N

HAL

open science

Worldwide Consensus

Francisco Maia, Miguel Matos, José Pereira, Rui Oliveira

» To cite this version:

Francisco Maia, Miguel Matos, José Pereira, Rui Oliveira. Worldwide Consensus. 11th Distributed Ap-
plications and Interoperable Systems (DAIS), Jun 2011, Reykjavik, Iceland. pp.257-269, 10.1007/978-

3-642-21387-8_21 . hal-01583578

HAL Id: hal-01583578
https://inria.hal.science/hal-01583578
Submitted on 7 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://inria.hal.science/hal-01583578
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Worldwide Consensus

Francisco Maia, Miguel Matos, José Pereira, and Rui Oliveira *

High-Assurance Software Laboratory
University of Minho
Braga, Portugal
{fmaia,miguelmatos, jop,rco}@di.uminho.pt

Abstract. Consensus is an abstraction of a variety of important chal-
lenges in dependable distributed systems. Thus a large body of theo-
retical knowledge is focused on modeling and solving consensus within
different system assumptions. However, moving from theory to practice
imposes compromises and design decisions that may impact the elegance,
trade-offs and correctness of theoretical appealing consensus protocols.
In this paper we present the implementation and detailed analysis, in a
real environment with a large number of nodes, of mutable consensus,
a theoretical appealing protocol able to offer a wide range of trade-offs
(called mutations) between decision latency and message complexity. The
analysis sheds light on the fundamental behavior of the mutations, and
leads to the identification of problems related to the real environment.
Such problems are addressed without ever affecting the correctness of
the theoretical proposal.

1 Introduction

The problem of fault-tolerant consensus in distributed systems has received much
attention throughout the years as a powerful abstraction at the core of several
practical problems, namely atomic commitment, atomic broadcast and view syn-
chrony. Furthermore, the variety of models in which consensus can be solved led
to the appearance of several protocols targeted at system models with different
assumptions on the synchrony of processes and communications channels, on the
admissible failure patterns, and on failure detection.

For the numerous consensus protocols present in the literature, a generic
differentiator, with major relevance in practical terms, is the network-level com-
munication pattern that emerges from each particular design. For instance, in
Chandra and Toueg’s centralized protocol [?], a rotating coordinator process
is in the center of all communication: the coordinator sends its proposal to all
other participants, then collects votes from everyone and finally broadcasts the
decision. A different approach is taken in Schiper’s Early Consensus protocol [?]
where all participants always broadcast their messages. Different protocols thus

* Partially funded by the Portuguese Science Foundation (FCT) under project Stra-
tus - A Layered Approach to Data Management in the Cloud (PTDC/EIA-
CCO/115570/2009) and grants SFRH/BD/62380/2009 and SFRH/BD/71476/2010.



2 Francisco Maia, Miguel Matos, José Pereira, Rui Oliveira

present different communications patterns with distinct message complexity and
communication steps that establish several trade-offs on the decision latency,
network usage, resilience to message loss and processor load.

From a practical point of view, this implies that the system architect needs to
carefully choose a protocol suited to her specific requirements. In dynamic envi-
ronments where requirements change, this most probably requires the selection
of several protocols and to change implementations as required.

An attractive alternative is the Mutable Consensus protocol [?]. In short, mu-
table consensus can seamlessly adjust the trade-offs on network usage, processing
load and fault tolerance through a range of mutations encapsulated in the proto-
col itself. More strikingly, these mutations lie outside the system model used to
prove the algorithm’s correctness. That is, the whole protocol has been proved
correct regardless of the mutations being adopted by any of the participant
processes. This makes Mutable Consensus specially appealing to dynamic envi-
ronments where application requirements may change and also useful in practice
as one needs only to implement and test a single solution that is equivalent to a
range of typical consensus protocols.

However, making the algorithm presented in [?] an executable implementa-
tion has been a challenging task. More specifically, making it capable of being
used as a generic consensus module and evaluating it in a real world, hetero-
geneous and fairly large distributed system uncovered several non-trivial issues.
These stem mainly from simplifications and omissions common at the modeling
abstraction level but that have a profound impact in a real implementation. This
divergence between reality and model perfection seems to pervade implementa-
tion efforts as also noted in similar endeavors [?].

This paper presents the implementation and analysis of the Mutable Con-
sensus protocol in the PlanetLab [?] environment. Our contributions are: i) the
implementation itself, ii) the identification of several problems raised when go-
ing from a high-level specification to executable code, iii) the solutions and
workarounds for these problems, and finally iv) an insight on the trade-offs of-
fered by each of the protocols mutation in a large distributed system.

The paper is organized as follows: Section 2 presents a succinct description of
the Mutable Consensus protocol and the Stubborn Communication Channels [?]
upon which it depends. Section 3 describes the implementation process and the
concrete resulting code. Section 4 details the protocol evaluation in PlaneLab
and interprets the results based on the characteristics of the different mutations.
Section 5 concludes the paper.

2 Mutable Consensus

The Mutable Consensus protocol [?] solves the consensus problem [?] tolerating
the crash of a majority of processes. It assumes an asynchronous distributed sys-
tem model augmented with an eventual strong failure detector, ¢S [?]. Processes
are considered to be fully connected through fair-lossy communication channels.
A fair-lossy channel closely models existing network links requiring the weakest



Worldwide Consensus 3

reliability properties to still be useful: any message that is sent has a non-zero
probability to be delivered. Over these channels, the mutable protocol leverages
a simple yet powerful abstraction given by Stubborn communication [?].

In the following we recall the definitions of consensus and Stubborn Channels
and provide an overview of the Mutable Consensus protocol.

2.1 The Consensus Problem

The consensus problem abstracts agreement in fault-tolerant distributed sys-
tems, in which a set of processes agree on a common value despite starting
with different opinions. All processes are expected to start the protocol with
an undecided value for the decision and proposing some value through func-
tion Consensus. Each correct process, that is a process that does not crash, is
expected to finish the protocol as soon as it decides on a value such that the
following properties hold [?]: Validity If a process decides v, then v was pro-
posed by some process; Agreement No two processes decide differently and
Termination Every correct process eventually decides some value.

2.2 Stubborn Communication Channels

A Stubborn Channel [?] connecting two processes p; and p; is an unreliable com-
munication channel defined by a pair of primitives sSend; ;(m) and sReceive; ;(m),
that satisfy the following two properties: No-Creation If p; receives a message
m from p;, then p; has previously sent m to p;. Stubborn Let p; and p; be
correct. If p; sends a message m to p; and p; indefinitely delays sending any
further message to p;, then p; eventually receives m.

Intuitively, a stubborn channel adds to the reliability of a fair-lossy channel
by strengthening the delivery guarantees of the last message that is sent. As
soon as a message is sent, it makes the previous one obsolete. Stubborn channels
were initially proposed as a way to reduce the buffer footprint required by reliable
communication [?] but in the Mutable Consensus protocol they are the key to the
algorithm mutations regarding the network-level usage patterns. The stubborn
property allows messages to be lost and the Mutable Consensus takes advantage
of it to have only a subset of the messages effectively sent over the network.

To implement a stubborn channel over a fair-lossy channel it suffices to buffer
the last message sent and retransmit it periodically.

2.3 Protocol Description

Like most agreement protocols based on the asynchronous distributed system
model, the Mutable Consensus protocol uses the rotating coordinator paradigm
and proceeds in asynchronous rounds. Each round has two phases. In the first
phase of some round, processes try to agree on the coordinator’s proposal for the
decision. If the coordinator is suspected to have failed, then the second phase
starts and processes try to agree to detract the current coordinator and proceed
to the next round.



4 Francisco Maia, Miguel Matos, José Pereira, Rui Oliveira

In both phases agreement is reached as soon as a majority of processes share
the same opinion. For each round, each process keeps a list of processes that
currently have a similar opinion, which can be either supporting the coordinator
on the current value proposed (phase 1), or retracting the coordinator when sus-
pecting it failed (phase 2). In the protocol, communication is used to broadcast
these lists among the participating processes. Stubborn communication chan-
nels handle the communication in ways such that, at the network-level, distinct
message patterns emerge, as if the consensus protocol itself actually mutates.

A first look at the Mutable Consensus protocol 1 hints at a similar mes-
sage exchange pattern to that of the Farly Consensus protocol [?] which is not
attractive due to the probable redundancy of the messages’ contents and the
quadratic complexity of the exchange pattern (all processes send their lists to
all). However, from the protocol specification and the stubborn property of the
communication channels, it is possible that only a subset of the messages are
actually transmitted over the network. Firstly, of the messages sSent by the
protocol only messages with new information are actually broadcast. Then, at
the stubborn channel level, not all of those messages are readily sent, they are
judiciously delayed in such a way that, in good runs they become obsolete and
end up not being transmitted at all. As introduced in [?] and detailed in the
next Section, a sensible implementation of the Stubborn Channels can match
the subset of transmitted messages with the minimum set of messages needed
to reach consensus. This is achieved by configuring different send delays, which
allow to radically alter the message exchange pattern without ever impacting
the protocol’s correctness. These configurations are called protocol mutations.

Four mutations have been proposed: early, centralized, ring and gossip. The
early mutation assigns to each message zero delay. This enforces an actual broad-
cast of each message and the protocol behaves as expected at higher level. For
the other mutations, some messages will be sent immediately while others only
after a period of time e, which is an estimate on the time consensus will take and
therefore sending those messages is expected to be avoided. Following this idea,
in the centralized mutation, only messages to and from the coordinator process
are immediately sent while the others are delayed. In the ring mutation only
messages addressed to the next process (in a logical ring) are immediately sent.
Finally, for the gossip mutation, each process has a permutation of the list of
all processes and sends the message immediately to f processes (gossip fanout)
and delays it to the others. Parameter f is configurable and this set of processes
changes for each broadcast.

It is important to notice that delayed messages are never discarded. In fact,
if, after e elapses, the subset of messages transmitted was not enough to reach
consensus the Stubborn Channel will send those messages allowing the protocol
to make progress. Moreover, in the original proposal this actually means that
all the mutations may degenerate into the early mutation. This observation is
discussed in Section 3.2.



Worldwide Consensus 5

3 Mutable Consensus Made Live

A complete implementation of the Mutable Consensus protocol, capable of run-
ning in a real large scale environment, uncovered some challenges previously not
considered at the theoretical level. These challenges not only raised practical
issues but also led us to propose some changes in the algorithm itself, namely in
the various mutations definition.

The implementation was done using the Splay [?] platform and the Lua pro-
gramming language. Splay enables the specification of distributed algorithms in
a very concise way using Lua, and enables the deployment in a number of differ-
ent testbeds including PlanetLab [?]. The ability to deploy in PlanetLab allows
the use of a number of nodes not available to us at the laboratory. Moreover,
the real environment helps to test the application against different unpredictable
network and node failures.

After a careful study of the original algorithm three main challenges arose,
namely in the implementation of the core of protocol, in the implementation of
the stubborn channels, and in the achievement of quiescence.

3.1 Mutable core

Splay is an event-driven framework where processes communicate through re-
mote procedure calls (RPC). To avoid blocking RPC calls and Mutable Con-
sensus is message based, threads are used to parallelize such invocations. This
improves the performance of the algorithm and matches the original definition of
the protocol. The event loop is started by events.run(f) which invokes function f
and waits from incoming events received by means of RPCs. Processes terminate
by calling events.exit(). Each process has a list plist, containing the identifier of
all n participants and is identified by its position on that list, given by pld.

The implementation of the Mutable Consensus is presented in Listing 1. It
closely resembles that of [?]. Initially, the consensus() function is called, which
begins the event loop (lines 3~11) and calls start. In function start (lines 13~23),
the coordinator, given by ((r; mod n)+1), initiates the protocol by calling sSend
with the following parameters: its identifier pI/d, the round r; and phase 1, the
list of supporters voters (currently itself) and the estimate est for all nodes (line
20). sSend is presented later in Listing 2.

The protocol then proceeds by exchanging messages, which correspond to
sReceive calls. Upon the reception of a message a process proceeds as follows:

— If its list of supporters, voters, does not contain a majority of votes yet then
it evaluates the received message as follows: if the message comes from a
larger round r; then the process jumps to that round and resets the list of
supporters (lines 27~32); if the message belongs to the current round but
to a larger phase, then the coordinator has been suspected and thus the
process changes phase and starts collecting a majority of detractors (lines
33~36); otherwise if the message belongs to the current round and contains
new votes, or it is from phase 1 and already contains a majority of votes



6 Francisco Maia, Miguel Matos, José Pereira, Rui Oliveira

1 consensus_decision = nil

2

3 function consensus(value)

4 ——Global State

5 voters = Set.new{}

6 est = {val=value ,proc=pld}

7 ri =1

8 phi =1

9 ——starts event loop

10 events.run(function () start() end)

11 end

12

13 function start ()

14 if pId = ((ri mod n) + 1) then

15 —— the coordinator initiates the protocol by
16 — broadcasting its estimate

17 voters = Set.new{pld}

18 est.proc = pld

19 for k in plist do

20 sSend (k,{pId, ri,phi,voters , est})

21 end

22 end

23 end

24

25 function sReceive(s,{rj,phj,votersj,estj})

26 if Set.len(p) <= n/2 then

27 if ri<rj then

28 est = est]

29 ri = rj

30 phi = phj

31 voters = Set.new{}

32 end

33 if (ri==rj and phi<phj) then

34 phi = phj

35 voters = Set.new{}

36 end

37 local newVotes = (ri==rj) and ( not Set.isContained (votersj, voters) )
38 local majority= (phj==1) and (Set.len(votersj)>n/2)
39 if (newVotes or majority) then

40 voters = Set.union(voters ,Set.union(votersj ,Set.new{pld}))
41 if estj.proc == ((ri mod n) + 1) then est = estj end
42 for k in plist do

43 sSend (k,{pId, ri,phi,voters, est})
44 end

45 end

46 end

47 if Set.len(voters) > n/2 then

48 if phi == 1 then

49 consensus_decision = est.val

50 events.exit ()

51 else

52 ri = ri +1

53 phi =1

54 voters = Set.new{}

55 end

56 end

57 end

58

50 function suspected (j)

60 if j = ((ri mod n) + 1) and phi == 1 then
61 phi = 2

62 voters = Set.new{pld}

63 for k in plist

64 sSend (k,{plId, ri,phi,voters, est})

65 end

66 end

67 end

Listing 1. Mutable consensus implementation in Lua



Worldwide Consensus 7

endorsing the coordinator’s estimate, then the process updates its set of
supporters voters and broadcasts it (lines 37~45).

— If its list of supporters, voters, already contains a majority of votes (lines
47~56) then, if phase is 1 (endorsing the coordinator) the process decides
and exits, otherwise (phase 2, detracting the coordinator) the process moves
to the next round.

Finally, should the coordinator become suspected (lines 59~67), the process
immediately changes to phase 2 and broadcasts its suspicion to force a change of
round. Function suspected is invoked by the failure detector module not detailed
in the paper.

3.2 Stubborn channels

From the definition, a Stubborn Channel implementation should be fairly straight-
forward but, nonetheless, some subtleties arose. This section identifies those is-
sues and describes the proposed solutions.

Implementation. A Stubborn Channel requires primitives sSend(k,m) and
sReceive(m) where k is the destination process and m is the message. sReceive
(Listing 1) has no special semantics and is given by Splay’s RPC mechanism.

sSend is presented in Listing 2 (lines 1~6). The actual send of the mes-
sage is done in line 6 by remotely invoking, through Splay, the destination’s
sReceive function. The sSend requires two auxiliary functions: delta0/delta which
are responsible for the protocol’s mutations, and retransmission which handles
the periodic retransmission of messages to overcome message loss. When a mes-
sage is sSent, it is buffered in bstate (line 3) and, if deltaO determines so, it is sent
immediately to the network (lines 4~6). Otherwise, it will wait to be handled
by the retransmission function.

Unlike the original algorithm that handles the retransmission of messages per
channel separately, our implementation, for the sake of scalability, deals with
all open channels in batch through a single thread that animates the function
retransmission. Periodically, function retransmission() (lines 10~ 24) determines
for each destination k the need to send bstate[k] by means of delta(k). Variables
tries and maxtries will be discussed in Section 3.2.

The deltaO(k, m) and delta(k) functions determine if a message is to be sent
immediately or delayed. deltaO(k, m) is used for the first time a message is sent
and delta(k) in message retransmission. It is important to notice that delaying
a message does not compromise in any way the guarantees given by the Stub-
born Channel. By delaying certain messages and immediately sending others the
message exchange pattern is altered. Different implementations of deltaO(k,m)
and delta(k) yield different mutations. The implementation of the four original
mutations are presented in Listing 3.

In the early mutation, Listing 3(a), deltaO(k, m) always return true for useful
messages. Useful messages either contain a majority of votes (maj(m)) or are new



[ e I R N R

o e e
AW N = O ©

15
16
17
18
19
20
21
22
23
24

8 Francisco Maia, Miguel Matos, José Pereira, Rui Oliveira

function sSend(k,m)
t = delta0O (k,m)
bstate [k] = m — holds the messages to all destinations
if t then
— invoke sReceive in a separate thread
events.thread (function () rpc.acall(destination [k],{”sReceive”,m}) end)
end
end

function retransmission ()
return events.thread (
function ()
tries = 0
while true do
events.sleep (defaultDelta)
for k in p do
if delta(k) or tries > maxtries then
rpc.acall (destination [k],{”sReceive”, bstate [k]}
end
tries = tries + 1
end
end
end)
end

Listing 2. Stubborn Channels implementation in Lua

(fresh(m1,m2)). In this mutation, delta(k) always returns true. This will enforce
an actual broadcast by having all messages transmitted over the network.

The centralized mutation, Listing 3(b), requires a slight change. Only mes-
sages to and from the coordinator are immediately sent. This will enforce a
centralized message exchange pattern where processes send all the votes to the
coordinator. When the coordinator gathers a majority it broadcasts the decision.

The ring mutation, Listing 3(c), is similar to the previous one except that
only messages to the next process, in a logical ring, are immediately sent. The
protocol will act as if nodes were physically connected in a ring topology.

The gossip mutation presented in Listing 3(d) intends to offer the high scala-
bility properties of gossip-based protocols, which should allow Mutable Consen-
sus to scale to a large number of nodes. Each process keeps a permutation u of
the list of processes. Each time a message is sent it is immediately transmitted
to the next f (fanout) processes in the list. Variable ¢ (Listing 2) is used to
vary the list of f destination processes. This variable is incremented each time
a broadcast is invoked.

Real runs of the algorithm yielded by configuring the mutable consensus
protocol with the various mutations are depicted in Figure 1. Each horizontal
line represents a process, arrows the messages, and black dots the decision.

Mutation Degeneration. After running the protocol several times we ob-
served that the ring and centralized mutations may degenerate into the early
mutation. Degeneration means that retransmissions end up being made imme-
diately without regard to the mutation.



N oG AW N e

o B S N

Worldwide Consensus 9

1 function deltaO (k,m)
function delta0 (k,m) 2 coord = (ri mod n) + 1
return (fresh (bstate[k],m) or maj(m)) 3 return (k==coord or pld==coord)
end 4 and (fresh (bstate[k],m) or maj(m))
5 end
function delta (k,m) 6
return true 7 function delta(k,m)
end 8 return true
(a) Early 9 end .
(b) Centralized
1 u=perm(n); ¢ = 1; turn = 0; f =4
2 function delta0 (k,m)
3 return delta (k)
4 end
function delta0 (k,m) 5 .
return (k — ((pId % n) + 1)) 6 function delta (k)
and (fresh (bstate[k],m) or maj(m)) 7 turn = turn + 1
end : : ’ - 8 if turn =— n then
—_— 9 ¢ = c+f; turn = 0; end
. 10 local 1 = 0
function, delta (cm) S e (<) a
end I 12 if u[(l4+c) % n] == k then
- . 13 return true end
(c) Ring 14 1 =141
15 end
16 return false
17 end
(d) Gossip
Listing 3. Mutations implementation in Lua
~
AL
A
(a) Early (b) Centralized
— A
) s
" N
Y - D e —
! = LT a
= =N
(c) Ring (d) Gossip (F=5)

Fig. 1. Prefixes of typical executions.

In each sSend messages are divided into two groups: those immediately sent
and those that will be delayed. The first ones will follow the pattern defined
by the mutation while the others are expected never to be sent as consensus is
reached before defaultDelta (the estimate on the time consensus will take to
finish, e in Section 2.3) expires.

However, if something goes wrong in the first round, such as node failures
or message loss, all delayed messages will be sent at once as a result of the
delta(k) implementation that always returns true for these mutations. This im-
plies degenerating into the early mutation as depicted in Figure 2(a) for the ring
mutation. Similar behavior is observed for the centralized mutation.



10 Francisco Maia, Miguel Matos, José Pereira, Rui Oliveira

= A
R a2y //% i i
\\m V%7l
NN
AW | Vad
(a) Degenerating mutation. (b) Mutation preserved

Fig. 2. Mutation degeneration correction.

1 function delta (k)
2 return (k == ((myposition % n) + 1))
3 end

Listing 4. Improved function delta for the ring mutation

Essentially, the degeneration happens because after the de fault Delta period
all messages are treated equally. Therefore, we modified the delta function to
take this issue into account, and selectively send some messages and further
delay the others. The delta function now becomes similar do delta0 without the
fresh check as messages are being retransmitted and thus are not new, and the
majority check as the message needs to be retransmitted even if it does not
hold a majority. The new delta function for the ring mutation is presented in
Listing 4. Changes for the centralized mutation are similar and thus omitted.

The process is repeated a finite number of times after which the mutation
must degenerate into the early mutation. In fact, if that was not the case, correct-
ness could be compromised as some messages would never be sent. To overcome
this, we additionally check if the number of allowed retransmissions (stored in
variable maxztries) has been reached (Listing 2, line 17).

On top of these observations, the ring mutation revealed another interesting
problem when deployed in real settings. In fact, maintaining the same order
of the ring across rounds is not resilient to message loss. For instance, if the
link between two nodes is prone to large message loss, consensus would only be
reached when the ring mutation degenerates into the early mutation. This can
be overcome by changing the ring on every round by simply computing the next
process in the ring as follows: ((myposition + r;)%n) + 1 where n is the number
of processes and r; the round number.

Quiescence When a process decides and terminates (Listing 1, lines 48 and 49)
the last message it has broadcast corresponds to phase 1, contains a majority
of votes in p and the decision value in est. To execute line 48, ph; needs to be
1 and |p| > n/2. This can only happen if the process executed line 39 and got
a majority of votes in p, since any other previous conditions in lines 26 or 32
result in p = {}. By the stubborn property of the communication channels all
processes that do not crash will eventually receive this message and will, in turn,
decide and terminate if they have not done so yet. Therefore the termination
property of Consensus is satisfied.



Worldwide Consensus 11

However, any process that decides needs to keep the retransmission of its
last message to ensure it is delivered. This means that, in this case, albeit the
consensus instance terminates the process does not become quiescent. Given the
recurrence of the algorithm this can become a problem as buffers from stubborn
channels cannot be discarded and retransmission would go endlessly.

Achieving quiescent reliable communication with common failure detectors
would require us to assume an eventual perfect failure detector (¢P)[?] which
is stronger than needed to solve consensus and whose properties are much more
difficult to attain in practice. To work around this problem, Aguilera et al. [?]
have proposed the heartbeat failure detector HB. Roughly, a H B failure detector
provides each process with non-decreasing heartbeats of all the other processes
and ensures that the heartbeat of a correct process is unbounded while that of a
crashed process is bounded. Its implementation, in our model, is pretty simple:
Each process periodically sends a heartbeat message to all its neighbors; upon
the receipt of such a message from process ¢, p increases the heartbeat value of
q. By combining the output of the HB failure detector with a simple positive
acknowledgement protocol between the sSend and sReceive primitives we made
the stubborn communication quiescent.

4 Evaluation

We evaluate the implementation of Mutable Consensus in a PlanetLab [?] envi-
ronment by means of the Splay platform [?]. Splay was chosen because it allows
the specification of algorithms in a very concise way using Lua, and enables the
deployment in several testbeds including PlanetLab. The user simply specifies
the number of nodes and Splay deploys the protocol in those nodes. A deploy-
ment for a run with 300 nodes is presented in Figure 5. The geographically
dispersion and heterogenous nature of PlanetLab helps to test the application
against different unpredictable network and node failures. Presented results are
the average of 5 runs where each run represents a new Splay deployment.

A centralized logger gathers information about events. Due to asymmetries
in nodes and links, events reaching the logger may deviate from the actual run.
However, as results focus on comparison among runs, the conclusions stay valid.

Evaluation focus on two perspectives: consensus latency and message com-
plexity. Consensus Latency is the time taken for processes to decide. We
define two different metrics: Coordinator Latency, which is the time it takes for
the coordinator to decide; and Majority Latency, which is the time it takes for
a majority of nodes to decide.

With respect to latency the results obtained are depicted in Figure 3. The
first remark has to do with the fact that the ring mutation did not produce
results on runs with more that 50 nodes. In fact, in such runs the probability
of message loss is very high and the ring easily breaks. To have a fair compar-
ison, results are obtained from good rounds (before retransmissions) where the
difference between mutations is clear. From the perspective of the coordinator,
the centralized mutation exhibits higher latency than the earlier one. At first



12 Francisco Maia, Miguel Matos, José Pereira, Rui Oliveira

Coordinator Decision Latency Majority Decision Latency
1 1
— early | +—+ early
14000} | #—@ gossip 16000F | e—e gossip
a—a ring 4—aring
v cent 14000} | v cent
12000 /

12000)
10000

2 seconds)

3 10000]
8000

(10~

6000}

o
g 8
g8 38
8 8

Latency (10”2 seconds)

Latency

4000
4000}

2000 2000

50 100 150 200 250 300 50 100 150 200 250 300
#Nodes #Nodes

(a) Coordinator Latency. (b) Majority Latency .
Fig. 3. Consensus Latency.

Coordinator #Messages Others #Messages

+—+ early

o—e gossip
&—aring
v—v cent

+—+ early
e—e gossip
250000 | &—a ring
v—v cent

800

200000

@
3
3

150000

#Messages
#Messages

IS
S
3

100000

50000] //

50 100 150 200 250 300 50 100 150 200 250 300
#Nodes #Nodes

(a) Number of messages coordinator. (b) Total number of messages.

Fig. 4. Number of messages exchanged.

this seems unsettling. In fact, for the coordinator, in both mutations there are
only two communication steps before decision: the coordinator’s broadcast and
then the collection of processes’ votes. In spite of this similar behavior, in the
centralized mutation the coordinator has to sequentially handle n/2 messages
in all situations while in the early mutation each node can aggregate votes and
propagate them to the coordinator. Considering PlanetLab’s link asymmetry, it
is likely that faster intermediate nodes propagate messages with a group of votes
already gathered, which lowers coordinator’s decision latency.

From the perspective of a majority of nodes, the most significant change is
the gap between the centralized and early mutations. This is expected as the
centralized mutation needs an extra communication step for the majority of
nodes to decide.

It is important to notice that, both from the perspective of the coordinator
and a majority of nodes, the centralized and early mutation have an abrupt
increase in latency after runs with 200 nodes. This indicates a system saturation



Worldwide Consensus 13

[ ™ap | sateiite | ryora |

ey

femen | e
Coogle bgoumt

Fig. 5. Node geographic distribution.

and an impediment to scalability of the protocol when configured with such
mutations. On the other hand, the gossip mutation is virtually unaffected by
the increase in the number of nodes. More interestingly, the gossip mutation is
able to offer small latencies when compared to the other mutations. This stems
from the inherently small number of hops each messages need to take to reach
all nodes in a epidemic setting [?], and due to message frugality analyzed next.

Message complexity measures the network load each mutation implies.
We defined two metrics: Coordinator Messages, which is the number of messages
sent and received by the coordinator and Others Messages which is the total
number of messages sent and received by other nodes, on average.

The results are depicted in Figure 4. The ring mutation clearly exchanges
fewer messages in both metrics at the cost of higher latency. From the perspective
of the coordinator, the early mutation and centralized mutations have a similar
behavior. This is expected has the coordinator has to receive and send messages
from and to all the participants. However, globally, the centralized mutation
exchanges a considerably smaller number of messages at the cost of the extra
communication step needed for the coordinator to broadcast its decision.

The interesting result is the gossip mutation. This mutation exchanges a more
stable number of messages independently of the number of nodes and the metric.
This is actually the key characteristic that enables this mutation to scale to a
large number of nodes. As message exchanged is balanced across all the nodes
the overall load is smaller. These results support the claim that the Mutable
Consensus protocol is able to adapt to different environments and able to scale
to a large number of nodes when configured with the gossip mutation.

5 Discussion

This paper described the implementation of the Mutable Consensus protocol in
a real environment. The gap between theory and practice became evident as
several non-trivial problems emerged. As in [?], those stem mainly from several
simplifications that remained hidden both in the theoretical models and in the
simulation tools used. Those issues have been addressed from a practical point



14 Francisco Maia, Miguel Matos, José Pereira, Rui Oliveira

of view but without ever compromising correctness. As relevant additions to
the algorithm we point out the avoidance of mutation degenerations and the
quiescence of the stubborn communication channels.

To the best of our knowledge, this is the first work to analyze the behavior
of a consensus protocol in an large scale hostile environment such as PlanetLab.
With the gossip mutation, we have shown that the Mutable Consensus protocol
can scale up to 300 nodes without compromising decision latency. This contrasts
with the common belief that uniform consensus does not scale.

Mutable Consensus is adaptable by design simply by using different protocol
mutations which makes it an attractive tool to solve consensus in a wide range
of environments. Despite being adaptable, Mutable is not adaptive. However as
it possesses the required properties to build a self-tuning system [?], offering
Mutable Consensus as a generic self-contained software package is an important
pursuit as future work. This could allow developers to use a modular and generic
consensus service, averting the mix of different code components [?].

References

1. M. Aguilera, W. Chen, and S. Toueg. On quiescent reliable communication. STAM
Journal on Computing, 29:2000, 2000.

2. A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson,
T. Roscoe, T. Spalink, and M. Wawrzoniak. Operating system support for
planetary-scale network services. In Symposium on Networked Systems Design
and Implementation, pages 19-19, 2004.

3. T. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an engineering
perspective. In Symposium on Principles of distributed computing, pages 398—407,
2007.

4. T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43:225-267, 1996.

5. P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulié. From Epidemics to
Distributed Computing. IEEE Computer, 37(5):60-67, May 2004.

6. M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374-382, Apr. 1985.

7. R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn Communication Channels.
Technical report, EPFL, 1998.

8. L. Leonini, E. Riviere, and P. Felber. SPLAY: Distributed Systems Evaluation
Made Simple. Symposium on Networked systems design and implementation, pages
185-198, 2009.

9. M. Matos, J. Pereira, and R. Oliveira. Self Tuning with Self Confidence. In ”Fast
Abstract”, International Conference on Dependable Systems and Networks, 2008.

10. J. Pereira and R. Oliveira. The mutable consensus protocol. In Symposium on
Reliable Distributed Systems, pages 218-227, 2004.

11. A. Schiper. Early consensus in an asynchronous system with a weak failure detec-
tor. Distributed Computing, 10:149-157, April 1997.



