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Improved Usage Model for Web Application Reliability 
Testing 

Gregor v. Bochmann, Guy-Vincent Jourdan, Bo Wan 

School of Information Technology & Engineering, University of Ottawa, Ottawa, Canada 
{ bochmann, gvj, bwan080}@ site.uottawa.ca 

Abstract. Testing the reliability of an application usually requires a good usage 
model that accurately captures the likely sequences of inputs that the 
application will receive from the environment. The models being used in the 
literature are mostly based on Markov chains. They are used to generate test 
cases that are statistically close to what the application is expected to receive 
when in production. In this paper, we study the specific case of web 
applications. We present a model that is created directly from the log file of the 
application. This model is also based on Markov chains and has two 
components: one component, based on a modified tree, captures the most 
frequent behavior, while the other component is another Markov chain that 
captures infrequent behaviors. The result is a statistically correct model that 
exhibits clearly what most users do on the site. We present an experimental 
study on the log of a real web site and discuss strength and weakness of the 
model for reliability testing. 
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1 Introduction 

Many formal testing techniques are directed towards what is sometimes called 
“debug techniques”: the goal is to fulfill some given criteria (branch coverage, all-
uses coverage, all paths, all code and many others), or uncover every fault1 using 
some restricted fault models (checking experiments). However, in practice, non-trivial 
applications are simply not expected to ever be failure-free, thus the purpose of a 
realistic testing campaign cannot be to find all the faults. Given that only some of the 
failures will be uncovered, it only makes sense to question which ones will be found 
by a testing method. Note that in a realistic setting, failures are always ranked by 
importance.  

                                                           
1 In this document, a “fault” in the application source code leads to a “failure” at execution 

time. A “test sequence” is a sequence of interactions between the testing environment (e.g. 
the tester) and the tested application. “Test input data” is the data that is input during the 
execution of the test sequence. A test sequence, valued with test input data, is a “test case”. 
A test case may uncover a failure, due to one (or more) fault. 



In this paper, we are interested in testing the reliability of an application. For a 
material system, reliability is usually defined by the expected time of operation after 
which the system will fail. In the case of a software system, it can be defined by the 
expected number of usages before it will fail. A usage, in this context, may be a 
request provided by the environment, or a complete usage session, for instance in the 
case of an application with an interface to a human user.  Clearly, the occurrence of a 
failure of a software system is dependent on the input provided. In order to test the 
reliability of an application, it is therefore important to apply inputs that reflect the 
behavior of the environment of the application in the normal operating conditions. 
This is sometimes called “operational testing”. In this context, it is important to test 
first those behavior patterns that occur most frequently under normal operating 
conditions. This idea has been applied with great success on certain large software 
projects: Google was for example able to deliver an internet browser, Chrome, that 
was remarkably reliable from its first release, not necessarily because it was tested 
against more web pages than the other browsers, but because it was tested against the 
web pages that Google knew people were most looking at2.  

There are essentially two methods for obtaining a realistic model of the behavior of 
the environment of the application to be tested for reliability: 
1. Environment model based on the application model: If the functional behavior 

requirements of the application are given in the form of an abstract model, for 
instance in the form of a UML state machine model, this model can be easily 
transformed into a model of the environment by exchanging input and output 
interactions. However, for obtaining an environment model useful for reliability 
testing, this functional model must be enhanced with statistical performance 
information about the frequency of the different inputs applied to the application 
in the different states of the environment. This may be formalized in terms of a 
Markov model based on the states of the abstract functional application model.  

2. Environment model extracted from observed execution traces in a realistic 
environment: Independently of any model of the application that may be 
available, a model of the dynamic behavior of the environment may be extracted 
from the observation of a large number of execution traces that have occurred in 
a realistic setting.  

In this paper, we pursue the second approach. We assume that the application to be 
tested is a Web application. We make the assumption that after each input by the user, 
the response from the web server provides information about the functional state of 
the application. In the case of traditional web applications, the state information is 
given by the URL of the page that is returned. In the case of Rich Internet 
Applications (RIA), we consider that the content of the returned web page, that is the 
DOM of this page, represents the application state, assuming that there is no hidden 
state information stored in the server.  

In previous work on reliability testing, the user model is usually either given in the 
form of a tree of possible execution sequences with associated probabilities for each 
branching point [1][2], or in the form of a Markov model [3],[4],[5],[6]. We show in 

                                                           
2 See http://www.google.com/googlebooks/chrome/, page 10 for a graphical illustration. 



   

this paper how one can extract, from a given set of execution sequences, a user model 
that is a combination of an execution tree and a traditional Markov model. We first 
construct the execution tree from the given set of execution sequences. The upper 
branches of the tree have usually been executed a large number of times which means 
that good statistical information is available for the branching probabilities. This part 
of our model is called the “upper tree”. For the lower branches of the tree, however, 
there are usually only one or a few executions that have been observed; therefore the 
statistical information about branching probabilities is very weak. We therefore 
remove these lower branches and combine them into a Markov model for which the 
branching probabilities are obtained from the union of all the lower branches. This 
part of our model is called “lower Markov model”. Our resulting user model is 
therefore a Markov model which contains two parts, the “upper tree” and the “lower 
Markov model”.  

The “lower Markov model” is a traditional (first-order) Markov model where each 
state of the model corresponds to a state of the application. However, the “upper tree” 
is a higher-order Markov model which may contain several different Markov states 
corresponding to the same application state; this is the case when the behavior of the 
user does not only depend on the current application state, but also on the path which 
was taken to get to this state. In contrast to other statistical modeling methods starting 
out with observed execution sequences that can only model dependencies on previous 
states up to a limited number of interactions [7],[8] our “upper tree” can model 
dependencies on previous application state for arbitrarily long state sequences. 

This paper is structured as follows. Section 2 presents an overview of Markov 
usage models and their application in reliability testing, followed by a brief review of 
previous work on Markov usage models in Web applications.  Section 3 presents a 
detailed description of our hybrid Markov usage model. In Section 4, we present the 
results of experiments conducted with real data. In Section 5, we give our conclusions 
and present our plans for future research. 

2 Review Markov Usage Model 

Markov models are commonly used to model usage patterns and to establish 
reliability estimations because they are compact, simple to understand and based on 
well-established theory. K. Goseva-Popstojanova and K. S. Trivedi used Markov 
renewal processes to estimate software reliability [9],[10], but they did not use the 
usage model. Markov chains have been used extensively over the past two decades in 
the domain of statistical usage testing for software. In 1994, Whittaker and Thomason 
[3] explained how to use a Markov-chain-based model of software usage to perform 
statistical testing. Random walks on the model are performed to generate test 
sequences. These test sequences are applied to the implementation and the test 
experiment is run until enough data is gathered for the implementation under test. 
More recently, MaTeLo, an industrial tool also used Markov chains to model usage 
profiles, generate test cases, debug and estimate software reliability [4], [5], [11].  



In Web applications reliability testing, a Markov chain model can be constructed 
from log files. When users visit a Web site, Web servers record their interactions with 
the Web site in a log file. The log file usually contains data such as the user’s IP 
address, viewing time, required page URL, status, and browser agent. After some 
massaging of the data, it is possible to infer from the log files a reliable set of user 
sessions (see e.g. [12],[13],[14] for detailed explanations of how to obtain sessions 
from Web log files). Figure 1(a) illustrates the principle of building a Markov chain 
from log files. In this example, the Web pages being visited (identified in practice by 
their URLs) belong to the set {1, 2, 3, 4, 5}. In the following, we call such pages 
“application states”. From the log files, visiting sessions have been reconstructed. 
Artificial starting state S and terminating state T are added to theses sessions for 
simplicity. Some of the reconstructed sessions may be identical if several users have 
followed the same sequence of pages on the Web site. We combine such sessions 
going through the same sequence of application states, to obtain what we call 
“application state sequences”. In the figure, the column Nb shows how many times 
each application state sequence was followed. Figure 1.b presents the traditional 
Markov chain model for these sessions. In the Markov chain, the edges are labeled 
with probabilities representing the distribution of the user’s choice for the next state 
from the current one.  

 
Fig. 1. An example of a traditional Markov Chain model: (a) a collection of application state 

sequences and (b) the corresponding traditional Markov chain model  
Traditional Markov models are simple and compact, but they have also limitations 

when used to model usage profiles. In Web applications, a traditional Markov model, 
sometimes called first-order Markov model, captures the page-to-page transition 
probabilities: p(x2|x1) where x1 denotes the current page and x2 denotes one of pages 
reachable from x1. Such low order Markov models cannot capture behavior where the 
choice of the next page to be visited depends on “history”, that is, on how the current 
application state was reached. For example, in an e-commerce site, after adding an 
item to the shopping card, the user would typically either “proceed to checkout” or 
“continue shopping”. The probability of doing one or the other is certainly not 
identical after adding one item, after adding two items etc. Another example is shown 
in Figure 1: In the snippet of a traditional Markov usage model (b), we see that there 
are three ways to reach state 3 (from state 1, from state 2 and from state S), and that 
from state 3, there is 30% chance to go to state 4, and 70% chances to go the state 5. 
However, looking at the provided application state sequences, we can see that users 
reaching state 3 from state 1 never go to state 4 afterwards. What is shown in the 
traditional Markov chain is misleading. Since it is reasonable that most Web 
applications involve such history-dependent behavior, accurate models of user 



   

behavior cannot be obtained with first order Markov chains [15]. The same problem is 
also discussed by Deshpande and Karypis [16]. Thus, a good usage model requires 
higher-order Markov chains.  

A higher-order Markov model has already been explored by Borges and Levene in 
2000 to extract user navigation patterns by using a Hypertext Probabilistic Grammar 
model structure (HPG) and N-grams [7]. In their work, an N-gram captures user 
behavior over a subset of N consecutive pages. They assume that only the N-1 
previous pages have a direct effect on the probability of the next page selected. To 
capture this, they reuse the concept of “gram” taken from the domain of probability 
language learning [17]. Consider, for example, a web site composed of six states {A1, 
A2,  A3,  A4,  A5,  A6}. The observed application state sequences are given in Table 1 
(Nb denotes the number of occurrences of each sequence). 

Table 1. A collection of application state sequences 
Application State Sequences Nb 

A1-A2-A3 3 
A1-A2-A4 1 
A5-A2-A4 3 
A5-A2-A6 1 

A bigram model is established using first-order probabilities. That is, the 
probability of the next choice depends only on the current position and is given by the 
frequency of the bigram divided by the overall frequency of all bigrams with the same 
current position. In the example of Table 1, if we are interested in the probabilities of 
choices from application state A2, we have to consider bigrams (sequences including 
two application states) that start with state A2. This includes the following: 
Segment A2-A3 has a frequency of 3, and other bigrams with A2 in their current 
position include the segments A2-A4 and A2-A6 whose frequency are 4 and 1, 
respectively; therefore, p(A3|A2)=3/(3+4+1)=3/8. It is not difficult to see that the 2-
gram model is a first-order Markov chain, the traditional Markov usage model. The 
second-order model is obtained by computing the relative frequencies of all trigrams, 
and higher orders can be computed in a similar way. Figure 2 shows the 3-gram 
model corresponding the sessions in Table 1. 

 
Fig. 2. 3-gram model corresponding to the sessions given in Table 1 

Subsequently, the same authors showed in 2004 how to use higher-order Markov 
models in order to infer web usage from log files [8]. In this paper, they propose to 
duplicate states for which the first-order probabilities induced by their out-links 
diverge significantly from the corresponding second-order probabilities. Take Table 1 
again as example. Consider state 2 and its one-order probability p(A3|A2)=3/8, and its 
two-order probability p(A3|A1A2)=3/4. The large difference between  p(A3|A2) and 



p(A3|A1A2) indicates that coming from state A1 to state A2  is a significant factor on 
the decision to visit A3 immediately afterwards. To capture this significant effect, they 
split state A2 as illustrated in figure 3. A user-defined threshold defines how much the 
first and second order probabilities must differ to force a state splitting. A k-means 
clustering algorithm is used to decide how to distribute a state’s in-links between the 
split states.  

 
Fig. 3. An example of the cloning operation in dynamic clustering modeling 

All these approaches focus on the last N-1 pages and will thus ignore effects 
involving earlier pages visited. In addition, the fixed-order Markov model also has 
some limitations in accuracy as pointed out by Jespersen, Pedersen and Thorhauge    
[18].  

3 Hybrid Tree-Like Markov Usage Model 

In this section, we introduce a new method to infer a probabilistic behavioral 
model from a collection of sessions extracted from the logs of a Web application. The 
model draws from both a traditional Markov chain usage model and a tree of 
application state sequences which is introduced in the next Section. The new usage 
model contains a modified tree of state sequences that captures the most frequent 
behaviors, and a traditional Markov chain model recording infrequent behavior.  

Table 2. A collections of Application state sequences 
Application State Sequence Nb 
S-1-1-3-5-T 1 
S-1-3-2-1-2-4-T 4 
S-1-3-2-2-4-T 9 
S-2-3-4-2-2-4-T 
S-2-3-4-4-T 
S-2-3-4-2-3-4-T 
S-3-3-4-2-4-T 
S-3-3-4-2-T 
S-3-3-4-4-T 
S-3-2-2-3-4-T 
S-3-2-2-5-T 
S-3-2-4-5-T 
S-3-2-4-3-5-T 
S-3-T 

4 
21 
14 
23 
4 
33 
4 
4 
4 
4 
2 

The usage model is built from a collection of user sessions, to which we add a 
common starting and terminating state. Again, different users can go over the same 



   

application states during their sessions. We group sessions in “application state 
sequences”, as discussed above. Table 2 shows an example, along with the number of 
times each state sequence occurs in the log files. 

3.1 Building the Tree of Sequences 

The tree of sequences (TS for short) is constructed from the given state sequences 
by combining their longest prefix. Each node in the tree, called model state, 
corresponds to an application state (e.g. the URL of the current page), but each 
application state has in general several corresponding model states. The tree captures 
the application state sequence that was followed to reach a given model state; this 
“history” corresponds to the path from the root of the tree to the model state. This is 
unlike the traditional Markov chain usage model where there is a one-to-one mapping 
between application states and model states. In addition, each edge of the tree is 
labeled with the number of application state sequences that go over this particular 
branch. Figure 4 shows the TS model built from the state sequences listed in Table 2. 
One major advantage of the TS model is that it can be used to see the conditional 
distribution of the next state choice based on the full history. For example, the 
probability of choosing state 2 from state 4 after the state sequence 2-3-4 is p(2|2‐3‐
4)=18/39  while the probability of choosing state 4 under the same circumstances is 
p(4|2‐3‐4)=21/39. 

 
Fig. 4. The tree of sequences captured from Table 2 

Despite its strengths, the TS model has many weaknesses. One major disadvantage 
is the fact that the probabilities calculated for each transition might not be reliable if 
the state sequences have not been followed very often. Since the tree tends to be very 
wide there are many such sequences. And long sequences tend to be less and less 
representative the longer they go (that is, many users may have followed a prefix of 
the sequence, but few have followed it to the end). In addition, we mention that (a) it 



tends to be fairly large, (b) it is not adequate for creating new test cases, and (c) it 
does not pinpoint common user behavior across different leading state sequences.  

3.2 Frequency-pruned TS model  

To overcome some of the problems of the TS model, we first apply a simple 
technique that we call “frequency pruning”. This is based on the observation that 
model states that occur with low frequency in the application state sequences do not 
carry reliable information from a statistical point of view. We note that, for such 
states, the estimation of the conditional probabilities will not be reliable [16]. 
Consequently, these low frequency branches can be eliminated from the tree without 
affecting much the accuracy of the model. However, just applying such pruning 
would impact the coverage that can be inferred from the model, since it removes some 
low frequency but still very real branches. To avoid this problem, we do not discard 
these pruned branches, instead we include the corresponding state sequences in the 
“lower Markov model” (introduced below), which is a traditional Markov usage 
model.  

 
Fig. 5. Frequency-pruned TS Model 

The amount of pruning in the TS model is controlled by a parameter, called 
“frequency threshold” θ. When the calculated conditional probability of a branch is 
lower than the frequency threshold, the branch is cut. Figure 5 shows the result of 
pruning of the TS model of figure 4, with θ set at 10%. For example, we have 
p(1|1)=1/14  <  θ , therefore the branch 1-3-5-T is cut from the tree and will be used 
when building the “lower Markov model”. The grey nodes in figure 5 represent 
access point from the TS model to this Markov model.  



   

3.3 Hybrid Markov Usage model  

Our goal is to strike the right balance between the traditional Markov chain model 
and the TS model. We want to have separate model states for the instances of 
applications states when the user behavior is statistically different, and we want to 
merge them into a single model state when the user behavior cannot be statistically 
distinguished (be it that the users behaves identically or that we do not have enough 
information to make the difference). Working from the two previous models, one 
could start from the traditional Markov usage model and “split” states for which a 
statistically different behavior can be found depending on the history, or one could 
start from the TS model and “merge” states that are instances of the same application 
state for which no significant behavior difference can be found (or even iterate on 
merges and splits). 

In this paper, we work from the frequency-pruned TS model and merge states. The 
goal is thus to look at different model states which represent the same application 
state and decide whether the recorded user behavior is statistically significantly 
different. If so, the states must be kept apart, and otherwise the states are candidates to 
be merged.  

3.4 Independence Testing and State Merging  

As shown in the example of Figure 7, the TS model contains in general many 
model states that correspond to the same application state. For instance, the states 4.a, 
4.b and 4.c all correspond to the application state 4. To simplify the user behavior 
model, we would like to combine such states in order to reduce the number of states 
in the model. However, this should only be done if the user behavior is the same (or 
very similar) in the different merged states. We therefore have to answer the 
following question for any pair of model states corresponding to the same application 
state:  Is the recorded user behavior statistically significantly different on these two 
states? In other words, is the users’ behavior dependant on how they have reached this 
application state? – If the answer is yes, then the model states should be kept 
separated, otherwise they should be merged. An example is shown Figure 6 (a) where 
the statistical user behavior is nearly identical in the two states 1.a and 1.b, and these 
two states could therefore be merged leading to Figure 6 (b). 

 
Fig. 6. An example of merging two model states 

We note that the model states that are the successors of the states to be merged 
must be identical for the two states to be merged, as shown by the example of Figure 



6. This implies that the merging operations must be applied from the bottom-up 
through the original tree-like TS model. We note that the terminal states labeled T can 
be merged (because they have the same user behavior). However, the model states 
that precede the final state, and many of the other preceding states, have only few 
occurrences in the application state sequences inferred from the log files. Therefore 
the statistical significance of these occurrences is not so strong; therefore a decision 
for merging is difficult to make.  

There are a number of statistical methods to answer to these questions. We will use 
in the following the so-called “test of independence”, itself based on the chi-square 
test (see for instance [19]). However, we note that the test of independence gives only 
reliable answers when there is enough statistical information. The so-called “Cochran 
criterion” states that in order to apply the test of independence, at most 20% of the 
possible alternatives should have fewer than six instances in the sample set. As 
discussed above, many of the model states in the lower part of the TS model will fail 
the Cochran criterion and thus cannot be used for the test of independence since they 
do not carry enough information to be statistically significant. 

We therefore propose to merge into a single model state all TS model states that 
correspond to a given application state and do not satisfy the Cochran criterion. These 
merged states form what we called “lower Markov model” in the Introduction. For 
our running example of Figure 5, we obtain after the application of the Cochran 
criterion the model of Figure 7. The grey nodes form the “lower Markov model”. For 
example, the model states 2.a, 2.b, 2.c, etc of Figure 5 were merged into the state 2.e 
of Figure 7. For state 2.d in Figure 5, for instance, there are two choices to go to state 
2.e or to state 4.e with the frequencies of 8 and 8 respectively. They are represented in 
Figure 7 as state 2.d to state 2.e or state 4.e with frequencies 8 and 8, respectively. 

 
Fig. 7. The model after pruning based on Cochran criterion 

We note that the final “lower Markov model” will also include the application state 
sequences of the tree branches that were pruned during the frequency-pruning phase 



   

described in Section 3.2. The frequency-pruning steps is applied first to avoid running 
into situations in which a model state traversed by a large number of application state 
transitions still fails the Cochran criterion because a few very infrequent behavior 
have been observed there (for example because of sessions created by web crawler). 

After applying the Cochran criterion and constructing the “lower Markov model”, 
we check the remaining model states in the “upper tree” for the possibility of merging 
by applying the chi-square-based independence test in a bottom-to-top order. We 
apply this test pairwise, even if there are more than two model states corresponding to 
the same application state.   

The value of chi-square indicates how good a fit we have between the frequency of 
occurrence of observations in an observation sample and the expected frequencies 
obtained from the hypothesized distribution. Assuming that we have k possible 
observations and have observed ݋௜ሺ݅ ൌ  1, …  ݇ሻ occurrences of observation i while 
the expected frequencies are ݁௜ሺ݅ ൌ  1, …  ݇ሻ , the value of chi-square is obtained by 
Formula (1)  
 χଶ ൌ ∑ ሺ୭౟ିୣ౟ሻమ

ୣ౟

୩
୧ୀଵ  (1) 

χ2 is a value of a random variable whose sampling distribution is approximated 
very closely by the chi-square distribution for (k-1) degrees of freedom [19].  

Let us consider the example shown in Table 3 below. It shows the observed 
choices to application states 2 and 4 from the model states 4.a and 4.b (see Figure 7). 
If we assume that these two model states can be merged, that is, the branching 
probabilities to states 2.c and 4.c is almost identical, we can calculate these branching 
probabilities by considering the union of all observed sessions going through states 
4.a and 4.b (see last row in the table). This leads to the expected number of choices 
indicated in the last two columns of the table. For instance, the probability of 
choosing application state 2 is 45/99, and therefore the expected number of choices of 
state 2 from model state 4.a is 45/99 * 39 = 17.73. 

Table 3. Example of chi-square calculation 
 Observed occurrences  Expected occurrences 
Next State  4.a 4.b  total  4.a 4.b 

2  18 27  45  17.73 27.27 
4  21 33  54  21.27 32.73 
total  39 60  99  39 60 

Then we use the numbers in the table to calculate χ2 according to formula (1) for 
model states 4.a and 4.b and take the average. The result is the χ2 value that we can 
use to determine whether our hypothesis is valid for a given confidence level, using a 
table of the chi-square distribution for one degree of freedom. In the case of our 
example, we get a χ2 value of 0.0124. Since this value is smaller than χ଴.଴ହ

ଶ = 3.841 we 
can say with confidence level of 95% that the model states 4.a and 4.b represent the 
same user behavior, and the states can be merged, as shown in Figure 8.  

We apply such merging tests to all pairs of model states that correspond to the 
same application state and that have outgoing transitions to the same set of model 



states3. This is done from the bottom of the “upper tree” towards its root. The states at 
the bottom have transitions that lead to states of the “lower Markov model”, which are 
already merged, thus the test can always be applied to these bottom states. If these 
bottom states are merged, then the test can be applied to their parents and this keeps 
going until the test fails. As already explained, one example of two states that can be 
merged is states 4.a and 4.b (see Figure 7 and Figure 8). Once they are merged, some 
states higher in the tree may become candidates for merging. In this example, the 
parent nodes of 4.a and 4.b, namely nodes 3.a and 3.b, respectively, can also be 
merged (because they have only one successor which is the same).  Once all 
candidates for merging have either been merged or are determined not to satisfy the 
merging condition, then we obtain our final performance model, as shown for our 
example in Figure 8. 

 
Fig.8. Hybrid Markov model constructed by sessions in table 2 

4 Experiment  

We experimented our approach on a web site called Bigenet 
(http://www.bigenet.org). Bigenet is a genealogy web site allowing access to 
numerous registers – birth, baptism, marriage, death and burials – in France. Two 
international exchange students, Christophe Günst and Marie-Aurélie Fund, 
developed a tool which is able to generate a list of visiting sessions from the access 
log files of the web server and the functional model of the application. The tool 
follows the approach presented in [12]. We had at our disposal the access log files for 
the period from September 2009 to September 2010.  Table 4 presents a summary of 
the characteristics of the visiting sessions during this period. 
                                                           
3 If some model states are reached by only one of the two states being tested, we assume that 

the other state also reaches to the same states but with a probability 0. 



   

Table 4. Summary Statstic for the data set from Bigenet. 
Characteristics Bigenet 

Num. of Application States 
Num. of Request 
Num. of Sessions 
Num. of Application State Sequences 
Ave. Session length 
Max. Session length 

30 
900689 
108346 
27778 
8.3132 
301 

We have developed a second tool that implements the model construction approach 
described in Section 3. It creates the TS model from the list of application state 
sequences inferred from the reconstructed sessions, and then performs the pruning, 
Cochran merging and state merging based on independence tests. The TS model 
constructed from the whole year of visiting sessions is very large, containing 348391 
nodes in the tree. Figure 9 shows the TS model based on 1000 visiting sessions. 

Table 5. Summary of experimental results 
 All Set-1 Set-2 Set-3 Set-4 

Num. of states in TS 348391 38652 38463 38336 42039 
Num. of states after 
frequency pruning 

81364 12493 11796 12438 13066 

Num. of states in “lower 
Markov model” 

30 30 29 30 29 

Num. of states in “upper 
tree” before merging 

426 78 79 76 82 

Num. of states in “upper 
tree” after merging 

337 65 68 65 68 

Num. of independence 
tests applied 

108 17 15 15 18 

Num. of mergings 
performed 

89 13 11 11 14 

Execution time without 
optimization4 

3937ms 313ms 328ms 297ms 328ms 

Table 5 shows the results of our analysis of these 108346 user sessions (see column 
labeled “All”). The following parameters were used during our analysis: (a) the 
pruning threshold was 5%; (b) the confidence level for the independence test was 
95%.  
We note that frequency-pruning and Cochran criteria leads to a user performance 
model that has a very much reduced “upper tree” and a “lower Markov model” that 
corresponds to the states of the application which in this case contains 30 states. The 
merging of non-independent states in the “upper tree” leads in our case to a further 
reduction of 20% of the model states. Most of the applied tests for merging succeeded. 
The “upper tree” is shown Figure 10. 

                                                           
4 We coded all algorithms in NetBeans 6.9.1 and performed experiments on a 2.53GHz Intel 

Core 2 P8700 laptop computer with 2.93 GB RAM. 



Table 5 also shows similar results for several smaller sets of user sessions that were 
selected randomly from the original visiting sessions. Each subset has 10000 sessions. 
The results obtained for the different subsets of sessions are very similar to one 
another. The number of model states in the “upper tree” is smaller than in the case of 
all sessions, since the Cochran criterion removes more states from the TS model 
because of the lower number of observations. As can be seen, the model that we 
obtain is quite stable with different sets of sessions. The number of states in the 
obtained user models varies little for the different subsets of sessions. Since the 
“upper tree” part of the model is the most interesting, we show in Figure 11 the 
“upper trees” for the sets of sessions Set-1 and Set-2. One can also see that these trees 
closely resemble the upper part of the “upper tree” for all sessions, as shown in Figure 
10. Due to the difficulty of defining a feature space and measurement method, we do 
not discuss the similarity between the re-constructed web sessions and the real data in 
this paper. 

 
Fig. 9. The TS model created by 1000 visiting sessions. 

 
Fig.10. The upper tree part of usage model, down from originally 348,391 states. 

 
Fig. 11. Upper-tree part of usage models generated from Set-1 and Set-2 

 



   

5 Conclusion and Future Work 

In this paper, we have presented a method that can be used to create an accurate 
statistical usage model for Web applications. This model is created from the 
application log file, and can be used for reliability testing. Our method uses a tree 
structure to preserve statistically significant information on user behavior, as gathered 
from the log files. The initially very large tree is reduced in three steps: first, 
frequency pruning removes the branches that are almost never followed. Then, a test 
called Cochran criterion is used to remove states that do not carry reliable statistical 
information. States removed during these two steps are merged into a traditional 
Markov chain model (the “lower Markov chain”) that captures infrequent behaviors. 
The pruned tree is further reduced through merging of model states corresponding to 
the same application states and on which user behavior is statistically similar. The test 
for similarity is a classical test of independence, and the resulting “tree”, which we 
call the “upper tree”, contains the most frequent behaviors, which are statistically 
significant. In our experiments, the resulting hybrid Markov usage model is 
drastically smaller than the original tree of sequences, but still contains all the 
significant behavioral and coverage information. 

This improves on lower-order Markov usage models that contain usually all the 
application states but cannot capture the user behavior accurately since they have no 
concept of history. In our model, in the upper tree the entire history is preserved. 
Other history-preserving higher-order Markov models, such as N-grams, exist but 
come with their own set of limitations. For N-Grams, they do retain history of length 
N-1, but cannot capture sessions of length less than N [16]. 

Our model still has shortcomings. A main one is its inability to identify some of the 
common behavior, if the behavior occurs on branches that must be kept apart because 
they lead to statistically different behavior lower down in the tree. Indeed, our state 
merging process tends to merge states that are mostly toward the bottom of the tree. 
To overcome this, we are planning to use either extended Finite State Machine 
models or hierarchical models, in order to merge parts that are statistically identical 
but are included inside larger sequences that are not. One may also improve the model 
by introducing some history dependence in the “lower Markov model” by using, for 
instance, the N-gram approach. The other major shortcoming of our current model is 
that user inputs are not captured. The model must be enhanced to accommodate for a 
statistically accurate representation of the inputs and their relation with the followed 
path. 
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