
HAL Id: hal-01572538
https://inria.hal.science/hal-01572538

Submitted on 7 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards a Compiler for Business-IT Systems
Jana Koehler, Thomas Gschwind, Jochen Küster, Hagen Völzer, Olaf

Zimmermann

To cite this version:
Jana Koehler, Thomas Gschwind, Jochen Küster, Hagen Völzer, Olaf Zimmermann. Towards a Com-
piler for Business-IT Systems. 3rd Central and East European Conference on Software Engineering
Techniques (CEESET), Oct 2008, Brno, Czech Republic. pp.1-19, �10.1007/978-3-642-22386-0_1�.
�hal-01572538�

https://inria.hal.science/hal-01572538
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Towards a Compiler for Business-IT Systems
A vision statement complemented with a research agenda

Jana Koehler, Thomas Gschwind,
Jochen Küster, Hagen Völzer, and Olaf Zimmermann

IBM Zurich Resarch Laboratory
Säumerstrasse 4, CH-8038 Rüschlikon, Switzerland

Abstract. Business information systems and enterprise applications have con-
tinuously evolved into Business-IT systems over the last decades, directly linking
and integrating Business Process Management with recent technology evolutions
such as Web services and Service-Oriented Architectures. Many of these techno-
logical evolutions include areas of past academic research: Business rules closely
relate to expert systems, Semantic Web technology uses results from description
logics, attempts have been made to compose Web services using intelligent plan-
ning techniques, and the analysis of business processes and Web service chore-
ographies often relies on model checking. As such, many of the problems that
arise with these new technologies have been solved at least in principle.
However, if we try to apply these “in principle” solutions, we are confronted with
the failure of these solutions in practice: many proposed solution techniques do
not scale to the real-world requirements or they rely on assumptions that are not
satisfied by Business-IT systems.
As has been observed previously, research in this area is fragmented and does
not follow a truly interdisciplinary approach. To overcome this fragmentation,
we propose the vision of a compiler for Business-IT systems that takes business
process specifications described at various degrees of detail as input and compiles
them into executable IT systems. As any classical compiler, the parsing, analysis,
optimization, code generation and linking phases are supported. We describe a
set of ten research problems that we see as critical to bring our compiler vision to
reality.

1 Introduction

Business processes comprise sequences of activities that bring people, IT systems, and
other machines together to act on information and raw materials. They allow a business
to produce goods and services and deliver them to its customers. A business is a collec-
tion of business processes and thus (re-)engineering business processes to be efficient
is one of the primary functions of a company’s management. This is one of the most
fundamental mechanisms that drives advances in our society.

Business Process Management (BPM) is a structured way to manage the life cycle
of business processes including their modeling (analysis and design), execution, moni-
toring, and optimization. Good tools exist that allow business processes to be analyzed
and designed in an iterative process. Creating a model for a process provides insights



2

that allow the design of a process to be improved, in particular if the modeling tool
supports process simulation.

A Service-Oriented Architecture (SOA), which is often implemented using Web
services, is an architectural style that allows IT systems to be integrated in a standard
way, which lends itself to the efficient implementation of business processes. SOA also
enables efficient process re-engineering as the use of standard programming models
and interfaces makes it much simpler to change the way in which the components of
business processes are integrated. Once a process is implemented, it can be monitored,
e.g., measured, and then further optimized to improve the quality, the performance, or
some other aspect of the process.

Despite the progress that has been made recently in business process design and
modeling on the one hand, and their execution and monitoring on the other, there is
a significant gap in the overall BPM life cycle, which severely limits the ability of
companies to realize the benefits of BPM. No complete solution exists to automate the
translation from business process models to executable business processes. While par-
tial solutions exist that allow some process models to be mapped to implementations
(workflows), scalable and automated approaches do not exist that would support busi-
nesses in the full exploitation of the BPM life cycle to achieve rapid improvements
of their business processes. Thus, many of the benefits of process modeling and SOA
cannot be realized and effective BPM remains a vision.

As has been observed previously, research in this area is fragmented and does not
follow a truly interdisciplinary approach. This lack of interdisciplinary research is seen
as a major impediment that limits added economic growth through deployment and use
of services technology [1]:

The subject of SOC1 is vast and enormously complex, spanning many concepts
and technologies that find their origins in diverse disciplines that are woven to-
gether in an intricate manner. In addition, there is a need to merge technology
with an understanding of business processes and organizational structures, a
combination of recognizing an enterprise’s pain points and the potential solu-
tions that can be applied to correct them. The material in research spans an
immense and diverse spectrum of literature, in origin and in character. As a
result research activities at both worldwide as well as at European level are
very fragmented. This necessitates that a broader vision and perspective be es-
tablished one that permeates and transforms the fundamental requirements of
complex applications that require the use of the SOC paradigm.

This paper presents a concrete technological vision and foundation to overcome the
fragmentation of research in the BPM/SOA area. We propose the vision of a compiler
for Business-IT systems that takes business process specifications described at various
degrees of detail as input and compiles them into executable IT systems. This may
sound rather adventurous, however, recall how the first compiler pioneers were ques-
tioned when they suggested to programmers that they should move from hand-written

1 SOC stands for Service-Oriented Computing a term that is also used to denote research in the
area of BPM and SOA. The still evolving terminology is a further indicator of the emerging
nature of this new research field.



3

assembly code to abstract programming languages from which machine-generated code
would then be produced. The emerging new process-oriented programming languages
such as the Business Process Execution Language (BPEL) [2] or the Business Process
Modeling Notation (BPMN) [3] are examples of languages that are input to such a com-
piler. In particular, the upcoming version 2 of the Business Process Modeling Notation
(BPMN) [3] can be considered as a language that at the same time allows non-technical
users to describe business processes in a graphical notation, while technical users can
enrich these descriptions textually until the implementation of the business process is
completely specified. With its formally defined execution semantics, BPMN 2.0 is di-
rectly executable. However, direct execution in the literal meaning of the words means
to follow an interpreter-based approach with all its shortcomings, which cannot be con-
sidered as really desirable.

The envisioned compiler does not take a high-level business process model, magi-
cally adds all the missing information pieces, and then compiles it into executable code.
The need to go from an analysis model to a design model in an iterative refinement
process that involves human experts does not disappear. The compiler enables human
experts to more easily check and validate their process model programs. The valida-
tion helps them in determining the sources of errors as well as the information that
is missing. Only once all the required information is available, the code can be com-
pletely generated. The compiler approach also extends the Model-Driven Architecture
(MDA) vision; beyond model transformations that provide a mapping between mod-
els with different abstractions, we combine code generation with powerful analytical
techniques. Static analysis is performed yielding detailed diagnostic information and
structural representations similar to the abstract syntax tree are used by the Business-IT
systems compiler. This provides a more complete understanding of the process models,
which is the basis for error handling, correct translation, and runtime execution.

The paper is organized as follows: In Section 2, we motivate the need for a Business-
IT systems compiler by looking at BPM life cycle challenges. In Section 3, we summa-
rize the ten research problems that we consider as particularly interesting and important
to solve. In Section 4, we discuss the problems in more detail and review selected re-
lated work. Section 5 concludes the paper.

2 Life Cycle Challenges in Business-IT Systems

The IT Infrastructure underlying a business is a critical success factor. Even when IT
is positioned as a commodity such as by Nicolas Carr in “IT doesn’t matter,” it is em-
phasized that a disruptive new technology has arrived, which requires companies to
master the economic forces that the new technology is unleashing. In particular smaller
companies are not so well positioned in this situation. The new technology in the form
of Business Process Management (BPM) and Service-Oriented Architecture (SOA) is
complex to use, still undergoing significant changes, and it is difficult even for the ex-
pert to distinguish hype from mature technology development.

There is wide agreement that business processes are the central focus area of the new
technology wave. On the one hand, business processes are undergoing dramatic change
made possible by the technology. On the other hand, increasing needs in making busi-



4

ness processes more flexible, while retaining their integrity and compliance with legal
regulations continue to drive technology advances in this space. A prominent failure in
process integrity is the financial crisis that emerged throughout 2008.

Figure 1 reflects our current view of the driving forces behind the life cycle of
business processes. Two interleaved trends of commoditization and innovation have to
be mastered that involve the solution of many technical problems. Let us spend some
space discussing this picture to explain why this is a challenge for most businesses
today and why underpinning business process innovation with compiler technology is
essential to master the innovation challenge.

Standardized

Process

Best Practice

Reference

Process

Configured

Best Practice

Process

As-Is Process
As-Is 

Analysis 
Model

As-Is 
Design 
Model

abstract

To-Be Process
To-Be 

Analysis 
Model

To-Be 
Design 
Model

refine

Harvest

Standardize

& Establish new regulations

Reuse & Configure

Adopt regulation 
solutions

Add 
innovative 
business 

model 
elements

Business-
Driven 

Development

deploy
IT Architectural 

Decision 
Making

+

Industry
Asset

Industry

Standard

Runtime

Fig. 1. Driving Forces behind the Life Cycle of Business Processes

Let us begin in the lower left corner with the As-Is Process box. This box describes
the present situation of a business. Any business has many processes implemented,
many of them run today in an IT-supported environment. As such they were derived
from some As-Is design model and deployed. Sometimes, the design model is simply
the code. The As-Is design model is linked to an As-Is analysis model. Here, we adopt
the terminology from software modeling that distinguishes between an analysis model
(in our case, the business view on the processes) and the design model (in our case, the
implemented processes). The analysis model is usually an abstraction from the design
model, i.e., a common view of the business on the implemented processes exists in



5

many companies.2 The direct linkage between the business view on the processes and
their implementation constitutes the Business-IT system.

The As-Is processes implemented by the players in an industry represent the state of
the art of the Business-IT systems. Industries tend to develop a solid understanding of
good and bad practices and often develop best practice reference solutions. Very often,
consulting firms also specialize in helping businesses understanding and adopting these
best practice processes. Today, one can even see a trend beyond adoption. For example,
in the financial industry one can see first trends towards standardized processes that
are closely linked to new regulations. This clearly creates a trend of commoditization
forcing companies to adopt the new regulation solutions. With that we have arrived at
the upper right corner of the picture.

The commoditization trend is pervasive in the economic model of the western soci-
ety and it is as such not surprising that it now reaches into business processes. However,
in a profit-driven economy, commoditization is not desirable as it erodes profit. Busi-
nesses are thus forced to escape the commoditization trap, which they mostly approach
by either adopting new technologies or by inventing new business models. Both ap-
proaches directly lead to innovations in the business processes. In the picture above, the
new business processes that result from the innovation trend are shown as the To-Be
processes, which have to both accommodate commoditization requirements and as well
as to include innovation elements at the same time. The To-Be innovation must also be
evident with respect to the As-Is process and the best practice process, which is illus-
trated in the picture with the reference to a delta analysis involving the three process
models. The To-Be process is usually (but not always) initiated at the analysis level,
i.e., the business develops a need for change and begins to define this change. The To-
Be analysis model must be refined into a To-Be design model and then taking through a
business-driven development and IT-architectural decision process that is very complex
today. With the successful completion of the development, the To-Be process becomes
the new As-Is process. With that the trends of commoditization and innovation repeat
within the life cycle of business processes [4, 5].

This paper focuses on the technological underpinnings for business process inno-
vation, i.e., the adoption of best practice processes, their combination with innovative
elements, and the replacement of the As-Is process by the To-Be process. We investi-
gate these challenges from a strictly technological point of view and identify a number
of specific problems that are yet unsolved, but have to be solved in order to support
businesses in their innovation needs. Problems of process abstraction, harvesting, and
standardization are also of general interest, but are outside the scope of this vision as is
a study of the economic or social effects of what has been discussed above.

3 Compilation Phases and Associated Research Problems

Our main goal is to understand how a compiler for Business-IT systems works. At its
core, we see the compilation of business process models that constitutes a well-defined

2 By monitoring or mining the running processes or analyzing and abstracting the underlying
design model or code in some form, an analysis model can also be produced in an automatic
or semi-automatic manner, but this is beyond the focus of this paper.



6

problem. In the following, we relate the principal functionalities of a programming lan-
guage compiler to the corresponding problems of compiling a business process model.

Following Muchnik [6] “compilers are tools that generate efficient mappings from
programs to machines”. Muchnik also points out that languages, machines, and target
architectures continue to change and that the programs become ever more ambitious
in their scale and complexity. In our understanding, languages such as BPMN are the
new forms of programs and SOA is a new type of architecture that we have to tackle
with compilers. A compiler-oriented approach helps to solve the business problems
and to address the technical challenges around BPM/SOA. For example, verifying the
compliance and integrity of a business with legal requirements must rely on a formal
foundation. Furthermore, agility in responding to innovation requires a higher degree
of automation. At a high-level, a compiler works in the following five phases:

1. Lexical analysis and parsing
2. Structural and semantic analysis
3. Translation and intermediate code generation
4. Optimization
5. Final assembly and linking and further optimization

We envision the compiler for Business-IT systems to work in the same five phases.
While we consider the parsing and lexical analysis phase as essentially being solved by
our previous and current work, we propose ten specific research problems that address
key problems for the subsequent phases. The list below briefly summarizes the ten
problems. In Section 4, they are discussed in more detail.

1. Lexical analysis and parsing:: We developed the Process Structure Tree (PST)
as a unique decomposition of the workflow graph, which underlies any business
process model, into a tree of fragments that can be computed in linear time. The
PST plays the same role in the Business-IT systems compiler as the Abstract Syntax
Tree (AST) in a classical compiler.

2. Structural and semantic analysis: We developed a control-flow analysis for work-
flow graphs that exploits the PST and demonstrates its usefulness, but which can
still be significantly expanded in terms of the analysis results it delivers as well as
the scope of models to which it can be applied.
Problem 1: Clarify the role of orchestrations and choreographies in the compiler.

Process models describe the flow of tasks for one partner (orchestration) as well
as the communication between several partners (choreographies). Structural
and semantic analysis must be extended to choreographies and orchestration
models. Furthermore, it must be clarified which role choreography specifica-
tions play during the compilation process.

Problem 2: Solve the flow separation problem for arbitrary process orchestrations.
Process orchestrations can contain specifications of normal as well as error-
handling flows. Both flows can be interwoven in an unstructured diagram, with
their separation being a difficult, not yet well-understood problem.

Problem 3: Transfer and extend data-flow analysis techniques from classical com-
pilers to Business-IT systems compilers. Processes manipulate business data,



7

which is captured as data flow in process models. Successful techniques such
as Concurrent Single Static Assignment (CSSA) must be transferred to the
Business-IT systems compiler.

Problem 4: Solve the temporal projection problem for arbitrary process orchestra-
tions. Process models are commonly annotated with information about states
and events. This information is usually available at the level of a single task,
but must be propagated over process fragments, which can exhibit a complex
structure including cycles.

Problem 5: Develop scalable methods to verify the termination of a process chore-
ography returning detailed diagnostic information in case of failure. Correctly
specifying the interaction between partners that execute complex process or-
chestrations in a choreography model is a challenging modeling task for hu-
mans. In particular, determining whether the orchestration terminates is a fun-
damental analysis technique that the compiler must provide in a scalable man-
ner.

3. Translation and intermediate code generation: Many attempts exist to translate
business-level process languages such as BPMN to those languages used by the
runtime such as BPEL. None of the proposed approaches is satisfying due to strong
limitations in the subsets of the languages that can be handled and the quality of the
generated code, which is often verbose. Major efforts have to be made to improve
the current situation.
Problem 6: Define a translation from BPMN to BPEL and precisely character-

ize the maximal set(s) of BPMN diagrams that are translatable to structured
BPEL.3

4. Optimization: Code generated today or attempts to natively execute process-oriented
languages are very limited with respect to the further optimization of the code. Spe-
cific characteristics of the target IT architecture are rarely taken into account.
Problem 7: Define execution optimization techniques for the Business-IT systems

compiler. Until today, business processes are usually optimized with respect
to their costs. No optimization of a process with respect to the desired target
platform happens automatically as it is available in a classical compiler. It is
an open question which optimizations should be applied when processes are
compiled for a Service-Oriented Architecture.

5. Final assembly, linking and further optimization: Assembly and linking prob-
lems in a Service-Oriented Architecture immediately define problems of Web ser-
vice reuse and composition, for which no satisfying solutions have been found yet.
Problem 8: Redefine the Web service composition problem such that it is grounded

in realistic assumptions and delivers scalable solutions. Web service composi-
tion is studied today mostly from a Semantic Web perspective assuming that
rich semantic annotations are available that are provided by humans. A com-
piler, however, should be able to perform the composition and linking of service
components without requiring such annotations.

3 We only define a single problem focusing on the challenge of BPMN-BPEL translation, al-
though the question of an adequate BPEL-independent “byte-code” level for BPMN is also
very interesting and deserves further study.



8

Problem 9: Redefine the adapter synthesis problem by taking into consideration
constraints that occur in business scenarios. Incorrect choreographies have to
be repaired. Often, this is achieved by not changing the processes that are in-
volved in the choreography, but by synthesizing an adapter that allows the part-
ners to successfully communicate with each other. Such an adapter often must
include comprehensive protocol mediation capabilities. So far, no satisfying
solutions have been found for this problem and we argue that it must be refor-
mulated under realistic constraints.

Problem 10: Demonstrate how IT architectural knowledge and decisions are used
within the compiler. The target platform for the Business-IT systems compiler
is a Service-Oriented Architecture. Architectural decision making is increas-
ingly done with tools that make architectural decisions explicit and manage
their consistency. These decisions can thus become part of the compilation
process, making it easier to compile processes for different back end systems.

The positioning of these ten problems within the various compilation phases makes
it possible for researchers to tackle them systematically, study their interrelationships,
and solve the problems under realistic boundary constraints. Our vision allows us to
position problems in a consistent and comprehensive framework that have previously
been tackled in isolation. This can lead to synergies between the various possible so-
lution techniques and allows researchers to successfully transfer techniques that were
successful in one problem space to another.

Our vision provides researchers with continuity in the technological development,
with compilers tackling increasingly complex languages and architectures. A solution
of the ten research problems has significant impact on the integrity, improved agility
and higher automation within BPM/SOA.

4 A Deeper Dive into the Research Problems

A compiler significantly increases the quality of the produced solution and provides
clearer traceability. Approaches of manual translation are envisioned to be replaced
by tool-supported refinement steps guided by detailed diagnostic information. The op-
timization of Business-IT systems with respect to their execution becomes possible,
which can be expected to lead to systems with greater flexibility making it easier for
businesses to follow the life cycle of process innovation.

A compiler can also help in automating many manual steps and be expected to
produce higher-quality results than those that can be obtained by manual, unsupported
refinement and implementation steps. With the compiler approach, we propose to go
beyond the Model-Driven Architecture (MDA) vision that proposes models at different
levels of abstraction and model transformations to go from a more abstract to a more
refined model. Two problems prevent that MDA is fully workable for BPM/SOA. If
used at all, model transformations are written mostly in an ad-hoc manner in industrial
projects today. They rarely use powerful analytical techniques such as the static analy-
sis performed by compilers, nor do they exploit structural representations similar to the



9

abstract syntax tree that a compiler builds for a program. Furthermore, too many dif-
ferent models result from the transformations with traceability between these models
remaining an unsolved problem so far.

In the following, we review selected related work in the context of the five phases.
The review will not be a comprehensive survey of the state of the art. We focus on where
we stand in our own research with respect to the compiler for Business-IT systems and
point by example to other existing work in various fields of computer science that we
consider as relevant when tackling the problems that we define for the five phases.

4.1 Parsing

The parsing problem for business process models has not yet been widely recognized by
the BPM community as an important problem. Figure 2 shows a typical workflow graph
underlying any business process model. It includes activities ai, decisions di, merges
mi (for alternative branching and joining) as well as forks fi and joins ji (for parallel
branching and joining). Today, process-oriented tools treat such models as large, un-
structured graphs. No data structure such as the Abstract Syntax Tree (AST) used by
compilers is available in these tools.

a1

d1
a2

f1 j1

a3

m4

m1

a6

a5 a7

a4 a8

a10

a11

f4 j4

d2
m2

m3

a12
a13 d3

f7

d4
m5

f6

f5

a15

a14

a17

a16
j5

j6

f2

a9

j2

f3

j3

Fig. 2. Workflow graph of an example process model in a UML Activity Diagram-like notation.

In our own research, we developed the Process Structure Tree (PST) [7, 8], which
we consider to be the AST analogy for Business-IT systems compilers. The PST is a
fundamental data structure for all the subsequent phases of a compilation. By apply-
ing techniques from the analysis of program structure trees [9–12] to business process
models a unique decomposition of process models into a tree of fragments can be com-
puted using a linear time algorithm. The PST is a significant improvement compared to
approaches that use graph grammars to parse the visual language, which is exponential
in most cases [13]. Figure 3 shows the PST for the workflow graph of Figure 2.



10

Z

X Y

KJ L

C D E F G H I

V W

M N

O P Q R S T U

A B j1

j2 j3

j4

j5

f1

f2 f3

f4

f5 f6d1 d2 d3 d4m1 m2 m3 m4 m5

a1 a2

a3 a4 a5 a6 a7 a8

a9

a10 a11

a12 a13 a14 a15 a16 a17

f7 j6

Fig. 3. Process Structure Tree (PST) for the workflow graph of Figure 2.

With this, we believe that the parsing problem for the Business-IT systems compiler
is solved for the near future. Additional improvements can be imagined, but in the
following we concentrate on the other phases of the compiler, which help validating
that the PST is indeed as powerful as the AST.

4.2 Structural and Semantic Analysis

In our own research, we have developed two types of analysis based on the PST: a) a
control-flow analysis [7, 14] and b) an approach to the structural comparison and dif-
ference analysis of process models [15]. Both demonstrated that the PST is an essential
prerequisite and a powerful data structure to implement various forms of analyses. In
the following, we shortly summarize our current insights into the analysis problem and
identify a set of concrete problems that we consider as being especially relevant and
interesting.

A business process model is also often referred to as a process orchestration. A
process orchestration (the control- or sequence flow) describes how a single business
process is composed out of process tasks and subprocesses. In a SOA implementation,
each task or subprocess is implemented as a service, where services can also be com-
plex computations encapsulating other process orchestrations. In contrast to an orches-
tration, a process choreography describes the communication and thus the dependencies
between several process orchestrations. Note that the distinction between orchestration
and choreography is a “soft” one and usually depends on the point of view of the mod-
eler.

An example of a simple process orchestration and choreography specification in
BPMN is shown in Figure 4, taken from the BPMN 1.1 specification [3]. The figure
shows an abstract process Patient and a concrete process Doctor’s office. The Doctor’s
office process orchestration is a simple sequence of tasks. The dotted lines between the
two processes represent an initial and incomplete description of the choreography by
showing the messages flowing between the two processes.4

4 Note that the clarification and formal definition of the semantics of BPMN is another focus
area of our work. However, developing the fundamental techniques for a Business-IT compiler
does not require BPMN as a prerequisite. Related well-defined languages such as Petri nets
or workflow graphs can also be assumed. Nevertheless, we plan to apply our techniques to
BPMN due to the growing practical relevance of the language.



11

Fig. 4. Choreographies and orchestrations in the Doctor’s Office example process.

Problem 1: Clarify the role of orchestrations and choreographies in the com-
piler.

Our compiler needs to be able to analyze orchestrations as well as choreographies.
However, it is not fully clear at which phase choreography information is relevant for
the compilation. It is clearly relevant in the assembly and linking phase when an en-
tire Business-IT system is built, but one can also imagine that the optimization of an
orchestration can be specific to a given choreography in order to better address the de-
sired target architecture.

Another fundamental question for the analysis is the detection of control- and data-
flow errors. In the context of a process orchestration, verification techniques have been
widely used, e.g., [16] to find errors in the specified control flows. To the best of our
knowledge, compiler techniques have not yet been considered so far.

Verification of business processes is an area of research that has established itself
over the last decade. Locating errors in business processes is important in particular
because of the side effects that processes have on data. Processes that do not terminate
correctly because of deadlocks or processes that exhibit unintended execution traces
due to a lack of synchronization often leave data in inconsistent states [17]. Common
approaches to process verification usually take a business process model, translate a
process model into a Petri net or another form of a state-based encoding and then run
a Petri-net analysis tool or model checker on the encoding. Examples are the Woflan
tool [18] or the application of SMV or Spin to BPEL verification, e.g., [19, 20]. In prin-
ciple, these approaches make it possible to detect errors in business processes. However,
there are severe limitations that so far prevented the adoption of the proposed solutions
in industrial tools:

– Encodings are usually of exponential size compared to the original size of the pro-
cess model.

– The verification tools in use do not give detailed enough diagnostic information in
such a way that they allow an end user to easily correct errors—it has turned out
in practice that counterexample traces are unfortunately only rarely pointing to the
real cause of an error.



12

– The approaches often make restricting assumptions on the subclass of process mod-
els that they can handle.

Consequently, the currently available solutions are only partially applicable in prac-
tice due to their long runtimes, the lack of suitable diagnostic information, and the
restrictions on the defined encodings.

In our own work, we have followed a different approach. First, we analyzed hun-
dreds of real-world business processes and identified commonly occurring so-called
anti-patterns [21]. Secondly, we used the PST as th unique parse tree of a process
model to speed up the verification of the process [7, 14]. Each fragment in a PST can
be analyzed in isolation because the tree decomposition ensures that a process model
is sound if each fragment is sound. Many fragments exhibit a simplified structure and
their soundness (i.e., the absence of deadlocks and lack of synchronization errors) can
be verified by matching them against patterns and anti-patterns. Only a small number
of fragments remains to which verification methods such as model checking must be
applied. Furthermore, the size of a fragment is usually small in practice, which results
in a significant state-space reduction. Consequently, the resulting combination of veri-
fication techniques with structural analysis leads to a complete verification method that
is low polynomial in practice with worst-case instances only occurring rarely. As each
error is local to a fragment, this method also returns precise diagnostic information.

Implementation of the work [14] showed that the soundness of even the largest busi-
ness process models that we observed in practice can be completely analyzed within a
few milliseconds. Consequently, the technology can be made available to users of mod-
eling tools where they obtain instant feedback. Patterns and refactoring operations [22,
23] can be provided to users to help them correct the detected modeling errors easily.
The patterns and refactoring operations take advantage of the fine-grained diagnostic
information and the PST to support users in accomplishing complicated editing steps in
a semi-automatic and correct manner.

With these results, a major step forward has been made. Still, two problems remain.
First, the control-flow analysis must be extended to process models that are enriched
with the description of error-handling or compensation flow as it is possible in BPMN.
Secondly, no sufficient data-flow analysis techniques are yet available to analyze busi-
ness processes. Figure 5 illustrates two more problems that we propose to investigate in
more detail.

Fig. 5. Example of a business process model in BPMN showing an error-handling flow and data.



13

Problem 2: Solve the flow separation problem for arbitrary process orchestra-
tions.

Figure 5 shows a repetitive process where a task T1 is executed followed by a task
T2. T1 has some data object as output. During the execution of T1, some compensation
event can occur that requires task T3 to execute. When the compensation is finished, the
process continues with T2. BPMN allows business users to freely draw “normal” flows
as well as error-handling flows within the same process model. An error-handling flow
can branch off in some task interrupting the normal flow and then merge back later into
the normal flow. For a process without cycles, it is relatively easy to tell from the process
model where normal and error-handling flows begin and end. For processes with cycles,
this is much more complicated and constitutes an unsolved problem that we denote as
the “flow separation problem.” A solution to this problem requires the definition of the
semantics of error-handling flows. Furthermore, an error-handling flow must always be
properly linked to a well-defined part of the normal flow, which is usually called the
scope. Computing the scope of an error handling flow from an unstructured process
model is an open problem.

Problem 3: Transfer and extend data-flow analysis techniques from classical
compilers to Business-IT systems compilers.

Data-flow analysis for unstructured business process models is also a largely un-
solved problem. Figure 5 shows some data object as an output of task T1. Large dia-
grams often refer to many different types of data objects as the inputs and outputs of
tasks. Furthermore, decision conditions in the branching points of process flows often
refer to data objects. Users who work with process models are interested in answering
many questions around data such as whether data input is available for a task, whether
data can be simultaneously accessed by tasks running in parallel in a process, or whether
certain decision conditions can ever become true given certain data, i.e., whether there
are flows in the process that can never execute.

An immediate candidate is the Concurrent Single Static Assignment approach [24]
that we have begun to explore. Data-flow analysis is also a prerequisite to answer ques-
tions such as whether a compensation flow really compensates for the effects of a failed
normal flow.

Problem 4: Solve the temporal projection problem for arbitrary process orches-
trations.

Recently, additional knowledge about the process behavior in the form of semantic
annotations is added to process models. These annotations take the form of formally
specified pre- and postconditions or simple attribute-value pairs. A tool should be able
to reason about these semantic annotations, for example to conclude what pre- and
postconditions hold for a complex process fragment containing cycles when the con-
trol flow is specified and the pre- and postconditions of the individual tasks are known.
This problem of computing the consequences of a set of events has been studied as
the so-called Temporal Projection problem in the area of Artificial Intelligence (AI)



14

planning [25] and regressing and progression techniques have been developed. Unfor-
tunately, AI plans exhibit a much simpler structure than process models, in particular
they are acyclic, i.e., the existing techniques are not directly applicable. A solution to
the temporal projection problem is important for the analysis of data flows as well as
for the composition of processes (and services).

These four research problems address major challenges for the analysis phase of
the compiler when investigating a process orchestration, i.e., a single process model.
For process choreographies that describe the interaction and communication between
several processes, we are mostly interested in termination problems. Can two processes
successfully communicate with each other such that both terminate?

Problem 5: Develop scalable methods to verify the termination of a process
choreography returning detailed diagnostic information in case of failure.

If a process choreography is fully specified, this question can be precisely answered.
Even in the case of abstract models and underspecified choreographies such as in the
example of Figure 4, interesting questions can be asked and answered. For example,
which flow constraints must the abstract Patient process satisfy such that a success-
ful communication with the Doctor’s office is possible? Previous work, notably the
research on operating guidelines [26–28] has provided an initial answer to these ques-
tions. The proposed analysis techniques are based on Petri nets, but do not yet scale
sufficiently well. Similar to the case of process orchestrations, we are also interested in
precise diagnostic information when verifying choreographies.

4.3 Translation and intermediate code generation

For the translation phase, we consider one problem as especially important and want to
restrict us to this problem, namely the translation from unstructured BPMN to structured
BPEL [2].

Problem 6: Define a translation from BPMN to BPEL and precisely charac-
terize the maximal set of BPMN diagrams that are translatable to structured
BPEL.

An example of relevant related work is [29]. The approach exploits a form of struc-
tural decomposition, but not as rigorous as the PST and therefore leads to non-uniform
translation results, i.e., the order of application of the translation rules determines the
translation output. It is also important to further improve on the initial insights into the
classes of BPMN diagrams that are translatable into structured BPEL. Beyond BPEL,
one can also imagine that the translation of BPMN to other runtimes, e.g., ones that use
communicating state machines is of major practical relevance.

4.4 Optimization

The optimization phase for the Business-IT systems compiler is a completely unad-
dressed research area so far.



15

Problem 7: Define execution optimization techniques for the Business-IT sys-
tems compiler.

Classical process optimization, which is mostly performed during a Business Anal-
ysis phase, usually focuses on cost minimization. For the compiler, we are envisioning
an optimization of processes with respect to their execution on the planned target ar-
chitecture, but not so much a cost optimization of the process itself. One advantage of
compilers is their ability to support multiple platforms. Different architectures, includ-
ing different styles of SOA, require and enable differences in the process implementa-
tion. Optimizations such as load balancing or clustering have for example been studied
in the context of J2EE applications [30]. We have some initial insights, but first of all
the main goal must be to clarify what can and should happen during the optimization
phase.

4.5 Final assembly and linking further optimization

For the assembly and linking phase, we see two problem areas that are of particular
interest. First, we propose to further study several well-defined synthesis problems. In
the literature, two instances of process synthesis problems have been investigated so far:
On the one hand, there is the Web service composition problem that is mostly tackled
using AI planning techniques [31, 32].

Problem 8: Redefine the Web service composition problem such that it is grounded
in realistic assumptions and delivers scalable solutions.

Web service composition tries to assemble a process orchestration from a predefined
set of services. It is commonly assumed that the goal for the composition is explicitly
given and that services are annotated with pre- and postconditions. Unfortunately, both
assumptions are rarely satisfied in practice. In particular, business users usually have a
rather implicit understanding of their composition goals. We cannot expect these users
to explicitly formulate their goals in some formal language. Furthermore, the processes
returned by the proposed methods for service composition are very simple and resemble
more those partially-ordered plans as studied by the AI planning community than those
processes modeled by BPMN diagrams.

The second problem is the adapter synthesis problem, which is addressed by com-
bining model checking techniques with more or less intelligent “guess” algorithms [33,
34]. Adapter synthesis tries to resolve problems in a faulty choreography by generating
an additional process that allows existing partners to successfully communicate.

Problem 9: Redefine the adapter synthesis problem by taking into consideration
constraints that occur in business scenarios.

The problem is inherently difficult in particular due to the unconstrained formu-
lation in which it is studied. Usually, the goal is to generate “some” adapter without
formulating any further constraints. Consequently, an infinite search space is opened up
and the methods are inherently incomplete. In addition, the synthesized adapters must



16

be verified, because the correctness of the synthesis algorithms is usually not guaran-
teed.

There is thus a wide gap between the currently proposed techniques and the needs
of a practically relevant solution. A first goal must therefore be to formulate practically
relevant variants of the service composition and adapter synthesis problems. Secondly,
solutions to these problems must be worked out that make realistic assumptions, scale
to real-world problems and are accepted by the commercial as well as the academic
world.

An initial goal for these last two research problems is thus to identify realistic prob-
lem formulations. For the web composition problem, this means to replace the assump-
tions of explicit goals and pre- and postconditions by the information that is available
in real-world use cases of service composition. Furthermore, the composition methods
must be embedded into an approach based on iterative process modeling where a hu-
man user is involved, similar to what has been studied by the AI planning community
under the term of so-called mixed-initiative approaches. It also seems to be a promising
approach to combine such approaches with pattern-based authoring methods similar in
spirit to those known from the object-oriented software engineering community [35],
i.e., to provide users with predefined composition problems and proven solutions in
the form of composition patterns that they “only” need to instantiate and apply to their
problems.

The second problem area for the assembly and linking phase focuses on those ar-
chitectural design decisions that must be taken when compiling business processes to
IT systems.

Problem 10: Demonstrate how IT architectural knowledge and decisions are
used within the compiler.

Today, these decisions are taken by IT architects mostly working with paper and
pen. Decisions are not formally represented in tools and no decision-making support
is available. Consequently, architectural decisions are not available in a form that they
can really be used by the Business-IT systems compiler. Recent work by others and
us has shown that architecturally decision making can be systematically supported and
that decision alternatives, drivers and dependencies can be explicitly captured in tools
and injected into a code-generating process [36–39]. By separating and validating the
architectural decisions, design flaws can be more easily detected and a recompilation of
a system for a different architecture is becoming more feasible.

With this list of ten specific research problems, the vision of a compiler for Business-
IT systems is broken down into a specific set of key problems. We believe that a solu-
tion of these problems constitutes the essential cornerstones for such a compiler. The
positioning of the problems within the various compilation phases makes it possible to
tackle them systematically as well as study their relationships and dependencies, and to
solve the problems under realistic boundary constraints.

We believe that the compiler vision is a key to overcome the most urgent prob-
lems in the BPM and SOA space. Today, BPM and SOA applications are built from
business process models that were drawn in modeling tools that offer little analytical
or pattern-based support. From the process analysis models, design models are created



17

by hand by manually translating and refining the information contained in the analy-
sis model. Usually, the direct linkage between analysis and design gets lost during this
step. Changes made at the design level are rarely reflected back at the analysis level.
Commonly, the business processes are modeled in isolation. Their interdependencies
and communication, their distributed side effects on shared data are rarely captured in
models, but remain hidden in hand-written code. Thus, building the applications is ex-
pensive, resource-intensive, and often ad-hoc. The resulting BPM and SOA systems are
hard to test, to maintain, and to change.

A compiler significantly increases the quality of the produced solution and provides
clearer traceability. Approaches of manual translation are replaced by tool-supported
refinement steps guided by detailed diagnostic information. When embedding the com-
piler into a development environment supporting the life cycle of process models in
horizontal (distributed modeling) and vertical (refinement) scenarios, versions of the
process models can be tagged, compared, and merged. Alternative views on the pro-
cesses for different purposes can also be more easily provided.

The optimization of Business-IT systems with respect to their execution becomes
possible, which can be expected to lead to systems with greater flexibility making it
easier for businesses to follow the life cycle of process innovation.

5 Conclusion

In this paper, we proposed the vision of a compiler for Business-IT systems that takes
business process specifications described at various degrees of detail as input and com-
piles them into executable IT systems. We defined ten research problems that have to
be solved towards creating a compiler for Business-IT systems. Our vision allows us to
position problems in a consistent and comprehensive framework that have previously
been tackled in isolation. None of the presented research problems is new. In fact, many
research projects have been initiated around them. However, as we tried to outline in
the previous discussion, none of these projects has been truly successful, because the
developed solutions commonly fail in practice: they do either not scale to the size of
real-world examples, they do not provide users with the information that they need, or
they rely on assumptions that do not hold in practice. However, many of these research
projects have delivered interesting partial solutions that are worth to be preserved and
integrated into a compiler for Business-IT systems. Consequently, many of these results
have to be combined with novel “gap-closing” technology that still has to be developed
and placed within the vision of the compiler. In many cases, the gap is in fact quite
wide, requiring researchers to leave established solution approaches and develop much
more than a small delta on top of existing research results.

The ten research problems have been defined at different levels of abstraction. Some
are concrete, while others first have to be addressed at the conceptual level before they
can be refined into a concrete set of problems. We believe that this mix makes the pro-
posed problems particularly interesting and will enable researchers to drive progress
in complementary strands of work. The positioning of these ten problems within the
various compilation phases makes it possible for researchers to tackle them systemat-



18

ically, study their interrelationships, and solve the problems under realistic boundary
constraints.

References

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., Krämer, B.J.: Service-oriented
computing: A research roadmap. In: Dagstuhl Seminar Proceedings on Service-Oriented
Computing. (2006)

2. Jordan, D., et al.: Web services business process execution language (WSBPEL) 2.0.
htpp://www.oasis-open.org/committees/wsbpel/ (2007)

3. OMG: Business Process Modeling Notation Specification. (2007) Version 1.1.
4. Reichert, M., Dadam, P.: ADEPT Flex - supporting dynamic changes of workflows without

losing control. Journal of Intelligent Information Systems 10(2) (1998) 93–129
5. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and overlapping dynamic changes: Chal-

lenges, solutions, applications. In: Int. Conference on Cooperation Information Systems
(CoopIS-04). Volume 3290., Springer (2004) 101–120

6. Muchnik, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann (1997)
7. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis for

business process models though SESE decomposition. In: 5th Int. Conference on Service
Oriented Computing (ICSOC-07). Volume 4749 of LNCS., Springer (2007) 43–55

8. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. In: 6th Int.
Conference on Business Process Management (BPM-08). Volume 5240 of LNCS., Springer
(2008) 100–115

9. Johnson, R., Pearson, D., Pingali, K.: The program structure tree: Computing control regions
in linear time. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI-94). (1994) 171–185

10. Ananian, C.S.: The static single information form. Master’s thesis, Massachusetts Institute
of Technology (September 1999)

11. Valdes-Ayesta, J.: Parsing Flowcharts and series-parallel graphs. PhD thesis, Stanford Uni-
versity (1978)

12. Tarjan, R.E., Valdes, J.: Prime subprogram parsing of a program. In: 7th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM (1980) 95–105

13. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G.: Handbook of Graph Grammars and
Computing by Graph Transformation. Volume 2. World Scientific (1999)

14. Favre, C.: Algorithmic verification of business process models. Master’s thesis, École Poly-
technique Fédérale de Lausanne (August 2008)

15. Küster, J.M., Gerth, C., Förster, A., Engels., G.: Detecting and resolving process model
differences in the absence of a change log. In: 6th Int. Conference on Business Process
Management (BPM-08). Volume 5240 of LNCS., Springer (2008) 244–260

16. Baresi, L., Nitto, E.D., eds.: Test and Analysis of Web Services. Springer (2007)
17. Leymann, F., Roller, D.: Production Workflow. Prentice Hall (2000)
18. Verbeek, H., Basten, T., van der Aalst, W.: Diagnosing workflow processes using WOFLAN.

The Computer Journal 44(4) (2001) 246–279
19. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL Web Services. In: 13th Int. Confer-

ence on the World Wide Web (WWW-04), ACM (2004) 621–630
20. Trainotti, M., Pistore, M., Calabrese, G., Zacco, G., Lucchese, G., Barbon, F., Bertoli, P.,

Traverso, P.: ASTRO: Supporting composition and execution of Web Services. In: 3rd Int.
Conference on Service Oriented Computing (ICSOC-05). Volume 3826., Springer (2005)
495–501



19

21. Koehler, J., Vanhatalo, J.: Process anti-patterns: How to avoid the common traps of business
process modeling. IBM WebSphere Developer Technical Journal 10(2+4) (2007)

22. Koehler, J., Gschwind, T., Küster, J., Pautasso, C., Ryndina, K., Vanhatalo, J., Völzer, H.:
Combining quality assurance and model transformations in business-driven development.
In: 3rd Int. Symposium on Applications of Graph Transformations with Industrial Relevance
(AGTIVE-07). Volume 5088 of LNCS., Springer (2008) 1–16

23. Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process modeling. In:
6th Int. Conference on Business Process Management (BPM-08). Volume 5240 of LNCS.,
Springer (2008) 4–19

24. Lee, J., Midkiff, S.P., Padua, D.A.: Concurrent static single assignment form and const prop-
agation for explicitly parallel programs. In: 10th Int. Workshop on Languages and Compilers
for Parallel Computing (LCPC-97). Volume 1366 of LNCS., Springer (1997) 114–130

25. Nebel, B., Bäckström, C.: On the computational complexity of temporal projection, plan-
ning, and plan validation. Artificial Intelligence 66(1) (1994) 125–160

26. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the soa. AMCT
1(3) (2005) 35–43

27. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services. In:
28th Int. Conference on Application and Theory of Petri Nets (ICATPN-07). Volume 4546
of LNCS., Springer (2007) 321–341

28. Massuthe, P., Wolf, K.: An algorithm for matching nondeterministic services with operating
guidelines. Int. Journal of Business Process Integration and Management 2(2) (2007) 81–90

29. Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P.: From BPMN process
models to BPEL Web Services. In: IEEE Int. Conference on Web Services (ICWS-06).
(2006) 285–292

30. Sriganesh, R.P., Bose, G., Silvermanohn, M.: Mastering Enterprise JavaBeans 3.0. John
Wiley (2006)

31. Rao, J., Su, X.: A survey of automated web service composition methods. In: 1st Int. Work-
shop on Semantic Web Services and Web Process Composition. Volume 3387 of LNCS.,
Springer (2004) 43–54

32. Hoffmann, J., Bertoli, P., Pistore, M.: Web service composition planning, revisted: In be-
tween background theories and initial state uncertainty. In: 22nd AAAI Conference on Arti-
ficial Intelligence (AAAI-07). (2007) 1013–1018

33. Bertoli, P., Hoffmann, J., Lécué, F., Pistore, M.: Integrating discovery and automated com-
position: From semantic requirements to executable code. In: IEEE Int. Conference on Web
Services (ICWS-07), IEEE (2007) 815–822

34. Brogi, A., Popescu, R.: Automated generation of bpel adapters. In: 4th Int. Conference on
Service-Oriented Computing (ICSOC-06). Volume 4294 of LNCS., Springer (2006) 27–39

35. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

36. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural knowl-
edge. In: 2nd Int. Conference on the Quality of Software Architectures (QoSA-06). Volume
4214 of LNCS., Springer (2006) 43–58

37. Jansen, A., Bosch, J.: Software architecture as a set of architectural design choices. In: 5th
IFIP Conference on Software Architecture (WICSA-05), IEEE (2005) 109–120

38. Tyree, J., Akerman, A.: Architecture decisions: Demystifying architecture. IEEE Software
22(2) (2005) 19–27

39. Zimmermann, O., Zduhn, U., Gschwind, T., Leymann, F.: Combining pattern languages and
architectural decision models into a comprehensive and comprehensible design method. In:
8th IFIP Conference on Software Architecture (WICSA-08), IEEE (2008) 157–166


