
HAL Id: hal-01573298
https://inria.hal.science/hal-01573298

Submitted on 9 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Almost-Optimal Forward-Private RFID Mutual
Authentication Protocol with Tag Control

Paolo D’arco

To cite this version:
Paolo D’arco. An Almost-Optimal Forward-Private RFID Mutual Authentication Protocol with Tag
Control. 5th Workshop on Information Security Theory and Practices (WISTP), Jun 2011, Heraklion,
Crete, Greece. pp.69-84, �10.1007/978-3-642-21040-2_5�. �hal-01573298�

https://inria.hal.science/hal-01573298
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Almost-Optimal Forward-Private RFID

Mutual Authentication Protocol with Tag

Control

Paolo D’Arco

Dipartimento di Informatica
Università degli Studi di Salerno
I-84084 Fisciano (SA), Italy.

Abstract. In this paper we propose an efficient forward-private RFID
mutual authentication protocol. The protocol is secure under standard
assumptions. It builds over a recent work, extends it to achieve mu-
tual authentication, and improves it by introducing a resynchronization
mechanism between tag and reader, through which the server-side com-
putation from O(Nω) is reduced to O(N + ω), where N is the total
number of tags in the system, and ω is the maximum number of au-
thentications each single tag can afford during its lifetime. Moreover, the
protocol enables the server to control how many times a tag has been
read by legitimate and fake readers.

1 Introduction

Rfid Technology: basics, development and concerns. The Rfid technology enables
automatic object identification without the need for physical access. Each object
is labeled with a tiny integrated circuit equipped with a radio antenna, called
tag, whose information content can be received by another device, called reader,
at a distance of several meters. Usually the readers are connected to a back-end
server: they forward to the server the read tag content, and get back the result
of the server computation. The interest of the scientific community for the Rfid
technology has grown a lot during the last years simultaneously to the wide
diffusion of the technology and the deployment of applications which partially
deal or embed Rfid components. Indeed, the indubitable advantages come with
new challenges: security and privacy, due to the constrained computational ca-
pabilities of the tags, are non trivial properties to achieve. If some applications
do not need stringent security and privacy measures, applications which have an
impact on the people life style, raise more concerns: in some settings as users
(e.g., in access control applications, in anti-theft tools) we would like to be sure
that a certain tag cannot be impersonated by an adversary; as well as, there are
uses in which tracking features (e.g., postal tracking, pet tracking, airline lug-
gage tracking, waste disposal tracking) are very welcome but others (e.g., when
buying tag-equipped goods from a shop) in which we would like to be sure that
our privacy is preserved, and no adversary is able to build a preference profile
by illegally reading the content of the tags attached to the goods we buy.

State of art. We refer the interested reader to [14,13] for an overview of the
applications of the RFID technology and of the main security issues, and to [1] for
references to research papers dealing with RFID technology and its challenges1.

Previous work. Roughly speaking, an Rfid authentication protocol enables tags
and readers to be sure they are talking to each other, i.e., to identify and authen-
ticate the other part. It is a key-component for building secure and private Rfid
applications. An RFID authentication protocol is forward-private if an adver-
sary, who tampers a tag and obtains its keys and state information, is unable to
trace the tag, i.e., to associate the tag to previous transcripts of completed pro-
tocol executions he has eavesdropped. Obhuko et al. [15] proposed a simple and
elegant forward-private scheme, which uses two hash functions. The scheme and
its subsequent improvements, however, due to the costs of hash functions, are
unsuitable for a real implementation on a tag. Moreover, such schemes are proven
secure by using the random oracle methodology which is object of debate and
criticism [2,6]. A recent paper [4] introduced a new Obhuko et al. like scheme,
called PFP, which is efficient and is secure under standard assumptions, i.e.,
the existence of pseudorandom number generators and strongly universal hash
function families.

Our contribution. In this paper we propose EFPP , a new forward-private RFID
mutual authentication protocol. It builds over PFP and improves it by intro-
ducing a resynchronization mechanism between tag and reader, similar to the
one used in [11,12], through which the server-side computation from O(Nω) is
reduced to O(N +ω), where N is the total number of tags in the system, and ω
is the maximum number of authentications each single tag can afford during its
lifetime. Since the authors of [10], who focused on the design and the analysis
of Rfid protocols based on symmetric-key primitives, showed that, if keys are
chosen independently and uniformly at random, Ω(N) is a lower bound on the
number of lookup operations the back-end server needs to authenticate a tag,
then it follows that our forward-private scheme is almost optimal.

Related Work. Apart [4], which is our starting point, and [11,12], from which
we borrow the resynchronization technique, other related papers are [17,5]. The
OFRAP mutual authentication scheme, proposed in [17], is elegant, efficient,
and forward-private. It has been analyzed within the UC framework and proven
secure and private under standard assumptions, i.e., the existence of pseudo-
random functions. Moreover, it achieves an O(N) overhead in terms of the num-
ber of lookup operations the server needs to authenticate a tag. Compared to
ours, apart the computational tools, the main difference is that in OFRAP the
server has no way to control the total number of protocol executions a tag has
been subject to, perhaps due to an adversary attack. In our scheme, on the
other hand, we gain control by paying an additive ω factor within the asymp-
totic notation, which enables the back-end server to remove from the system
a tag once its lifetime is over. On the other hand, the PEPS scheme [5] also

1 In the full version of the paper [8] are briefly mentioned the most significant efforts
in order to provide precise notions of security and privacy, and to propose efficient

constructions.

reduces the O(Nω) server-side computation of PFP [4] to O(N). It has a de-
sign quite similar to OFRAP , and it is secure under the same assumptions. The
main difference between PEPS and OFRAP is that PEPS requires the tag to
generate truly random numbers. We point out that also in PEPS the server has
no way to control the total number of protocol executions a tag has been subject
to. In some applicative settings (e.g., access control, ticketing, automatic tolls
...) such a property is very welcome. The server could estimate the usage of the
tag, as well as whether the tag has been target of attacks. EFPP is a true exten-
sion of PFP, which is efficient and practical, and uses the same computational
tools. To our knowledge, EFPP is also the first efficient RFID forward-private
authentication protocol enjoying the above tag-control feature.

2 Security Model

Every security model for evaluating Rfid authentication protocols focuses on
three aspects: correctness, security and privacy. Loosely speaking, a protocol
is correct if, with overwhelming probability, a legitimate tag and a legitimate
reader successfully authenticate each other in an adversary-free protocol execu-
tion. Then, it is secure if an adversary has a negligible probability of imperson-
ating a legitimate tag to the reader (vice versa, a reader to tag). Finally, it is
private if a tag cannot be traced by analyzing the transcripts of protocol exe-
cutions, and it is forward-private if the adversary does not succeed even if, at a
certain point, gets access to the tag content and tries to trace the tag by using
the transcript of previous completed executions.

Despite the properties we would like to get are intuitively clear, providing
a suitable security and privacy model is a challenging task. Just to exemplify,
the notion of correctness has to take into account a possible desynchronization
attack tag and reader can be subject to at a certain point. What do we need
to require from an adversary-free protocol execution after such an event has
occurred? The models in [18,4,11] formalize this requirement in different ways.
In this abstract, we do not deal with security model issues: since we basically
use the same primitives of [4], for easiness of comparison, we refer to the same
model (extended to deal with mutual authentication) which, as stated by the
authors of [4], is a simplification and an adaptation of [18,16] to the symmetric
setting2.

The Model. Each tag T has an internal state, containing state information and se-
cret keys. Tag secret keys are uncorrelated, chosen independently and uniformly
at random. Part of the tag state is shared with the back-end server, which stores
tag information in a database DB. Each tag can be used at most ω times. Readers
are securely connected to the back-end server. During its lifetime, a tag enters
authentication exchanges with the readers, following a protocol which specifies
which messages have to be computed and exchanged, and how the internal states

2 An analysis of the protocol in different models is left as future work.

of the tag and the back-end server have to be updated. An authentication ex-
change between a tag and a reader either results inside the reader (resp. tag)
in an authentication success (together with a tag identity for the reader) or in
an authentication failure. A tag cannot handle several authentication exchanges
simultaneously. We assume that tags are exposed to an adversary during an
exposure period, in which the adversary is able to observe and disturb all in-
teractions involving the tag and possibly the reader, without confusing these
interactions with exchanges involving other tags of the system. We also assume
that no physical characteristics (e.g., radiation pattern, response time, et cetera)
allow an adversary to recognize the tag and distinguish it from the other tags of
the system, if the adversary observes it again in another exposure period.

Let A be an adversary with running time upper-bounded by T , allowed to
trigger, observe, disturb and replace up to q < ω authentication exchanges in-
volving the tag and the reader, and to access the outcome of the authentication
protocol. We say that A is a (q, T)-adversary.

Definition 1. An Rfid authentication protocol is said to be (q, T, ǫ)-correct iff
the probability that a legitimate tag (resp. reader) is not successfully authenticated
by a legitimate reader (resp. tag) in an undisturbed exchange at least once in
its lifetime is upper-bounded by ǫ, even in the presence of a (q, T)-adversary.
The probability is taken over the initial tag’s secret values, the random numbers
chosen during the protocol executions, and the random numbers chosen by the
adversary.

The definition states that a protocol is correct iff, even in presence of a (q, T)-
adversary which tries to desynchronize tag and reader (i.e., so that they reach
different states), the probability that in its lifetime there exists an adversary-free
execution of the protocol in which the tag (resp. reader) is not authenticated by
the reader (resp. tag), is at most ǫ. In other words, the protocol is robust against
a (q, T)-adversary and it works almost always well.

Security requires resistance to impersonation attacks, which can be modeled
as two-stage processes: during the first stage a (q, T)-adversary interacts both
with a legitimate reader and a legitimate tag. During the second stage, the ad-
versary only interacts with the reader (resp. tag) and initiates an authentication
exchange to impersonate the tag (resp. the reader). The attack succeeds if the
authentication is successful and the adversary is identified as the tag (resp. as
the reader).

Definition 2. An Rfid authentication protocol is said to be (q, T, ǫ)-secure (w.r.t.
tag authentication/w.r.t. reader authentication) iff, for any (q, T)-adversary, the
probability that an impersonation attack is successful is at most ǫ.

The privacy requirement can be formalized through the following privacy
experiment: during the first stage, a (q, T)-adversary A interacts with any two
legitimate tags, T0 and T1, and a legitimate reader. At the end of this phase, a
bit b (concealed to A) is chosen. Then, during the second stage, A again interacts

with Tb. Then, A is given access to the internal state of Tb. Eventually, A outputs
a guess bit b′ for the value b, and it succeeds if b′ is equal to b.

Definition 3. An Rfid authentication protocol is said to be (q, T, ǫ)-private iff
any (q, T)-adversary A has an advantage at most ǫ in winning the privacy ex-
periment, i.e.,

|Pr[A succeeds]− 1/2| ≤ ǫ.

Notice that, in the privacy experiment, we assume that A is given access
to the internal state of the tag when a protocol execution is completed3. This
precludes tag states following a failed protocol execution. The same approach
was followed in [17] and, very recently, in [5], where the authors used the notion
of almost forward private protocol to refer to the above setting with a restricted
corruption capability for the adversary. However, we point out that, by using the
same argument used in [16] (see Thm 1, page 294), it is possible to prove that if
an adversary has the power to corrupt a tag during a protocol execution, then
it easily wins the privacy experiment. Unfortunately, this issue has no protocol
solution without extra hardware assumptions [16,9]. Therefore, the only possible
goal is to look for a protocol which safely locks previous completed executions4.

3 Tools

In this section we review some useful tools and properties needed to analyze the
strength of the protocol. See [4] (Section 4 and the appendices) for proofs and
details.

Let L, n and k be integers such that L = n+ k, and let g : {0, 1}n → {0, 1}L be
a binary function, which expands n-bit sequences into L-bit sequences. A distin-
guisher for g is a probabilistic algorithm A, which on input an L-bit sequence,
outputs 0 or 1. The advantage of A in distinguishing g from a perfect random
generator is defined as:

Advg(A) = |Pr[A(g(x)) = 1]− Pr[A(y) = 1]|

where the probabilities are taken over x ∈ {0, 1}n (unknown to A) and y ∈
{0, 1}L, chosen uniformly at random, and over the random bits chosen by A.
The advantage in distinguishing g in time T is:

Advg(T) = maxA{Advg(A)}

for all distinguishers A running in time at most T.

3 Using the language of [11], the tag is clean at the corruption time, i.e., an undisturbed
protocol execution with the reader has been successfully completed and the tag is
ready for a new protocol execution.

4 Notice that similar constraints to get perfect forward-secrecy in the key-exchange
setting were shown in [3] (see Remark 7). It is the same problem which appears in
two different settings.

Definition 4. The function g : {0, 1}n → {0, 1}L is a (T, ǫ)-secure pseudoran-
dom number generator ((T, ǫ)-PRNG, for short) iff Advg(T) ≤ ǫ.

By using λ times the function g, we can define an iterated function Gλ. To this
aim, let us denote g(x) = g1(x)||g2(x), where g1(x) ∈ {0, 1}n, g2(x) ∈ {0, 1}k,
and || represents concatenation. Then, let λ be an integer greater than or equal
to 1. The iterated function Gλ : {0, 1}n → {0, 1}n+λk is defined by:

x → (g2(x), g2(g1(x)), . . . , g2(g
λ−1
1 (x)), gλ1 (x)).

Assuming that Tg is the time to compute g, it holds that:

Theorem 1. If g : {0, 1}n → {0, 1}n+k is a (T, ǫg)-PRNG then, for any λ ≥ 1,
the associated iterated function Gλ is a (T − (λ+ 1)Tg, λǫg)-PRNG.

Similarly, a duplicated function GN : {0, 1}nN → {0, 1}LN is simply defined by
(x1, . . . , xN) → (G(x1), . . . , G(xN)). It holds that:

Lemma 1. If G is a (T ′, ǫG)-PRNG, then GN is a (T ′, NǫG)-PRNG.

Finally, a duplicated iterated function GN
λ : {0, 1}nN → {0, 1}(n+λk)N is defined

by (x1, . . . , xN) → (Gλ(x1), . . . , Gλ(xN)).

Theorem 1 and Lemma 1 were proven in [4] by using standard hybrid argu-
ments. From them, it follows that:

Theorem 2. For any (T, ǫg)-PRNG g : {0, 1}n → {0, 1}n+k, any λ ≥ 1, and
any N ≥ 1, the associated duplicated function GN

λ : {0, 1}nN → {0, 1}(n+λk)N is
a (T − (λ+ 1)Tg, Nλǫg)-PRNG.

The second key-tool we need in our construction are function families with special
uniformity properties, referred to as universal classes of hash functions [7]. The
idea of a universal class of hash functions is to define a collection H of hash
functions in such a way that a random choice of a function h ∈ H yields a low
probability that any two distinct inputs x and y will collide when their hashed
values are computed using the function h. A more structured function family is
defined as follows:

Definition 5. A family H = {hs : {0, 1}
ℓ → {0, 1}m} of hash functions is called

ǫ-almost strongly universal if and only if: ∀a ∈ {0, 1}ℓ, ∀b ∈ {0, 1}m, it holds that
Prs∈S [hs(a) = b] = 2−m, and ∀a1 6= a2 ∈ {0, 1}ℓ, ∀b1, b2 ∈ {0, 1}m, it holds that
Prs∈S [hs(a2) = b2|hs(a1) = b1] ≤ ǫ.

Notice that, the first condition states that any input a is mapped to any
hashed value b with probability 1

2m . The second states that, given that a1 is
mapped to b1, the conditional probability that a2 is mapped to b2, for any
a2 6= a1, is at most ǫ. A 2−m-almost strongly universal hash function family H is
called a strongly universal hash function family. Further details and applications
can be found in [20,19].

The following lemma was proven in [4]. It states that an adversary who knows
a pair (a0, hs(a0)) and a bunch of pairs (aj , bj), with bj 6= hs(aj), has a small
probability of guessing the correct value of the function hs(a) on a new randomly
chosen value a.

Lemma 2. Let H = {hs : {0, 1}ℓ → {0, 1}m} be an ǫ-almost strongly universal
hash function family, let s∗ be a (secret) value randomly chosen in S, and let A
be a computationally unbounded adversary who tries to predict the value of hs∗

on a randomly chosen input value a. Suppose that A is given at most one pair
(a0, b0) and at most p ≤ 1

2ǫ pairs (aj , bj) such that hs∗(a0) = b0 and, for 0 <
j ≤ p, it holds that hs∗(aj) 6= bj . Then,

Pra∈{0,1}ℓ,s∗ [A(a) = hs∗(a)] = 2−ℓ + ǫ(1 + 2pǫ).

Lemma 3. If s, s′ are chosen independently, then Prs,s′∈S [hs(a)=hs′(a)]=2−m.

In the following, we will denote with Th the time to compute the function hs.

4 Protocol Description

In this section we introduce our protocol. Let us briefly describe PFP , the
forward-private protocol proposed in [4] we start from. Let g : {0, 1}n → {0, 1}n+k

be a PRNG, and let H = {hs : {0, 1}ℓ → {0, 1}m} be a strongly universal hash
function family. Moreover, let g(x) = g1(x)||g2(x), where g1(x) ∈ {0, 1}n and
g2(x) ∈ {0, 1}k. Each tag can be used at most ω times. It stores the descrip-
tion of g and H, and a state variable σ. The back-end server stores the same
information for all tags in its database. The protocol works as follows:

1. The reader chooses uniformly at random a challenge c ∈ {0, 1}n and sends c
to the tag.

2. The tag, receiving c, updates its state σ and chooses a random function hs

from H by computing (σ, s) = (g1(σ), g2(σ)). Then, it computes r = hs(c),
and sends r to the reader.

3. The reader, for each tag T, fetches into the database DB the last known
state for tag T , say σT

j , and checks whether there exists an index i ≥ 0 such
that j + i < ω and hg2(gi

1
(σT

j
))(c) = r. If such an index is found, then the tag

is authenticated. Otherwise, it is refused.

In other words, at each protocol execution, the reader checks in DB along chains
of at most ω elements if a match is found. The protocol is correct, secure and
forward-private and, in a system with N tags, it has complexity O(Nω). In the
following we show how to improve the scheme in order to get mutual authenti-
cation and to reduce the complexity from O(Nω) to O(N + ω).

Let us start by describing the information held by tags and readers in the
new protocol.

Common public information: two d-bit values pad1, pad2, used for padding, and
the descriptions of a pseudorandom number generator g (PRNG) and of a
strongly universal hash function family H (SUHF, for short). The PRNG g
is used for identification purposes, for updating tag information, and within the
authentication process. The SUHF H is used within the authentication process.

As before, we split the values of g : {0, 1}n → {0, 1}n+k in two parts, i.e.,
g(x) = g1(x)||g2(x).

Tag information: a (n-d)-bit randomizer CR, an identification key k, a state
variable σ, the two d-bit values pad1 and pad2, and the descriptions of g and H

Reader information: a DB which stores the description of g and H, the two values
pad1 and pad2, and, for each tag, the tag identifier ID, a counter CNTID, and
two tuples: < Iold, σold, kold, CRold

DB > and < I, σ, k, CRDB > . Let us denote by
DBID[i], for i = 0, 1, the memory locations for the two tuples for tag ID. At the
beginning, when DB is initialized, all counters and old tuples are set to zero, i.e.,
CNTID = 0 and DBID[0] =< 0, 0, 0, 0 > for all N tags. The DB automatically
removes tag ID when CNTID = ω. Moreover, let us denote by σ|n−d the first
n− d bits of σ, and by rnd a value chosen uniformly at random.

Three-round authentication protocol overview:

1. The reader chooses uniformly at random a challenge c ∈ {0, 1}n and sends c
to the tag.

2. The tag updates its state, and computes and sends to the reader a triple,
(I, vT , auth). The first two entries are used for identification and (if the
synchronization is lost) to resynchronize tag and reader. More precisely, the
value I can be seen as a sort of pseudonym, which changes at each invocation,
while the value vT contains information about the current randomizer CR
of the tag. Finally, the value auth is the authenticator, used to authenticate
the tag to the reader.

3. The reader, once received (I, vT , auth), looks in DB for a tuple starting with
pseudonym I. If a tuple is found, the reader checks the received values are
computed correctly from the tag, overwrites the old tuple for the tag with
the current tuple, updates the current tuple < I, σ, k, CRDB >, and sends
to the tag a value which acknowledges the received triple and authenticates
the reader to the tag. Otherwise, it first tries to resynchronize with the tag
and, then, it does the same check and update. If fails then it sends a random
value to the tag.

4. The tag checks whether the received value is equal to the value it is expecting
to receive and, accordingly, updates its key and outputs 1 or outputs 0.

A complete description of the protocol, referred to as EFPP, is given in
Figure 1. The subroutines tag and reader invoke are described below.

Compute(c) Verify(ID, c, I, vT , auth)
I = g1((CR||pad1)⊕ k) s = g2(σ)
(v0, v1) = g((c⊕ I)⊕ k) if auth 6= hs(c⊕ I ⊕ vT) then return (rnd, 0)
vT = (CR||pad2)⊕ v0 (v0, v1) = g((c⊕ I)⊕ k)
CR = CR+ σ|n−d if (CRDB ||pad2) 6= vT ⊕ v0 then return (rnd, 0)
(σ, s) = (g1(σ), g2(σ)) return (v1, 1)
auth = hs(c⊕ I ⊕ vT)
return (v1, I, vT , auth)

Protocol steps:

1. Reader: chooses c ∈ {0, 1}n uniformly at random, and sends c to the Tag.
2. Tag: sets (v1, I, vT , auth) = Compute(c) and sends (I, vT , auth) to the Reader.
3. Reader: if there exists a tuple tp = (I, σ, k, CRDB) in DB for tag ID

(a) computes (v1, b) = Verify(ID, c, I, vT , auth)
(b) if (b == 1) then invokes Update(ID, tp) and outputs 1; else outputs 0
(c) sets vR = v1 and sends vR
else, if no such a tuple exists, then
(a) sets (CRN , ID) = Lookupkey(I, c, vT) and d = Resynch(CRN , ID)
(b) if (d == 0) then sets v1 = rnd;

else (v1, b) = Verify(ID, c, I, vT , auth)
if (b == 1) then Update(ID, ID[1]) and outputs 1; else outputs 0

(c) sets vR = v1 and sends vR
4. Tag: if vR == v1, then sets k = g1(k) and outputs 1; else outputs 0

Fig. 1. EFPP: Efficient Forward-Private Protocol.

Update(ID, tp)
CNTID = CNTID + 1
DBID[0] = tp

CRDB = CRDB + σ|n−d

σ = g1(σ)
k = g1(k)
I = g1((CRDB ||pad1)⊕ k)

Lookupkey(I, c, vT) Resynch(CRN , ID)
look in DB for a key k for which if (0, 0) then return 0
(v0, v1) = g((c⊕ I)⊕ k) are such that while (CRDB 6= CRN and CNTID < ω){
vT ⊕ v0 = (CRN ||pad2) CRDB = CRDB + σ|n−d

and g1((CRN ||pad1)⊕ k) = I σ = g1(σ)
if no k exists, then return(0, 0) CNTID = CNTID + 1
else DBID[1] =< I, σ, k, CRDB > }

return(CRN , ID) if CNTID == ω then return 0
else return 1

5 Properties

The protocol enjoys several properties. Before going through formal proofs, and
in order to get the ideas underlying the design, we provide some observations.

– Desynchronization attacks. An adversary might attack the system by sending
multiple challenges c to the tag. In such a way, the tag updates CR and σ,
which become different from CRDB and σ stored in DB. However, notice

that the identification key k, stays the same: it is updated only after a suc-
cessful execution with the reader. In such a way, tag and reader, at the first
adversary-free execution, recover the same value of CR and resynchronize
their states. Similarly, an adversary might discard the last message from the
reader to the tag. Again, the attack fails since the server stores new and old
tag records in DB.

– Computational efficiency. PFP , to authenticate the tag to the reader, requires
O(Nω) iterations of the PRNG g. Our scheme requires O(N + ω) iterations
of g. The small extra-amount of tag-side computation at each protocol exe-
cution consistently reduces the server-side computation.

– Forward-privacy. If an adversary corrupts the tag after a successful execution
with the reader has occurred, he gets the current state and identification
key. The assumptions on g (i.e., it is a PRNG) guarantee the property5.

6 Security Reductions

In this section we show that the protocol is private, secure and correct.

Privacy. We prove that the privacy property holds by showing that if there exists
an adversary Ap which wins the privacy experiment for our protocol, then there
exists an adversary Bp which wins the privacy experiment for PFP with the
same advantage. Since PFP is private, we conclude that our protocol is private,
too. Essentially Bp uses the context of his privacy experiment, to simulate the
context of the privacy experiment for adversary Ap, which works against our
protocol. Hence, we need to show how Bp simulates the context for Ap and why
Ap does not distinguish the simulated context from the real one. Adversary Bp

works as follows:

– Bp starts the simulation of 2 ’augmented’ tags, T ′
0 and T ′

1, for the adversary
Ap, by using the real tags T0 and T1 of the privacy experiment for PFP he
is interacting too.

– Bp runs Ap. Bp answers correctly all Ap’s queries relaying modified queries
to the tags and extending tags replies in phase 1. The modified queries
and replies are constructed as follows: if Ap asks the reader to start a new
execution, then Bp chooses a uniformly at random c and sends it to Ap. If
Ap sends c to the tag, then Bp chooses uniformly at random the values I and
vT , and computes c′ = c ⊕ I ⊕ vT . Then sends c′ to the tag and gets back
hs(c

′). Hence, constructs the triple (I, vT , hs(c
′)), stores it in a database of

simulated transcripts STDB, and sends it to Ap. If Ap sends the triple to the
reader, then Bp checks if the triple is in STDB, simulates acceptance of the
reader and sends (and stores in STDB) v1, chosen uniformly at random, to

5 It is easy to see that, if an Adv corrupts the tag, for example, after sending it a
challenge, then he gets the identification key k (which stays the same as long as
an adversary-free execution tag/reader does not occur) and can trace the tag by
re-computing the pseudonym I. As we have stressed before, such corruptions during
or after failed executions are precluded by the model.

Ap. If Ap sends v1 to the tag, Bp checks in STDB and simulates acceptance
by the tag. Therefore, Bp (using the real tags) is able to provide a partially
simulated transcript to Ap.

– Let b be the bit chosen by the privacy experiment runner R for PFP , and let
Tb be the target tag. Since Bp is simulating the privacy experiment for Ap,
implicitly the choice of R holds for Bp. (Let us assume that R just removes
from the scene Tb⊕1.) Then, Bp keeps going with the simulation described
before and, when Ap asks to corrupt T

′
b, then Bp corrupts Tb, and forwards to

Ap the state σ (read in Tb memory) and values chosen uniformly at random
for CR and k to complete the amount of information which would be stored
in a real tag T ′

b. Finally, Bp outputs the same bit b′ that Ap outputs.

Bp defeats the privacy of PFP exactly with the same probability with which
Ap defeats the privacy of EFPP . What is left in the proof is to show that Ap

does not distinguish the simulated transcript from a real transcript.

To this aim, notice that the transcript of a protocol execution is given by
tuples of the form (c, I, vT , auth, v1), where c is chosen uniformly at random,
I, vT and v1 are computed through the PRNG g, and auth is computed through
the strongly universal hash function hs, plus CR and k, obtained by corrupting
the tag after a successful protocol execution. Let H0, H1, H2 and H3 (hybrid)
distributions of tuples defined as follows:

– H0 contains tuples (c, I, vT , auth, v1) computed like in the real protocol
– H1 contains tuples (c, I, vT , auth, v1) where I is chosen uniformly at random
– H2 contains tuples (c, I, vT , auth, v1) where I and vT are chosen uniformly

at random
– H3 contains tuples (c, I, vT , auth, v1) where I, vT and v1 are chosen uniformly

at random

Notice thatH3 is the distribution of sequences produced in our simulation by Bp.
By showing that, for i = 0, 1, 2, it holds that Hi is indistinguishable from Hi+1,
we infer that H0 is indistinguishable from H3. To show that, for i = 0, 1, 2,
it holds that Hi is indistinguishable from Hi+1, we use the same technique:
if there exists a distinguisher DH between the two hybrids, then there exists
a distinguisher Dg which distinguishes the outputs of the PRNG from truly
random values. Let us report the proof for the first case.

Let Hi and Hj be two distributions over sequences of m tuples. We say that
Hi and Hj are (T, ǫ)-indistinguishable, iff AdvDHi,Hj

(T) ≤ ǫ, for any distin-

guisher DHi,Hj
running in time at most T.

Lemma 4. If g is a (T, ǫg)-secure PRNG, then H0 and H1 are (Ti, ǫi)-indistin-
guishable where Ti = T − 3(m− 1)Tg − (m− 1)Th and ǫi = ǫgm

2.

Proof. Let H0,0 be a sequence of m tuples, generated according to distribution
H0, and let H0,m be a sequence of m tuples, generated according to distribution
H1. Moreover, for i = 1, . . . ,m − 1, let H0,i be a sequence of m tuples, gen-
erated by choosing in the first i tuples the value I uniformly at random, and

the remaining m − i as in H0. If there exists a (TH , ǫH) distinguisher DH0,H1

for the distributions H0 and H1, then there exists an index i such that DH0,H1

distinguishes between H0,i and H0,i+1 with advantage ≥ ǫH/m. We construct a
distinguisher Dg, by using DH0,H1

as a subroutine, as follows:

– Let V be the challenge-value Dg has to decide (PRNG output or Random).
– Chooses uniformly at random an index i ∈ {1, . . . ,m− 1}.
– Constructs a sequence of tuples Hc by following the distribution H0,i.
– Substitutes in the i-th tuple the value of I with the challenge-value V and

provides Hc to DH0,H1
.

– If DH0,H1
outputs 0, then Dg outputs 0. Else Dg outputs 1.

Notice that, when V = g1((CR||pad1)⊕ k) then Hc = H0,i. On the other hand,
when V is a random value, thenHc = H0,i+1. It follows thatDg distinguishes the
output of the PRNG from a random value with advantage ≥ ǫH/m2. Moreover,
Dg has running time upper bounded by TH +3(m− 1)Tg + (m− 1)Th. Since by
assumption g is (T, ǫg)-secure, if TH +3(m− 1)Tg + (m− 1)Th < T, we get that
ǫH/m2 ≤ ǫg, from which it follows that Hi and Hj are (Ti, ǫi)-indistinguishable,
where Ti = T − 3(m− 1)Tg − (m− 1)Th and ǫi ≤ ǫgm

2. △
Similarly, we can show that if Ap distinguishes CR and k of the simulated

transcript from CR and k obtained by opening a tag after a real successful
protocol execution, then we can construct a distinguisher for the PRNG g. It
follows that Ap does not distinguish a simulated transcript from a real one and
we conclude that:

Theorem 3. If PFP is (q, T, ǫp)-private, then EFPP is (q, T, ǫp)-private.

Secure tag authentication. Notice that, restricting the attention to the first two
rounds, our protocol generalises PFP . The first round is the same. In the second,
the tag sends a triple (containing a value of hs) instead of a single value hs.
Along the same line of the proof of [4], we show that, if there exists an efficient
adversary A, which is able to impersonate a tag to the reader, then there exists
an efficient distinguisher B capable of distinguishing outputs of the PRNG Gω

from random values in {0, 1}ωk. By suitably choosing the PRNG g, we show that
the probability with whom B (and hence A) succeeds is small. More precisely,
we construct B as follows:

– B receives in input the sequence of values z1, . . . , zω it has to decide from
which source it comes from.

– Then, it uses the above values z1, . . . , zω to simulate the computations of
the tag T (of unknown state) and the reader with whom A is supposed to
interact. More precisely, B answers all A’s queries in phase 1 as follows: if
A asks the reader to start a new execution, then B chooses a uniformly at
random c and sends it to A. If A sends c to the tag then, assuming it is the
i-th execution, B chooses uniformly at random the values I, v1 and vT , sets
s = zi, and computes and sends to A the triple (I, vT , hs(c⊕ I⊕vT)). It also
stores the triple and v1 in STDB. If A sends the triple to the reader, then

B checks in STDB whether there exists an entry which matches the triple,
simulates acceptance of the reader and sends v1 to A. If A sends v1 to the
tag, B checks in STDB and simulates acceptance of the tag.

– Let c be the challenge on which A, in phase 2, tries to impersonate T .
B gets back from A the triple (I, vT , hs(c ⊕ I ⊕ vT)). B checks whether
hs(c ⊕ I ⊕ vT) = hzq+1

(c ⊕ I ⊕ vT) (A has interacted q < ω times with tag
and reader in phase 1) and, if the check is satisfied then accepts and outputs
1; otherwise, it outputs 0.

Notice that, if z1, . . . , zω is pseudorandom (let us denote it as ZGω
), then B

outputs 1 with probability pA. Indeed, it is possible to show that the transcript
of the simulated executions is indistinguishable from the transcript of real ex-
ecutions and, by assumption, on real transcripts, A impersonates the tag with
probability pA. The indistinguishability can be shown by using standard argu-
ments: if A distinguishes between the transcripts, then can be constructed an
efficient distinguisher for g. On the other hand, following the reasoning of [4]
and applying Lemma 2, simple computations show that, if z1, . . . , zω are truly
random values (let us denote them as ZU), the probability that B outputs 1 is
less than ω(2−ℓ + ǫ(1 + 2qǫ)). It follows that:

|Pr[B(ZGω
) = 1]− Pr[B(ZU) = 1]| ≥ pA − ω(2−ℓ + ǫ(1 + 2qǫ)).

However, if g is a (T, ǫg)-secure PRNG, applying Theorem 1, we get that the
advantage |Pr[B(ZGω

) = 1] − Pr[B(ZU) = 1]| ≤ ωǫg. The last two equalities
show that pA ≤ ω(ǫg + 2−ℓ + ǫ(1 + 2qǫ). Moreover, B’s running time is equal to
A’s running time plus q computations of hs for the tag simulation. Therefore,
we can conclude that:

Theorem 4. If H is an ǫ-almost strongly universal hash function family, g is
a (T, ǫg)-secure PRNG, and q ≤ 1/2ǫ, then EFPP is (q, T ′, ǫs)-secure (w.r.t tag
authentication) with T ′ = T − (ω+1)Tg − qTh and ǫs = ω(ǫg +2−ℓ+ ǫ(1+2qǫ)).

Secure reader authentication. An adversary A, to be authenticated as reader from
the tag T, has to send in the third round of the protocol the right value v1 to T.
By using the same argument and simulation we have used before we show that,
if there is an efficient A who guesses v1 with probability pA, then there exists
a distinguisher B which distinguishes outputs of the PRNG Gω from random
values in {0, 1}ωk, and then, by suitably choosing the PRNG g, we show that the
probability pA is small. The distinguisher B uses A as a subroutine and simulates
A’s interaction with tag and reader. Eventually, if A impersonates the reader,
then B outputs 1. Otherwise, if A fails, then B outputs 0. When the sequence
z1, . . . , zω is chosen uniformly at random, then B outputs 1 with probability
at least 1

2k
. On the other hand, if z1, . . . , zω is pseudorandom, then, B outputs

1 with probability pA. Indeed, as argued before, the simulated values received
by A from B are indistinguishable from the values of real executions with the
tag T and, by assumption, on real transcripts, A impersonates the reader with
probability pA. It follows that:

AdvGω
(B) = |Pr[B(ZGω

) = 1]− Pr[B(ZU) = 1]| ≥ pA − 1/2k

Due to Theorem 1, if g is a (T, ǫg)-secure PRNG, then it follows that AdvGω
(B) ≤

ωǫg. Hence, it holds that pA ≤ 1/2k + ωǫg. In conclusion:

Theorem 5. If g is a (T, ǫg)-secure PRNG, then EFPP is (q, T ′, ωǫg)-secure
(w.r.t. reader authentication) where T ′ = T − (ω + 1)Tg − qTh.

Correctness. In an adversary-free execution, a tag T (resp. reader) is not au-
thenticated by the reader (resp. tag), only if the reader updated twice the tuple
associated to the tag in the database DB and the tag did not or the tag updated
its secret key k and the reader did not. Such events happen only if

1. The adversary is able to impersonate the tag T (resp. the reader).
2. Collisions of g and h occur.

Due to the security of the scheme, as we have seen before, the first possibility
happens with small probability. Hence, we do not need to care about it. Regard-
ing the second, collisions of g and h, we need to consider two separate cases:
during an execution of the protocol, at a certain point, there exists a tuple in
DB associated to another tag either with the same I and matching equations
or with a different I ′ but a secret key k by means of which we get a collision
on c, I, vT , and auth. More precisely, in the first case there exists in DB a tuple
(I, k′, σ′, CR′

DB), associated to tag ID′ 6= ID, for which (v0, v1) = g(c⊕ I ⊕ k′)
are such that:

vT ⊕ v0 = CR′
DB ||pad2

∧
g1((CR′

DB ||pad1)⊕ k′) = I
∧

hs′(c⊕ I ⊕ vT) = auth

while, in the second, there exists a tuple (I ′, k′, σ′, CR′
DB) for which (v0, v1) =

g(c⊕ I ⊕ k′) are such that:

vT ⊕ v0 = CRN ||pad2
∧

g1((CRN ||pad1)⊕ k′) = I
∧

hs′(c⊕ I ⊕ vT) = auth

Notice that g1((CR′
DB ||pad1) ⊕ k′) = I implies that g1((CRDB ||pad1) ⊕ k) =

g1((CR′
DB ||pad1) ⊕ k′) = I i.e., g produces a collision. If g is a (T, ǫg)-secure

PRNG, then it produces collisions with probability less than ǫg. Otherwise, it
would possible to construct a simple distinguisher for g which distinguishes pseu-
dorandom values from truly random values with probability higher than ǫg.
Moreover, due to Lemma 3, the equality hs(c⊕I⊕vT) = hs′(c⊕I⊕vT) = auth,
for s 6= s′, occurs with probability 1/2m. A similar analysis applies to the second
case. In conclusion, it holds that:

Lemma 5. If H is an ǫ-almost strongly universal hash function family and g
is a (T, ǫg)-secure PRNG, a collision during an execution of the protocol occurs
with probability < 2 · ǫg/2

m = ǫg/2
m−1.

We need to consider the probability of collisions within the lifetime of the pro-
tocol. If the system has N tags, since each tag can be used at most ω times, the
protocol is useful for at most Nω authentications. By using the above result, we
get that the probability of a collision within the system is pc ≤ (N−1)ω2ǫg/2

m−1.

Let g be a (T, ǫg)-secure PRNG, where T ≥ (N−1)ω2Th+(ω+1)Tg. Theorem 2
shows that the PRNG GN

ω , constructed from g (which models tag state updates
and the generation of seeds for hs,) is an ((N − 1)ω2Th, Nωǫg)-secure PRNG.
Applying the same steps of [4], we can conclude that the probability of failure of
the protocol is p < (N − 1)ω2ǫg/2

m−1 +Nωǫg + ǫs, where ǫs is the probability
of impersonation. In conclusion:

Theorem 6. Let g be a (T, ǫg)-secure PRNG where T ≥ (N−1)ω2Th+(ω+1)Tg,
let H be an ǫ-almost strongly universal hash function family, and let q ≤ 1/2ǫ.
The EFPP authentication protocol is (q, T ′, ǫc)-correct, with T ′ = T − (ω +
1)(3Tg + qTh) and ǫc = (N − 1)ω2ǫg/2

m−1 +Nωǫg + ǫs.

7 Acknowledgment

The work described in this paper has been supported in part by the European
Commission through the ICT program under contract 216676 ECRYPT II, in
part by the Italian Ministry of University and Research - Project PRIN 2008
PEPPER: Privacy and Protection of Personal Data (prot. 2008SY2PH4), and
in part by Project MTM2010-15167 from the Spanish Ministry of Science and
Technology.

8 Conclusions

We have proposed an efficient forward-private RFID mutual authentication pro-
tocol, secure under the assumption that exist secure pseudorandom number gen-
erators and strongly universal hash function families. At each authentication,
compared to PFP where the tag computes one time the PRNG g and one time
the hash function hs, the tag has to apply 3 times g and one time hs. On the
other hand, the server, to authenticate a tag, in the worst case, instead of O(Nω)
evaluations of g and hs as in PFP, needs only O(N + ω) evaluations, where N
is the total number of tags in the system, and ω is the maximum number of
authentications each single tag can afford during its lifetime. The server has full
control over the number of protocol executions a tag has been subject to. The
full version of this paper [8] reports an experimental comparison of PFP vs
EFPP, obtained by implementing the protocols.

References

1. G. Avoine, RFID Security and Privacy Lounge, http://www.avoine.net/rfid/
2. M. Bellare and P. Rogaway., Random oracles are practical: A paradigm for design-

ing efficient protocols, Proceedings of the First Annual Conference on Computer
and Communications Security, ACM, 1993.

3. M. Bellare, D. Pointcheval, and P. Rogaway, Authenticated key exchange secure

against dictionary attacks, Proceedings of Eurocrypt 2000, Lecture Notes in Com-
puter Science, Vol. 1807, pp. 139-155, 2000.

4. C. Berbain, O. Billet, J. Etrong, and H. Gilbert, An Efficient Forward Private

RFID Protocol, 16th ACM Conference on Computer and Communications Security
(CCS 09), pp. 43 - 53, 2009.

5. O. Billet, J. Etrog, and H. Gilbert, Lightweight Privacy Preserving Authentication

for RFID Using a Stream Cipher, Proceedings of Fast Software Encryption (FSE
2010), Lecture Notes in Computer Science, Vol. 6147, pp. 55-74, 2010.

6. R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revis-

ited, Proceedings of ACM STOC, 1998.
7. J. L. Carter and M. N. Wegman, Universal classes of hash functions, J. Computer

and System Sci., Vol. 18, pp. 143-154, 1979.
8. P. D’Arco, An Almost-Optimal Forward-Private RFID Mutual Authentication Pro-

tocol with Tag Control, available at http://www.dia.unisa.it/∼paodar.
9. P. D’Arco, A. Scafuro and I. Visconti, Revisiting DoS Attacks and Privacy in

RFID-Enabled Networks, 5th International Workshop on Algorithmic Aspects of
Wireless Sensor Networks (ALGOSENSORS ’09), Lecture Notes in Computer Sci-
ence, Vol.5304, pp. 76–87, 2009.

10. I. Damg̊ard and M.Østergaard, RFID Security: Tradeoffs between Security and

Efficiency, Proceedings of the RSA Conference, Cryptographers’ Track, Vol. , pp.
318 – 332, 2008.

11. R. Deng, Y. Li, A. Yao, M. Yung and Y. Zhao, A New Framework for RFID

Privacy, eprint archive, report no. 2010/059, available at http://eprint.iacr.org/
12. R. Deng, Y. Li, M. Yung and Y. Zhao, A New Framework for RFID Privacy,

Proceedings of Esorics 2010, Lecture Notes in Computer Science, 2010, Vol. 6345,
pp. 1-18, 2010.

13. A. Juels, The Vision of Secure RFID, Proceedings of the IEEE, Vol. 95, No. 8, pp.
1507-1508, August 2007.

14. A. Juels, R. Pappu, and S. Garfinkel, RFID Privacy: An Overview of Problems and

Proposed Solutions, IEEE Security and Privacy, Vol. 3, No. 3, pp. 34-43, May-June
2005.

15. M. Ohkubo, K. Suzuki, and S. Kinoshita, Efficient hash-chain based RFID privacy

protection scheme, Proc. of the International Conference on Ubiquitous Computing
Ubicomp Workshop Privacy: Current Status and Future Directions, Nottingham,
England (September 2004).

16. R. Paise and S. Vaudenay, Mutual Authentication in RFID: Security and Privacy,
Proceedings of Aisaccs08, Lecture Notes in Computer Science, Vol. , pp. 292–299,
2008.

17. T. Van Le, M. Burmester, and B. de Medeiros, Universally Composable and

Forward-Secure Rfid Authentication and Authenticated Key Exchange, Proc. of
ASIACCS’07, pp. 242-252, 2007.

18. S. Vaudenay, On Privacy Models for RFID, Proceedings of Asiacrypt 2007, Lecture
Notes in Computer Science, Vol. , pp. 68–87, 2007.

19. D. R. Stinson, Universal hashing and authentication codes, Designs, Codes and
Cryptography, No. 4, 369-380, 1994.

20. M. N. Wegman, New hash functions and their use in authentication and set equality,
Journal of Computer and System Sciences, Vol. 22, No. 3, pp. 265-279, 1981.

	An Almost-Optimal Forward-Private RFID Mutual Authentication Protocol with Tag Control

