
HAL Id: hal-01583570
https://inria.hal.science/hal-01583570

Submitted on 7 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Extensible Framework for Dynamic Market-Based
Service Selection and Business Process Execution

Ante Vilenica, Kristof Hamann, Winfried Lamersdorf, Jan Sudeikat, Wolfgang
Renz

To cite this version:
Ante Vilenica, Kristof Hamann, Winfried Lamersdorf, Jan Sudeikat, Wolfgang Renz. An Extensible
Framework for Dynamic Market-Based Service Selection and Business Process Execution. 11th Dis-
tributed Applications and Interoperable Systems (DAIS), Jun 2011, Reykjavik, Iceland. pp.150-164,
�10.1007/978-3-642-21387-8_12�. �hal-01583570�

https://inria.hal.science/hal-01583570
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


An Extensible Framework for
Dynamic Market-Based Service Selection

and Business Process Execution

Ante Vilenica1, Kristof Hamann1, Winfried Lamersdorf1,
Jan Sudeikat2, and Wolfgang Renz2

1 Distributed Systems and Information Systems
Department of Informatics, University of Hamburg
http://vsis-www.informatik.uni-hamburg.de/

2 Multimedia Systems Laboratory
Hamburg University of Applied Sciences

http://cms-server.ti-mmlab.haw-hamburg.de/

Abstract. Business applications in open and dynamic service markets
offer great opportunities for both consumers as well as for providers of
services. However, the management of related business processes in such
environments requires considerable (often still manual) effort. Specific
additional challenges arise in highly dynamic environments which may
lead, e.g., to service failures or even to complete disappearance of part-
ners and, consequently, a need to reconfigure related processes. This work
aims at generic software support for addressing such challenges mainly
by providing an extensible negotiation framework which is capable of
performing the tasks of service selection and service execution automati-
cally. Its technical basis are augmented, reusable and highly autonomous
service components that can be tailored towards the specific needs of
each business process. In addition, the implementation of the negotia-
tion framework includes a simulation component which offers convenient
means to study the outcome of different settings of the business environ-
ment a priori.

Keywords: Service-Oriented Computing, Autonomous Components,
Negotiation Framework

1 Introduction

State-of-the-art business information systems rely on a high number of different
services from various sources as well as on open and flexible business procedures
making use of them. Software support for the development of such (distributed)
applications profits substantially from a service-oriented software architecture
which provides appropriate architectural patterns for the sophisticated and flex-
ible development of information systems that can easily interoperate, change
components and therefore cope with the high complexity, dynamicity and de-
mands of modern business environments. In such scenarios, services may typ-
ically appear and disappear at any time and may, furthermore, dynamically



2 A. Vilenica, K. Hamann, W. Lamersdorf, J. Sudeikat and W. Renz

change their configuration, e.g. their commitment towards a certain application
or their respective costs. Such kind of behaviour can be found in particular in
domains that use market-based pricing for negotiating contracts between con-
sumers and providers of respective services. These business domains require open
market systems with standardized interfaces and various vendors in order to
work properly and to have a competitive market. At the same time, the inherent
dynamics of such market-based systems complicate the runtime management of
applications composed of different services and, thus, require solutions capable
to cope with these challenges as autonomously as possible.

For example, think of a computer manufacturer who regularly needs to ac-
quire different well-defined and standardized sub-components like hard-disks,
keyboards, RAM etc. for his production line. This scenario reveals a clear de-
mand for an (autonomous) management of this supply process that takes into
account different functional and non-functional aspects and that (dynamically)
selects the most appropriate service provider at any time in a constantly chang-
ing environment. Furthermore, not only the selection but also the execution of
the selected service should be automatically monitored and managed – such
that, for instance in the case of a service-breakdown, appropriate actions, e.g.
instantiation of a new selection process, should be initiated automatically.

Aiming at such scenarios, the work reported in this paper addresses these
challenges by proposing a supportive software framework capable of facilitating
the autonomous and dynamic selection and execution of service-based appli-
cations. It leverages different market-based negotiation protocols in order to
determine contract partners as well as various utility-functions for specifying
preferences among (potentially conflicting) objectives. Therefore, the approach
proposed here enables existing as well as new composed services with the ca-
pability to participate in such automatic and autonomous service selection and
process execution. Technical basis for the implementation of such dynamic and
adaptive service composition is an environment that integrates workflow exe-
cution with autonomous software agents [?]. In this approach, software agents
represent services which participate in dynamically adaptive business processes.
The necessary adaptivity is realised by an underlying management middleware
that controls the coordination of all participating software agents. This, in turn,
leads to adaptive and autonomous properties of the workflow management it-
self, e.g., by autonomously deciding which individual agents resp. services are
responsible for realising specific complex activities, without effect on the over-
all workflow goals themselves. This decentralized middleware for the integration
of decentralized, self-organizing processes among software agents was already
presented in [?].

The remainder of this paper is structured as follows: The next section gives
an overview of related work; Section ?? describes the proposed framework for
realising automatic service selection and execution in market-based business ap-
plications. Section ?? presents parts of a proof of concept implementation of this
framework and reports on a case study to show the applicability of the approach
before Section ?? concludes the paper with a brief discussion on future work.



Framework for Dynamic Market-Based Service Selection and Execution 3

2 Related Work

Service-Oriented Architectures (SOA) provide a paradigm to leverage business
integration and to implement loosely-coupled distributed applications. In such
an approach, the dynamic binding of services is perceived as an integral part of
an SOA since it facilitates a loose coupling between services and hence fosters
reusability and dynamic adaptation to changing environments. Service binding
assembles two different aspects, service discovery and service selection [?]. Ser-
vice discovery describes the procedure of locating available services matching
given functional demands. In contrast to that, service selection deals with the
problem of choosing one service from a set of suitable services. Often, service
selection is done by incorporating non-functional requirements, defined by the
service requestor [?,?].

However, since most approaches require the service provider to declare the
offered non-functional properties, the consumer has to rely on these proposi-
tions. Solutions to this problem incorporate trust models in order to rate the
reputation of a provider. Vu et al. [?], e.g., propose a probalistic framework for
decentralized management of trust and quality while incorporating the credibil-
ity of observation data, the multi-dimensionality and subjectivity of quality and
trust. Advanced approaches for service selection use a utility function in order
to enable service consumers to flexibly differentiate between important and less
significant non-functional properties. Approaches such as the work of Hang and
Singh [?] provide frameworks which are able to optimize these utility functions.

Regarding dynamic pricing in markets, there has been also work on ser-
vice selection on behalf of market-based negotiation protocols such as auctions.
Wellman et al. give an overview [?] of the several bidding strategies used in the
international Trading Agent Competition, a scenario where agents contend for
flights, hotel rooms and entertainment. Similar to the assumptions in our work,
prices are set dynamically by the market participants. For every product type,
there is a different auction type with different properties, such as auction setting
(e.g. combinatorial or multi-auction), simultaneity, price predictability, auction
length. Hence, the approaches of the bidding agents differ enormously.

Lamparter and Schnizler [?] propose a market-based architecture for trading
Web Services. However, they focus on the semantic description of services and
bids with ontologies. Service offers and service requests are converted by a pre-
processor in order to facilitate the syntactic matching of bids. This allows for the
use of existing implementations of the demanded multi-attribute combinatorial
double auction.

He and Liu [?] suggest to use software agents in order to realize a market-
based service selection framework. However, the resulting framework is never-
theless rather inflexible, since it is limited to the Contract Net protocol and only
few non-functional properties are used.

Borissov et al. [?] propose an automated bidding system for the allocation of
grid-based services. Market platform and bid framework are strictly separated
and make use of agent technologies, e.g. for negotiation resp. communication.
The BidGenerator automatically performs bids at the market, which allows the



4 A. Vilenica, K. Hamann, W. Lamersdorf, J. Sudeikat and W. Renz

n
eg

o
ti

a
ti

o
n

m
ed

iu
m

Service
Market Agent

(SMA)

Service
Agent
(SA)

Service
Process
Engine

p
u

b
li
sh

p
er

ce
iv

e

p
u

b
li
sh

p
er

ce
iv

e

publis
h

p
er

ce
iv

e

p
u

b
lis

h

perceive

Business Process
Description

Event-based
middleware

Agents AgentsSOA/BPM SOA

Negotiation
middleware

Service Consumer Service Provider

Fig. 1. Architecture of the Negotiation Framework and the utilized paradigms

usage of two negotiation types. Therefore, BidGenerator implements several bid-
ding strategies, which can be used by the customer in order to obtain a resource
in the grid.

In summary, the agent paradigm is well suited in order to develop autono-
mous software components as they are useful for participation in market-based
scenarios. Well-established technologies used in agent frameworks, such as ne-
gotiation and self-organisation [?], can facilitate the development of according
applications. However, there are comparatively few frameworks for market-based
service selection, which make use of these technologies. The agent-based ap-
proaches introduced in this section, however, do not provide support for ad-
vanced service-selection mechanisms, such as trust models and business process
integration. Therefore, the next section proposes a flexible agent-based service-
selection framework that facilitates the implementation of market places using
different auction types. It supports the integration of service providers and ser-
vice consumers into the market with respect to their own bidding strategies,
utility functions and trust models, and the overall integration in a business pro-
cess management system.

3 The Service-Selection Framework

This section presents the proposed framework for an automatic handling of ser-
vice selection and service execution for market-based business domains. The
basic idea of this framework consists of providing a blueprint that contains the
necessary components and defines their structure and kind of interaction to
achieve the autonomous management functions mentioned in Section ?? rather
than proposing and developing new negotiation protocols, utility functions etc.
Figure ?? depicts the components of the framework and their structure on an
abstract level. It shows that this approach basically uses the SOA approach to
build (distributed) applications and takes the Agent paradigm [?] to enrich the
management of these applications with proactive and autonomous capabilities.



Framework for Dynamic Market-Based Service Selection and Execution 5

At the beginning of the service selection phase, the framework expects a busi-
ness process description which contains the required services and describes the
logical-temporal dependencies among them. This description can be provided by
applying, e.g., the XML Process Definition Language (XPDL). It is then pro-
cessed by a process engine which identifies all needed services and sends for each
of them a request to the Service Market Agent (SMA). In addition, this request
does not only contain the service type to be found but also some other optional
properties like a utility function that contains certain concerns regarding time
deadlines, fees, quality of service parameters and so forth. Also, the request may
specify a certain negotiation (bidding) protocol to be used. For each request, the
SMA sends out a service negotiation request message using a negotiation mid-
dleware that contains implementations of various negotiation protocols. Then, it
depends on the type of negotiation protocol how an appropriate service provider
is selected. In order to perform the negotiation task the negotiation middleware
additionally has to process service bid messages sent by Service Agents (SA).
These agents act on behalf of service providers and try to find contractors that
fit best. In summary this approach consists of two agent types, i.e. SMA and SA,
that try to find appropriate service partners using a middleware with different
negotiation protocols. Details of these components are presented in the following
subsections.

3.1 Negotiation Middleware

The aim of the negotiation middleware is to propose an infrastructure compo-
nent that facilitates the reusability and modularity of negotiation protocols and
that additionally enables the parallel execution of different negotiation proto-
cols at runtime. Thereby, the negotiation middleware utilizes the approach of
coordination spaces [?], that facilitates a clear separation between computation
and coordination. Whereas computation denotes the core functions of a compo-
nent, coordination can be seen as “managing dependencies between activities” [?,
p. 90]. In consequence, coordination spaces promote an approach of easy chang-
ing the way dependencies are managed among components. This is achieved by
a layered approach that contains interchangeable coordination media. In con-
clusion, different coordination media provide different ways of interdependency
management.

From this perspective on, negotiation can be seen as a special type of co-
ordination. Thereby, negotiation can be realized using coordination media that
provide implementations of negotiation protocols like the pure ContractNet or
extensions of this protocol [?] as well as auctions like Dutch, Vickrey etc.

In order to achieve a loose coupling between the SMA, SA and negotia-
tion media the negotiation middleware uses an event-based architecture. Each
of the afore-mentioned components implements a generic publish/subscribe in-
terface which enables the components to publish and perceive events of interest.
Therefore, the negotiation middleware uses asynchronous communication which
is especially suited for distributed systems to ensure a reasonable performance



6 A. Vilenica, K. Hamann, W. Lamersdorf, J. Sudeikat and W. Renz

Service Market
Agent (SMA)

Negotiation
Middleware

t

Service Negotiation Request

Service Contract Proposal

Accepted / Rejected
Service Contract Proposal

Final / Rejected

Service Contract

(a) SMA and negotiation middleware

Service
Agent (SA)

Negotiation
Middleware

t

Service Registration

Service Offer Request

Service Bid

Service Contract Proposal

Accepted / Rejected
Service Contract Proposal

Final / Rejected

Service Contract

o
p

tio
n

a
l

(b) SA and negotiation middleware

Fig. 2. Exemplary communication pattern

level. Another advantage of this approach lies in its flexibility regarding the
communication patterns between the single components.

Figure ?? depicts proposals of patterns that have been implemented (cf. Sec-
tion ??) for evaluation purpose. The first one (cp. Figure ??) shows the messages
sent between an SMA and a negotiation medium. It starts with a message to
initiate the negotiation process containing all information necessary for the ne-
gotiation medium to process. As soon as the medium has found an appropriate
service provider it sends a contract proposal to the SMA. Now, the SMA can de-
cide to accept or reject this contract. The SMA may decide to reject the proposal
if it has already received an appropriate offer from another negotiation medium.
Depending on the answer of the SMA the negotiation medium terminates the
selection process for this particular service type with a final message that states
whether the contract was closed or cancelled.

The proposed communication pattern between SA and negotiation medium
is quite similar to the afore described one but has one important difference
which relates to the question where to place the negotiation strategy of the SA.
Thereby, the negotiation strategy expresses the behaviour of an SA and espe-
cially determines the way service bids are computed. One possibility is to place
the strategy into the initial service registration message that is sent at the be-
ginning. Then, the negotiation medium is the only place where service providers
and service consumers interact according to a negotiation protocol like the Con-
tract Net Protocol. This approach has the benefit of a high efficiency since the
negotiation process is handled inside the medium and does not require further
communication with SAs. On the other hand this approach has the drawback
that SAs have to disclose their bidding strategy to a third party (negotiation
medium). For certain service provider this might not be appropriate. Therefore,
Figure ?? depicts an optional part of the communication pattern that targets
this issue. When the negotiation medium receives a service negotiation request



Framework for Dynamic Market-Based Service Selection and Execution 7

sent by an SMA requesting a certain service type, it searches for all SAs that
have registered at the negotiation medium for this particular service type. Then,
the negotiation medium sends out a service offer request to these SAs. Now, the
SAs can submit an offer without the need to disclose their strategy. Therefore,
proposals are sent back to the negotiation medium using a service bid message.
Depending on the type of negotiation protocol this optional protocol phase may
be iterated several times. Most often iteration is needed if the proposals do not
meet the requirements of the SMA. The last part of the communication protocol
is equal to the protocol between an SMA and the negotiation medium. It gives
the chance to the selected SA, i.e. the SA with the most appropriate bid, to close
or reject the service contract (with the service consumer).

As mentioned at the beginning, the framework can implement arbitrary com-
munication patterns. The previous paragraph has presented one possible pattern
to illustrate the potential of the framework. The next subsection will present
more details regarding the SMA and the SA. It will explain their functionality
and show how they can be tailored with respect to certain requirements.

3.2 Two Negotiation Proxies: SMA & SA

In order to provide reusable components for the management of automated ne-
gotiations in service-based systems, the two agent types SMA and SA are pro-
posed. This approach promotes a clear separation between the core concepts of
SOA and the ability to dynamically negotiate contract partners in the domain
of market-based pricing. It enables services as well as processes to participate
in negotiations by specifying their requirements and preferences in a declarative
manner but without the need to implement these functions by themselves. In
order to encapsulate the negotiation functions that are needed, two different
components have been designed: SMA & SA. Whereas the first one is in charge
of service consumers, the latter one deals with service providers. As they act on
behalf on another component they are also named negotiation proxies.

The two negotiation proxy types themselves consist of reusable subcompo-
nents, i.e. capabilities [?], which can be divided into mandatory and optional
ones. An SMA needs a Service Offer Capability and an Execution Caller Ca-
pability. The first one is in charge of handling the selection phase whereas the
latter one takes care of the execution phase. Complementary, an SA has a Ser-
vice Supplier Capability and an Execution Service Capability which correspond
to the afore mentioned functions of an SMA.

Therefore, the proposed framework can not only be used for the automated
management of the service selection phase but also for the dynamic manage-
ment of the service execution phase. This aspect is achieved by a collaboration
between the SMA and the process engine. Once the process engine has started
the execution of the process the SMA is contacted each time a service needs to
be executed. Now, the SMA is responsible for requesting the selected service for
execution as well as dealing with failures. If the selected service is not available
the SMA initiates a new service selection process and tries to find an appropriate
substitution for the service. In order to detect service breakdowns happening at



8 A. Vilenica, K. Hamann, W. Lamersdorf, J. Sudeikat and W. Renz

runtime the SMA uses a heart beat protocol that determines if a service is alive.
Again, if a failure is detected, a new service has to be selected. Additionally, it
might happen that a committed service provider, i.e. a service that has signed a
contract with a process, decides to break the contract and to participate in an-
other process, e.g. since it gets a better reward. Then, the SMA acts proactively
and tries to replace this service in order to avoid a failure when this service has
to be executed.

Beside these basic functionalities, the two proxy types can be extended to deal
with optional aspects of negotiations like ensuring confidentiality and anonymity
among contract partners or using implementations of trust models [?]. Thereby,
this paper does not understand trust from a computer security perspective on.
Rather, it uses trust to define and measure the reliability / reputation of (possi-
ble) contract partners. Reliability tries therefore to quantify the confidence that
a stakeholder A has with respect to another one B that it will deliver a service
according to a signed contract. Therefore, trust can be seen as an additional im-
portant criterion which has to be evaluated in a market-based environment. The
interplay of service selections, based on past experiences, and the subsequent
adjustment of reputation values leads to an independent dynamic process (cf.
[?] for a systemic evaluation). Whereas direct service selection criteria, such as
fees or time deadlines, can be easily evaluated, this does not hold for trust which
is an indirect criterion and therefore more difficult to measure.

The actual configuration of the proxies for a certain application is performed
at design time using an XML configuration file. For both of the proxy types a
separate XML Schema has been developed. For the SMA this schema requires
following aspects to be specified: an ordered preference list of negotiation media
to use, a utility function that is used to evaluate proposals (with respect to
potentially conflicting goals) and a deadline for the negotiation process. Optional
aspects can be specified as name value pairs. The schema for the SA specifies
following aspects: a list of negotiation media to use, a service offer containing
the fees and execution period and a negotiation strategy or a reference to the
SA in order to avoid disclosing the strategy. These configuration options allow
a flexible reuse of the negotiation proxies. In the following section, the practical
realization is introduced and the overall approach is evaluated.

4 Implementation and Evaluation

This section describes the prototype implementation of the proposed negotia-
tion framework. Furthermore, a case study on an imaginary “computer man-
ufacturer” is briefly presented in order to demonstrate the applicability of the
approach. The framework implementation utilizes the Jadex Agent Framework
[?]. Besides core functionalities required for the execution of Multi Agent Systems
(MAS) it has the capability to perform (automated) simulation experiments as
well as to model and execute processes. Therefore, it is capable of handling pro-
cess descriptions using the Business Process Modeling Notation (BPMN). Hence,
Jadex is well suited as a foundation to realize the negotiation framework.



Framework for Dynamic Market-Based Service Selection and Execution 9

4.1 Implemented Components

The framework prototype provides reference implementations of the two agent
types SMA & SA. Each agent type utilizes two newly provided capabilities for
the handling of the service selection phase as well as for the execution phase
(cp. Section ??). Furthermore, the framework prototype includes a negotiation
medium that implements a Contract Net Protocol. The design of this protocol
is inspired by “the way that companies organize the process of putting contracts
out to tender” [?, p. 156] but it has also been used in MAS for distributed
problem solving. Finally, the prototype utilizes the Jadex BPMN Engine and
therefore contains reference implementations for all mandatory components.

Beside this mandatory components the prototype offers some optional exten-
sions which enrich its functionality. One targets the chronological order of the
phases of a business process. Usually, the selection phase is followed by the exe-
cution phase. This might not be appropriate for all types of business processes.
Especially processes containing many tasks with a long duration require a differ-
ent handling since they may face two problems. On the one hand, the selection
phase may take too long since there are many tasks which require a negotiation
in order to find an appropriate service provider. On the other hand, the dynamic
environment of the business process leads to a situation where contract partners
may (dis-)appear at any time. Therefore, it is questionable whether it is always
reasonable to negotiate contract partners a long time before their service is ex-
ecuted. Rather, the selection of service providers should happen close to their
execution in the business process. One possibility offered by the framework in
order to cope with these challenges is to relax the strict separation between the
selection and execution phases. Tasks of the business process can be annotated
with a statement which denotes when a selection process should be initiated for
the respective task. Then, the process engine knows which tasks are required
in order to start the execution of the business process and which tasks can be
selected later. This leads to an approach that is more appropriate for dynamic
environments.

Another provided extension targets the issue of trust between contract part-
ners. The extension consists of a trust capability for service providers, service
consumers and a trust medium. The first component observes the execution
of service providers and logs in order to detect whether a service request was
executed successfully or not. The result is published via the event-based trust
medium. In this prototype, the trust medium has the function to transmit mes-
sages between service providers and service consumers participating in a business
domain that incorporates the usage of trust models. Service consumers use the
transmitted logs to compute the trust of possible contract partners. Thereby,
they may apply different ways to compute the trust since the received messages
represent events without dependence on a particular trust model. For example,
service consumers may store the logs in a history and use a simple aggregation
function to compute the trust level. The modeling of the aggregation function
may be inspired by the process of forgetting of the human mind and lead to
an exponential function [?]. Nevertheless which evaluation function is taken, the



10 A. Vilenica, K. Hamann, W. Lamersdorf, J. Sudeikat and W. Renz

normal and stable 0.5 0.5 0.4
expensive and reliable 0.7 0.5 0.1

type of service provider characteristic of fees characteristic of duration characteristic of trust

cheap and unrealiable 0.4 0.5 0.999

Fig. 3. Characteristics for different agent types

computed level of trust may be part of the service negotiation request message
that a SMA sends to the negotiation medium. Then, trust can be used as a
criterion for the ranking of bids. Therefore, this approach offers the possibility
to realize business markets using trust in a convenient way and it may lead to
a situation where service consumers only take bids into account from providers
that incorporate trust.

Finally, the framework has an additional component which allows the au-
tomatic execution of simulation experiments of the implemented application.
Besides logging and visualization functions this component allows an easy eval-
uation of the effects of different bidding strategies. Therefore, the integrated
simulation and evaluation component offers valuable support for the develop-
ment of new components and strategies and it has been used to conduct the
simulation experiments presented in Section ??.

4.2 Configuration of the Case Study

In order to prove the proposed concept and implemented prototype, a case
study has been conducted that exemplarily shows the utilization of the dynamic
market-based framework. It allows developers to focus on core aspects of the ap-
plication domain by relieving them from dealing with low-level aspects related
to the service selection and the business process execution in a highly dynamic
environment. The conducted case study consists of an acquisition process which
can be seen as a sub-process of a supply-chain process of a fictive computer man-
ufacturer. This manufacturer defines the logical-temporal order of tasks of the
buying process and expects the negotiation framework to manage the execution
of the process automatically – including dealing with service failures. For the
ease of evaluation the buying process consists of three sequentially ordered tasks
that target the acquisition of hard-disks, keyboards and RAM.

In order to enable an automatic management of the business process, the
service consumer (computer manufacturer) needs to express his preferences w.r.t.
conflicting objectives like fees, service duration and trust. One common approach
for that is to apply a cost-effectiveness analysis [?] and as a part of it to define a
utility function that values each objective. Mathematically, a utility function can
be defined as U(x) =

∑n
i=1 xi ·wi where wi expresses the weight of an objective

xi. Such a utility function is then used to configure the SMA which acts on
behalf of the computer manufacturer. Therefore, the utility function enables the
SMA to rank different bids and to choose the most appropriate one.

In the same way as service consumers, service providers need to configure
their proxy (SA). The case study assumes that the service providers use a static



Framework for Dynamic Market-Based Service Selection and Execution 11

bidding strategy and will therefore disclose their behaviour to the negotiation
medium. Furthermore, the existence of three different types of service providers
is assumed. These three classes of agent types have specific characteristics w.r.t.
following attributes: fees, duration and trust (cp. Figure ??). In turn, these char-
acteristics influence the bids of service providers. For example, the fees charac-
teristic is used to calculate the fees part of an SA’s bid using following function:
f(SA) = average fees · (0.5 + SAfees characteristic). Assuming an average fee of
e 1000 this leads to following bids regarding the fees attribute: e 900 (cheap ser-
vice type), e 1000 (normal service type) and e 1200 (expensive service type). The
same type of strategy is also used to compute the duration part of a bid. Whereas
the semantics of the attributes fee and duration are self-explanatory the seman-
tics of the attribute trust requires an explanation. For a service provider the
trust attribute denotes the probability of a service blackout. A service blackout
has two consequences. First, the service provider will not be able to participate
in the bidding process (selection phase). Second, the execution of the services
that the service provider offers will fail at the moment when a blackout appears
(execution phase). The blackout itself is modeled using a function with an ex-
ponential distribution. Thereby, the function computes the time between two
blackouts of a service provider and takes into account the trust characteristics
of the service provider. The higher the trust attribute is, the lower the time is
between two blackouts. Then, all the afore described attributes (fee, duration,
trust) and settings (bidding strategy, blackout function) are used to configure
different SAs to act on behalf of service providers.

In addition to the modelling of the SMA and the SA the case study includes
some configuration aspects that are needed to evaluate the outcome of different
business strategy scenarios. In spite of all possible conflicting objectives of the
computer manufacturer, profit is still the most important objective that deter-
mines success (of a business process). Hence, the profit of a business process
depends on the costs of its execution. These costs consist of the charges of the
service providers as well as of two additional fees: First, the service consumer
has to pay a fix amount of money to the negotiation medium for each requested
negotiation process. Second, the service consumer may need to pay surcharge if
the business process is not finished on time. This charge handles the situation
where a process B depends on a process A and A is not accomplished on time.
For example, this may happen if A contracts to many services providers with a
low trust attribute for the execution of its tasks. These providers have a higher
blackout probability and tasks will not be executed on time.

4.3 Simulation Results and Evaluation

Based on the described setting of the case study, the negotiation framework is
used to evaluate the relation between the configuration of the computer manu-
facturer’s utility function, with a specific focus on the configuration of the trust
attribute, and its profit. Here, the sum of all weights of the utility function with
the attributes fee, duration and trust is always 1.0 and the value of the weight
for the trust attribute is altered from 0.0 to 1.0 with a step size of 0.2.



12 A. Vilenica, K. Hamann, W. Lamersdorf, J. Sudeikat and W. Renz

17000

18000

19000

20000

21000

22000

23000

Profit

15000

16000

17000

18000

19000

20000

21000

22000

23000

0 0,2 0,4 0,6 0,8 1

Profit

Weight of trust attribute

(a) Collected profit of iterated business
process execution after 60 time units

100,00
150,00
200,00
250,00
300,00
350,00
400,00
450,00

Profit

0,00
50,00
100,00
150,00
200,00
250,00
300,00
350,00
400,00
450,00

0 0,2 0,4 0,6 0,8 1

Profit

Weight of trust attribute

(b) Profit per business process execution

Fig. 4. Profit in dependency of the weight of the trust characteristic

Figure ?? depicts the collected results (average values) of the simulations.
Since the focus is on the influence of trust, the execution of the business process
is iterated many times using a trust model that incorporates an exponential
function to compute the trust level of potential service partners. In this way
the level of trust, i.e. with respect to service providers, can change accordingly
to successful or failed service executions. More specifically, Figure ?? shows
the average results computed from 80 simulation experiments per setting. Each
experiment iterated the execution of the business process for a period of 60 time
units. The simulation assumes that the service consumer will gain on the one
hand a revenue of e 2200 for a single execution of the business process. On the
other hand it has to pay between e 900 and e 1200 for the execution of the tasks
to the service providers, i.e. depending on the fee characteristic, as well as e 700
for each negotiation process. The simulation results reveal a maximum of profit
with a weight of 0.6 for the trust whereas weights between 0.0 and 0.2 as well
as of 1.0 show the least profit. Figure ?? uses the same collected results of the
simulations and depicts the average profit per business process execution.

The results of this case study show that trust has a significant impact on the
profit. Taking trust into account, e.g. with a weight of 0.6, pays off with respect to
settings without trust, e.g. a weight of 0.0 for the utility function, and increases
the profit up to 22%. Furthermore, it can also be seen that configurations with
a high trust have almost the same effect on the profit as configurations with no
respectively limited trust. The results can be explained as follows. Configura-
tions with a trust value between 0.4 and 0.8 offer the best compromise between
reliability, i.e. successful service executions, and costs and have therefore the
highest profit. Other configurations have an imbalance and either result in high
costs for re-negotiations due to many service failures or choose most often ex-
pensive services which limits the profit. Additionally, Figure ?? reveals that the
chosen strategies and configurations of the simulation settings reach about 66%
of the theoretical maximum of e 600. Of course, this maximum is only achievable
without service failures but it can still be seen as a benchmark to compare the
outcome of different management strategies within the negotiation framework.



Framework for Dynamic Market-Based Service Selection and Execution 13

In conclusion, the case study has demonstrated both the applicability of the
proposed negotiation framework and the corresponding prototype. The imple-
mentation offers the possibility to select and execute business processes in a
market-based environment using dynamic and autonomous management com-
ponents. Also, the evaluation reveals the demand for simulating different man-
agement configurations in order to find optimal settings for service consumers as
well as for service providers. Therefore, knowledge about the outcome of different
settings is the prerequisite for performing management actions autonomously as
proposed in this negotiation framework.

5 Conclusion and Future Work

This work targets dynamic market-based business environments that consist of
various stakeholders mostly acting in a selfish way. More specifically, this paper
addresses software support for dynamic markets with distributed participants
that may (dis-)appear at any time. In order to enable a reliable and adaptable se-
lection as well as execution of services in such an environment, this work proposes
a framework which incorporates a service-based system at the core, equipped
with autonomous and proactive management components (agents). These com-
ponents act on behalf of their clients, i.e. service consumers/providers, and are
therefore also referenced as negotiation proxies. This enables a clear separation
of core application tasks carried out by services and of negotiation tasks carried
out by agents. Furthermore, an event-based negotiation middleware is introduced
which mediates between the demands of the negotiation proxies. The applica-
bility of the framework is proven by a prototype implementation. Furthermore,
this implementation shows the capability of the framework to deal with different
types of service failures while ensuring the execution of business processes. The
negotiation framework is therefore able to automatically process the tasks of
service selection and execution for business processes in a highly dynamic envi-
ronment. In consequence, this allows for – in major parts – highly autonomous
management of complex service compositions as typical for advanced flexible
and dynamic business processes.

Future work shall, on the one hand, strive towards providing an autonomic
and customizable strategy adaptation component for service providers. The
aim of this strategy adaptation component is to enhance the success of ser-
vice providers, i.e. to increase the profit. Therefore, the component observes the
outcome of negotiation processes and tries to improve the biding strategy if it is
not satisfying. For example: if an SA has a high rate of getting contracts with
a certain price the adaptation component may increase the price. Contrary to
that, the component may decrease the price if the SA does not close many con-
tracts with service consumers. On the other hand, it is envisioned to provide
additional negotiation media implementations in order to take advantage of the
potential of the negotiation framework to execute media in parallel. Then, the
strategy adaptation component may also manage the aspect which negotiation
media to participate in for the SA autonomously.



14 A. Vilenica, K. Hamann, W. Lamersdorf, J. Sudeikat and W. Renz

Acknowledgments. The research leading to these results has received funding
from Deutsche Forschungsgemeinschaft and from the European Community’s
Seventh Framework Programme under grant agreement 215483 (S-Cube).


