,f “User-Oriented Reliability Modeling for a Web System,” in
Proceedings of the 14th International Symposium on Software Reliability Engineering
(ISSRE’03), pp.1-12 (2003).

3. J.A. Whittaker and M.G. Thomason, “A Markov Chain Model for Statistical Software
Testing,” IEEE Trans. Software Eng., Vol. 20, No. 10, pp.812–824.(1994)

4. H. Le Guen, R Marie, and T Thelin. “Reliability Estimation for Statistical Usage Testing
using Markov Chains”. In ISSRE '04: Proceedings of the 15th International Symposium on
Software Reliability Engineering, pages 54-65, Washington, DC, USA. IEEE Computer
Society.(2004)

5. W. Dulz, F. Zhen, “MaTeLo—statistical usage testing by annotated sequence diagrams,
Markov chains, and TTCN-3”, In Proceedings of Third International Conference On Quality
Software (QSIC’03), IEEE, (2003).

6. Kirk Sayre. Improved Techniques for Software Testing Based on Markov Chain Usage
Models. PhD thesis, University of Tennessee. (1999)

7. Borges, J. “A Data Mining Model to Capture User Web Navigation.” PhD thesis, University
College London, London Uiversity, (2000).

8. Borges, J and Levene, M: “A dynamic clustering-based Markov model for web usage
mining”. In CoRR:the computing research repository. cs.IR/0406032 (2004).

9. K.Goseva-Popstojanova and K.S.Trivedi, “Failure Correlation in Software Reliability
Models”, IEEE Trans. on Reliability, Vol.49, pp. 37-48.(2000)

10. K.Goseva-Popstojanova, M.Hamill, "Estimating the Probability of Failure When Software
Runs Are Dependent: An Empirical Study," 20th International Symposium on Software
Reliability Engineering, issre, pp.21-30, (2009)

11. A. Feliachi and H. Le Guen, “Generating transition probabilities for automatic model-based
test generation”, Third International Conference on Software Testing, Verification and
Validation, pp. 99-102 (2010)

12. R. Cooley, B. Mobasher, and J. Srivastava, “Data Preparation for Mining World Wide Web
Browsing Patterns,” Knowledge and Information Systems, vol. 1, no. 1, Feb. 1999, pp. 5–
32.(1999)

13. J. Pei et al., “Mining Access Patterns Efficiently from Web Logs,” Proc. Pacific-Asia Conf.
on Knowledge Discovery and Data Mining, Springer-Verlag, New York, 2000, pp. 396–
407.(2000)

14. K.W. Miller, et. al., “Estimating the Probability of Failure When Testing Reveals No
Failures”, IEEE Transactions on Software Engineering, Vol 18, pp 33-42.(1992)

15. Peter L.T. Pirolli and James E. Pitkow: “Distributions of surfers’ paths through the world
wide web: Empirical characterizations.” World Wide Web pp. 29–45. (1999)

16. M. Deshpande, G. Karypis, “Selective Markov Models for Predicting Web-Page Accesses”,
in Proc. of the 1st SIAM International Conference on Data Mining, (2001)

17. Charniak, E. Statistical Language Learning. The MIT Press, Cambridge, Massachusetts.
(1996)

18. Jespersen, S, Pedersen, T. B, and Thorhauge, J: “Evaluating the markov assumption for web
usage mining”, In Proceeding of the Fifth International Workshop on Web Information and
Data Management (WIDM'03), pp. 82-89 (2003)

19. Ronald E.Walpole and Raymond H.Myers, “Probability and Statistics for Engineers and
Scientists”, Fifth Edition, published byMacmillan publishing company (1993)

