
HAL Id: hal-01572102
https://inria.hal.science/hal-01572102

Submitted on 4 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Anatomy of the Unified Enterprise Modelling Ontology
Andreas L. Opdahl

To cite this version:
Andreas L. Opdahl. Anatomy of the Unified Enterprise Modelling Ontology. 3rd IFIP Work-
ing Conference on Enterprise Interoperability (IWEI), Mar 2011, Stockholm, Sweden. pp.163-176,
�10.1007/978-3-642-19680-5_14�. �hal-01572102�

https://inria.hal.science/hal-01572102
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Anatomy of the
Unified Enterprise Modelling Ontology

Andreas L Opdahl

Department of Information Science and Media Studies,
University of Bergen, NO-5020 Bergen, Norway

Andreas.Opdahl@uib.no

Abstract. The Unified Enterprise Modelling Language (UEML) aims to
become a hub for integrated use of enterprise and information systems (IS)
models expressed using different languages. A central part of this hub is an
extendible ontology into which modelling languages and their constructs can be
mapped, so that precise semantic relations between the languages and
constructs can be established by comparing their ontology mappings. The paper
presents and discusses ongoing work on reformulating the UEML ontology as
an OWL2 DL ontology, the Unified Enterprise Modelling Ontology (UEMO).

Keywords: Ontology, ontological analysis and evaluation, Unified Enterprise
Modelling Language (UEML), Unified Enterprise Modelling Ontology
(UEMO), OWL2, description logic.

1. Introduction

The Unified Enterprise Modelling Language (UEML) supports precise semantic
definition of a wide variety of enterprise and IS-modelling languages. It aims to use
the definitions to also facilitate integrated use of models expressed in those languages
[1]. The aim is an important one because information and software technologies are
becoming increasingly driven by models, making interoperability between modelling
languages and models a helpful step on the way to achieving interoperability between
model-driven information and software systems.

To facilitate integrated use of models expressed in a wide variety of languages, the
language definitions must be made semantically interoperable. UEML approaches this
problem through a structured approach to describing enterprise and IS-modelling
constructs in terms of an evolving ontology [2, 3]. So far, 130 constructs from a
selection of 10 languages have been mapped into the ontology, although with varying
degrees of precision. Whereas the idea of using an ontology to describe and integrate
modelling languages is not new in itself, UEML describes and integrates the
semantics of modelling constructs in a novel way that combines (1) a systematic, fine-
grained approach to describing the semantics of modelling constructs with (2) a
systematic approach to structuring and evolving the underlying ontology. UEML thus

goes further than other ontology-based approaches to enterprise model
interoperability (e.g., [4, 5]) because it is complemented by an extensive framework
for systematically describing modelling constructs and because it has been explicitly
designed to evolve and grow over time without becoming overly complex.

It is the common ontology at the heart of UEML that is the focus of this paper. On
the meta-ontology (or structure) level it distinguishes itself from comparable
approaches by simultaneously (1) promoting states and transformations to first-order
concepts alongside things/classes and their properties, (2) providing better support for
complex properties, (3) treating relations between things and classes as a type of
mutual (or relational, shared) property of things/classes alongside intrinsic properties
and (4) considering laws as another type of property of things/classes. On the
ontology (or content) level it is distinct (1) by being the first middle-level ontology
dedicated to enterprise and IS modelling in general, (2) by being explicitly grounded
in Mario Bunge's philosophical ontology [6, 7] and (3) by offering particularly precise
and elaborate dynamic and systemic concepts. Because of its grounding in Bunge's
ontology and its adaptation to the information systems field (e.g., [8]), the common
UEML ontology is ontological in both the philosophical and computer-science senses,
although its mathematically formal underpinnings have been less developed so far. A
set of OCL-constraints were presented in [9] and later extended and re-written in
Prolog [10, 1]. But, beyond that, the UEML ontology has not been formalised so far.

This paper therefore presents a first formalisation of UEML's central ontology
concepts by reformulating its classes, properties, states and transformations using
OWL2 DL [11]. The purpose of the resulting Unified Enterprise Modelling Ontology
(UEMO) is threefold. Firstly, we want to contribute towards a more precise UEML, to
which the formalisation is a direct contribution. Secondly, we want to make UEML
supported by formal reasoning approaches and tools. Although the old UEML
ontology was represented in OWL, it did not leverage the full potential of OWL DL
as a specification and reasoning language and did not explore the stronger
expressiveness of OWL2. Thirdly and finally, we want to be able to show that the
core of UEML has nice decision problems, i.e., that it is sound, complete and
tractable with respect to many of its anticipated uses.

The rest of the paper is organised as follows. Section 2 presents the Unified
Enterprise Modelling Language (UEML). Section 3 presents the backbone of the
Unified Enterprise Modelling Ontology (UEMO). Section 4 outlines how UEMO can
be used to facilitate interoperability between modelling constructs. Section 5
discusses the results. Finally, Section 6 concludes the paper and suggests paths for
further work. Of course, a conference-length paper such as this can only explain a
selection of UEMO's most important concepts. Several of our definitions have
therefore been simplified because they rely on concepts that are not explained in the
paper. Development versions of UEMO are available on http://www.uemlwiki.org/ .

2. Theory

Construct description in UEML: UEML describes a modelling language mainly in
terms of its modelling constructs. For each construct, both its syntax and semantics
are described. The intended semantics of a modelling construct is described in a
structured way according to the following six parts (see, e.g., [12]):
1. Instantiation level: A modelling construct may be used to represent either

individual things (the instance level), classes of things (the type level) or both
levels.

2. Modality: A modelling construct (or part thereof) may represent either a fact
about or someone's belief about, knowledge of, obligation within, intention for a
domain, and so on (in addition the model itself can have yet another modality,
e.g., it may represent a possible or wanted future situation).

3. Classes of things: Regardless of instantiation level and modality, a modelling
construct will represent one or more things (if it is instance level) or classes of
things (if it is type level).

4. Properties of things: Most modelling constructs will also represent one or more
properties that this or these thing(s)/class(es) possess. The properties may be
complex, having other properties as sub-properties. In UEML, some complex
properties even constrain their sub-properties and their values. Such properties
are called laws [6, pp. 77-80].

5. States of things: Some behavioural modelling constructs represent particular
states in their things or classes. States are defined in terms of a thing's properties
by a state constraint that restricts these properties' values.

6. Transformations of things: Behavioural modelling constructs may even represent
transformations of things/classes from a pre- to a post-state. Transformations are
described by the properties that define the pre- and post-states and by a
transformation function that prescribes changes to these properties' values.

Instead of mapping modelling constructs one-to-one with concepts in an ontology,
UEML thereby describes each modelling construct as a scene of interrelated roles that
are played by ontology concepts, so that the roles are either classes/things (item 3
above), their properties (item 4), their states (item 5) or their transformations (item
6). The roles are interrelated so that classes/things possess properties (that
characterise the classes); properties define states; transformations have pre- and post-
states; state constraints restrict states; transformation functions prescribe
transformations; and by taxonomical/hierarchical relations we will explain later. The
scene can be described in further detail by cardinality constraints on the relations
between roles; by equivalence and/or disjointness axioms on roles; and by other types
of constraints [3].

For example, a scene that describes the Class construct in UML would have a
“class” role that describes the class of things that UML-Class is intended to
represent. Because UML-Class is a very general modelling construct, the “class” role
is played by Anything, which we will see is the most general of all classes in UEMO.
The scene would also comprise a “name” role that describes the name property that

has been assigned to the class and zero or more “attribute” and “operation” properties
to describe its attributes and operations, each of them played by a precisely defined
ontology property. Further roles would be used to describe associations, including
aggregation/composition, and generalization relationships between UML-Classes.

Description logic: Description logic (DL) is a family of knowledge representation
languages that are well suited for automated reasoning [13]. The SHOIN and SROIQ
[11] variants of description logic correspond roughly to the ontology representation
languages OWL and OWL2, respectively, so that OWL classes correspond to DL
concepts and OWL object properties correspond to DL roles. There are even DL
features that correspond to OWL datatype properties, but we will not use them here.
Description logics can be considered a fragment of 1. order predicate calculus, but
with nicer decision problems. [13] and [14] offer introductions to basic DL notation
and reasoning.

3. The Unified Enterprise Modelling Ontology (UEMO)

Overall structure: UEMO's concepts are partitioned into classes of things, properties,
states and transformations, as in the UEML ontology. In addition, UEMO introduces
values of properties. These five types of ontology concepts are disjoint but
interrelated, so that classes of things possess properties; properties have values and
define states; and transformations have pre- and post-states. Furthermore, state
constraints and transformation functions are sub-types of properties that restrict states
and prescribe transformations, respectively The resulting ontology structure is shown
in Figure 1. Hence, UEMO has the same structure as the scenes that describe
individual modelling constructs, so that each scene can be considered an excerpt from
UEMO, possibly with added role names, tighter cardinalities and other constraints.

UEMO defines each concept as an OWL2 class (or description logic concept) and
its interrelations as OWL2 object properties (or description logic roles) as follows:

Anything ≡ possesses.AnyProperty possesses.AnyProperty∃ ⊓ ∀
AnyProperty ≡ belongsTo.Anything belongsTo.Anything∃ ⊓ ∀
StateConstraint ≡ AnyProperty restricts.AnyState (=1 restricts)⊓ ∀ ⊓
TransformationFunction ≡ AnyProperty prescribes.AnyTransformation (=1 prescribes)⊓ ∀ ⊓
AnyState ≡ ∀restrictedBy.StateConstraint (=1 restrictedBy)⊓ ⊓

definedBy.ConstrainedProperty∃
AnyTransformation ≡ prescribed∀ By.TransformationFunction ⊓ (=1 prescribedBy) ⊓

∀preState.MutableState (=1 preState) ⊓ ⊓ ∀postState.AnyState (=1 postState)⊓
AnyValue ≡ valueOf.ValuedProperty∀
Anything AnyProperty AnyState ⊓ ⊓ ⊓ AnyTransformation AnyValue ⊓ ⊑ ⊥

Figure 1. High-level OWL2 classes that show the structure of UEMO.

Restrictions like restricts.AnyState ⋯∀ ⊓ (=1 restricts)⋯ are used instead of the
conciser (=1 restricts).⋯ AnyState⋯ to limit the ontology to SHIN expressiveness
(e.g., [11], which, however, discuss slightly more powerful DL variants), which is
supported by both “OWL1” and OWL2, thus giving access to a broader selection of
reasoners and other tools.

Additional taxonomy relations organise the ontology concepts into five
taxonomies. (1) Classes may specialise other classes. The root of the class taxonomy
is Anything. (2) Properties may precede other properties, so all things that possess a
property, such as “being-human”, necessarily possess its precedents too, such as
“being-alive”. The root of this taxonomy is AnyProperty. (3) States may refine other
states (OR-decomposition), with AnyState at the root of the taxonomy. (4)
Transformations may elaborate other transformations (OR-decomposition), with
AnyTransformation as taxonomical root. (5) Values may extend other values. The
root of this taxonomy is AnyValue. The five root concepts were shown Figure 1,
which also depicted StateConstraint and TransformationFunction as important sub-
types of AnyProperty. UEMO comprises several hierarchical relations in addition to
the taxonomical ones: properties may be sub-properties of complex ones; states may
be regions of composite states (AND-decomposition); transformations may be
components of parallel transformations and steps in sequential ones (two ways to
AND-decompose transformations). We now present each taxonomy in some detail.

Class taxonomy: According to [8], “[A] class is a set of things that possess a
common property”, where things and their properties are the most basic concepts in
Bunge's ontology [6]. Anything is the root of the class taxonomy, so the Anything
class in our OWL2 DL reformulation subsumes all the other class concepts in UEMO.
Immediately below Anything are ChangingThing and RelatedThing along with
Composite and Component (Figure 2). ChangingThing is characterised by possessing
at least one mutable property, whereas RelatedThing must possess some relation,
which is a shared (or mutual) property. Composite and Component are both
characterised by possessing a part-whole relation, in which Composite plays the role
of 'whole' and Component the role of 'part'. Composites and Components are not
RelatedThings because part-whole relations are ontologically different from regular
relations (shared/mutual properties) between other things.

ChangingThing ≡ Anything possesses.SomewhatMutableProperty⊓ ∃
RelatedThing ≡ Anything possesses.Relation⊓ ∃
Composite ≡ Anything possessesAsWhole.PartWholeRelation⊓ ∃
Component ≡ Anything possessesAsPart.PartWholeRelation⊓ ∃

Figure 2. Top-level classes in UEMO.

The definitions of Composite and Component illustrate how we introduce sub-roles
(through owl:subPropertyOf axioms on object properties), such as possessesAsWhole
⊑ possesses and possessesAsPart ⊑ possesses, of the possesses role to indicate more
specific roles that UEML's properties may play in relation to their things/classes. For
example, without sub-roles, it would have been difficult to formally distinguish
Composite from Component. It would also have been impossible to limit the current
UEMO to SHIN expressiveness. We will encounter more sub-roles later.

According to Bunge [6], a CoupledThing is one that interacts with one or more
other things so that their histories of states and events depend on one another.
Together, these things form a System. Hence, a CoupledThing is both a RelatedThing,
a ChangingThing and a Component in a System. In addition, there are LawfulThings
(similar to natural kinds [6, p. 143]) that possess law properties, which we will say
more about later. We have to omit many other UEMO classes, such as the different
types of active and executing things and resources, which have been included in the
ontology either because they are needed directly to describe modelling constructs as
part of the UEML work or indirectly to make other UEMO concepts clearer.

In addition to the named classes, we can use description logic expressions to
introduce anonymous classes (and anonymous properties, states and transformations).
Such a class can be used to define modelling constructs just like named classes, but
does not contribute to making the ontology unwieldy. If it turns out to be useful over
time, it can be named and included in the ontology later. For example:

UnrelatedThing ≡ Anything possesses.(IntrinsicProperty PartWholeRelation) ⊓ ∀ ⊔
≡ AnyThing ¬ possesses.Relation ≡ ¬RelatedThing⊓ ∃

UnchangingThing ≡ Anything possesses.CompletelyImmutableProperty⊓ ∀
≡ ¬ChangingThing

Property taxonomy: In Bunge's ontology [6], properties belong to things and
characterise classes. According to [8], “[A] property is modelled via an attribute
function that maps the thing into some value.” Because AnyProperty is the root of the
property taxonomy, the AnyProperty class in our OWL2 DL reformulation subsumes
all the other property concepts in UEMO, where subsumption between property
concepts has been defined to correspond to Bunge's property precedence, i.e., that all
things that possess a property necessarily possess its precedents too [6]. Immediately
below AnyProperty in the taxonomy is IntrinsicProperty, Relation and
PartWholeRelation (Figure 3). IntrinsicProperty belongs to a single thing only.
Relation belongs to more than one thing, but is not a part-whole relation.
PartWholeRelation belongs to a whole thing (the Composite) and its part thing (the
Component).

IntrinsicProperty ≡ AnyProperty belongsTo.Anything (=1 belongsTo)⊓ ∀ ⊓
Relation ≡ AnyProperty belongsTo.RelatedThing (≥2 belongsTo)⊓ ∀ ⊓ ⊓

¬ belongsToWhole.Composite ¬ belongsToPart.Component∃ ⊓ ∃
PartWholeRelation ≡ AnyProperty ⊓

belongsToWhole.Composite (=1 belongsToWho∀ ⊓ le) ⊓
belongsToPart.Component (=1 belongsToPart)∀ ⊓ ⊓
belongsToPartOrWhole.Component (=2 belongsToPartOrWhole)∀ ⊓

belongsTo ≡ possesses-1

Here, the belongsToPartOrWhole role is introduced so we can assert that the
Component and the Composite are different things. Because OWL2 DL prohibits role
disjunction, this role has been derived using SWRL [15]:

belongsToPart(?c1, ?c2) → belongsToPartOrWhole(?c1, ?c2)
belongsToWhole(?c1, ?c2) → belongsToPartOrWhole(?c1, ?c2)

UEMO thereby circumvents OWL2 DL limitations by using SWRL and its extension
SQWRL [16], which allows sets and bags to be used in rules.

These three successors of AnyProperty, i.e., IntrinsicProperty, Relation and
PartWholeRelation, are disjoint, or mutually exclusive, in OWL2 terms, so that no
property can be preceded by more than one of them. But they are not incompatible,
meaning that the same thing can possess several of them at the same time.

An Association relates (non-coupled) AssociatedThings, whereas a Coupling
relates CoupledThings. A SystemPartWholeRelation relates a CoupledThing to its
System just like a Component is related to a Composite. A ValuedProperty has a
specific value, whereas a ComplexProperty has one or more other properties as sub-
properties. A Behaviour is a Valued- and ComplexProperty that describes either a
state (when it is a StateConstraint) or a transformation (when it is a Transformation-
Function). A Behaviour that is naturally or socially enforced is a Law. Hence,
StateLaws are enforced StateConstraints and TransformationLaws are enforced
TransformationFunctions, defined along these lines:

Law ≡ Behaviour constrainedSubproperty.LawfullyConstrainedProperty⊓ ∀
StateLaw ≡ Law StateConstraint constrainedSubproperty.LawfullyConstrainedProperty⊓ ⊓ ∀
TransformationLaw ≡ Law TransformationFunction ⊓ ⊓

manipulatedSubproperty.LawfullyManipulatedProperty∃

Of course, there are many property concepts we cannot discuss here, including more
specific types of behaviours and laws. For example, UEMO has socially assigned
properties, such as Name, which is an association between a Namegiver and a
NamedThing. Information and SocialLaws are other examples of assigned properties.
UEMO also has concepts for Mutable- and ImmutableProperties, which come in both
strong (e.g., CompletelyImmutableProperty) and weak (e.g., SomewhatMutable-
Property) forms, because a property can change in many different ways, i.e., it can be

Figure 3. Top-level properties in UEMO.

dropped by its thing, it can have its value changed, it can drop a sub-property if it is
complex or be dropped by its superior if it is a sub-property.

State taxonomy: According to [8], a state is “[T]he vector of values for all attribute
functions of a thing” at a particular time, where an attribute function describes a
property by mapping the thing to some value. AnyState is the root of the state
taxonomy. Hence, the AnyState class in our OWL2 DL reformulation subsumes all
the other state concepts in UEMO, where subsumption between state concepts has
been defined to correspond to OR-decomposition of states.

A state in UEMO is either mutable or immutable. A MutableState is defined in
terms of at least one SomewhatMutableProperty, whereas an ImmutableState is
defined only by CompletelyImmutableProperties.

MutableState ≡ AnyState definedBy.SomewhatMutableProperty⊓ ∃
ImmutableState ≡ AnyState definedBy.CompletelyImmutableProperty⊓ ∀

UEMO states are also either stable or unstable. A StableState is restrictedBy a
StateLaw, whereas an UnstableState is restrictedBy a StateViolation property. Like
StateLaw, StateViolation is a Behaviour (specifically, a StateConstraint). But,
whereas a StateLaw is naturally or socially enforced, a StateViolation is only socially
sanctioned. UnstableState refines MutableState, because the thing must eventually
return to a stable state.

StableState ≡ AnyState restrictedBy.StateLaw (=1 restrictedBy)⊓ ∀ ⊓
UnstableState ≡ MutableState ⊓ restrictedBy.StateViolation (=1 restrictedBy)∀ ⊓

Transformation taxonomy: According to [8], a transformation of a thing “is a
mapping from a domain comprising states to a co-domain comprising states.”
AnyTransformation is the root of the transformation taxonomy. The
AnyTransformation class in our OWL2 DL reformulation therefore subsumes all the
other transformation concepts in UEMO, where subsumption between transformation
concepts has been defined to correspond to OR-decomposition of transformations.

A SelfTransformation in a thing only manipulates the thing's own properties,
whereas an ExternalTransformation manipulates at least one Relation property that
the thing shares (possesses mutually with) another thing. A Destabilising
transformation takes the thing from a Stable- to an UnstableState and a Stabilising
takes it back. A Destabilising is always an ExternalTransformation, because nothing
destabilises itself, i.e., there are no Destabilising SelfTransformations.

SelfTransformation ≡ AnyTransformation ¬ manipulatedProperty.Relation⊓ ∃
ExternalTransformation ≡ AnyTransformation manipulatedProperty.Relation⊓ ∃
Destabilising ≡ ExternalTransformation ⊓ ∀prescribedBy.Destabilising ⊓

(=1 prescribedBy) ⊓ preState.StableState (=1 preState) ∀ ⊓ ⊓
postState.UnstableState (=1 postState)∀ ⊓

Stabilising ≡ AnyTransformation ⊓ ∀prescribedBy.StabilisingLaw (=1 ⊓ prescribedBy) ⊓
preState.UnstableState (=1 preState)∀ ⊓ ⊓ postState.StableState (=1 postState)∀ ⊓

A SequentialTransformation is composed of two or more TransformationSteps,
whereas a ParallelTransformation is composed of two or more Transformation-
Components. UEMO defines both non-sequential (single-step Firings) and sequential
(multi-step Executions) transformations for describing behavioural constructs.

SequentialTransformation ≡ AnyTransformation ⊓
sequenceOf.TransformationStep (≥2 sequenceOf)∀ ⊓

TransformationStep ≡ AnyTransformation stepIn.SequentialTransformation⊓ ∃
ParallelTransformation ≡ AnyTransformation ⊓

composedOf.TransformationComponent (≥ 2 composedOf)∀ ⊓
TransformationComponent ≡ AnyTransformation componentOf.ParallelTransformation⊓ ∃

Value taxonomy: Bunge's ontology [6] does not account for values directly, but
treats properties as dichotomous (either possessed by the thing or not). Instead of
valued properties such as a “has-age” property that maps to values like “25” and “50”,
Bunge therefore uses properties such as “has-age-of-25” and “has-age-of-50”. UEMO
offers valued properties because they are simpler to use. No generality is lost, because
valued properties (“property-name” = “value”) can trivially be transformed into
dichotomous ones (“property-name-of-value”).

AnyValue is the root of the value taxonomy, so that the AnyValue class in our
OWL2 DL reformulation subsumes all the other value concepts in UEMO, where
subsumption between value concepts has been defined to cover both regular sub-
setting and something we call augmentation (adding new components to tuples). A
Set has other values as elements, whereas a Tuple has other values as components.
We name inverse roles of values by adding the suffix -Of, e.g., valueOf ≡ value-1,
componentOf ≡ component-1 and elementOf ≡ element-1 etc.

AnyValue ≡ valueOf.ValuedProperty∀
Set ≡ AnyValue element.AnyValue ¬ component.AnyValue⊓ ∀ ⊓ ∃
Tuple ≡ AnyValue ⊓ component.AnyValue (≥1 component) ¬ element.AnyValue∀ ⊓ ⊓ ∃

The basic idea is that certain sub-types of values are Constraints that describe States,
whereas other sub-types of values are Functions that describe Transformations.
However, we have so far only covered transformations that are simple mappings from
pre- to post-states, not transformations where inputs arrive and outputs depart at
different times, with some outputs possibly being produced before all inputs have
been consumed. A fuller definition of transformation functions along the lines
discussed, e.g., in [17] has to be left for further work.

4. Using UEMO

The preceding section has formulated UEMO as an OWL2 DL ontology with SHIN
expressiveness (e.g., [11]). While using UEMO to facilitate interoperability between
models expressed using different languages remains work in progress, this section
suggests how UEMO can facilitate describing and comparing modelling constructs
semantically.

Describing modelling constructs: To describe modelling constructs in terms of
UEMO, the ontology must be extended with an additional OWL class (DL concept)
for ModellingConstructs and a new OWL object property (DL role) that map
ModellingConstructs to the OntologyConcepts they represent:

OntologyConcept ≡ ¬ represents ∃ ⊓
(Anything AnyProperty AnyState AnyTransformation AnyValue)⊔ ⊔ ⊔ ⊔

ModellingConstruct ≡ represents.OntologyConcept represents.OntologyConcept∃ ⊓ ∀

ModellingConstruct formalises the earlier concept of scene, so that each role in the
scene is an OntologyConcept that the ModellingConstruct represents. Sub-roles of the
represents role are used to distinguish between the different roles of the scene. For
example, the “class” role in the scene that describes the Class construct in UML is
accounted for by the DL-role representsClass ⊑ represents. In consequence, UML-
Class can be described as follows (leaving out association, aggregation/composition,
generalisation and a few other details for now):

UMLClass ≡ ModellingConstruct ⊓
representsClass.Anything (=1 representsClass)∃ ⊓ ⊓
representsName.Name (=1 representsName)∃ ⊓ ⊓
representsAttribute.(IntrinsicProperty AssignedProperty) ∀ ⊔ ⊓
representsOperation.FiringLaw representsAssociation.Relation ∀ ⊓ ∀ ⊓ ⋯

Further axioms can be introduced for a modelling construct, e.g., to constrain the
relations between the roles in its scene or their cardinalities. The internal consistency
of a modelling construct description thereby becomes a concept satisfiability problem
(e.g., [13]). For UMLClass, this problem has the following form, where T is the set of
terminological axioms (the TBox) for ontology concepts and modelling constructs in
UEMO:

T ⊭ UMLClass ≡ ⊥

Comparing modelling constructs: We approach detailed comparison of modelling
constructs as a sub-role matching problem. The above example introduced UMLClass
with the sub-roles representsClass, representsName, representsAttribute etc. We now
want to compare UMLClass to another ModellingConstruct, GRLGoal, which has
sub-roles such as representsAgent, representsTarget and representsGoal [18]. One
possible matching of sub-roles is between representsClass (of UMLClass) and
representsGoal (of GRLGoal), which are restricted as follows by their respective
modelling constructs:

 representsClass.Anyth⋯ ∃ ing (=1 representsClass) ⊓ ⋯ (by UMLClass)
 representsGoal.Behaviour ⋯ ∃ ⊓ (=1 representsBehaviour) ⋯ (by GRLGoal)

We match the two sub-roles by giving them the same name (ignoring possible name
clashes for now), e.g., representsClassAndGoal. As a result, the conjunction
UMLClass' GRLGoal' of the renamed concepts UMLClass' and GRLGoal'⊓
contains this combined restriction:

 representsClassAndBehaviour.(Anything ⋯ ∃ ⊓ Behaviour) ⊓
(=1 representsClassAndBehaviour) ⋯

We compare the UMLClass and GRLGoal constructs by investigating all possible
matchings of UMLClass sub-roles with GRLGoal sub-roles, including combinations
where some or all sub-roles of either construct remain unmatched. The result will be a
large number of candidate matches, each of which combines sub-roles of UMLClass
with sub-roles of GRLGoal in a different way. Fortunately, most candidate matches

can be immediately discarded, because they contain self-contradictory role
restrictions, i.e., restrictions whose conjunction is not satisfiable. In the above
example, UMLClass' GRLGoal' can be safely discarded ⊓ because Anything (a
UEMO-class concept) and Behaviour (a UEMO-property concept) are disjoint by
definition. In other cases, it is the number restrictions or other restrictions on the
renamed sub-roles that are self-contradictory. The above test for internal consistency
of modelling constructs can be used to eliminate candidate matches too:

T ⊭ UMLClass' GRLGoal'⊓ ≡⊥

We expect that most candidate matches generated by brute-force combination of sub-
roles can be immediately discarded because they are not satisfiable. The much smaller
set of satisfiable matches must be considered further by other means, most likely
involving human inspection and assessment, which can possibly be aided by
automatic ontology classification that arranges the remaining candidates in a more
easily explored subsumption hierarchy. The top match of this hierarchy would be the
least restrictive candidate, the one that does not match any sub-roles of the two
constructs, whereas each leaf would be a candidate that is not restricted further by any
other candidate. The search for the best candidate can proceed bottom- up and
breadth-first from the leaves of the subsumption hierarchy. The selected best match
can be written on the form UMLClass* GRLGoal*⊓ so that the information
represented by UMLClass* and not by GRLGoal* and vice versa can be written

InformationLostFromUMLClassToGRLGoal ≡ UMLClass* ¬GRLGoal*⊓
InformationMissingFromUMLClassToGRLGoal ≡ ¬UMLClass* GRLGoal*⊓

These two concepts describe, respectively, the information that will be lost and the
information that is missing and must somehow be provided when translating from a
UMLClass to a GRLGoal (of course, they also describe the missing/lost information
when translating back from GRLGoal to UMLClass).

Comparing modelling languages: Not accounted for here is the complementary
problem of aligning modelling languages construct-wise, identifying which constructs
or groups of constructs in one language that correspond most closely to the constructs
or groups in the other, as a necessary preparation for detailed construct comparison.

Facilitating cross-language interoperability: Further work should explore how to
facilitate cross-language model-to-model translations based on the detailed construct
matchings described here. One approach is to store model elements expressed in one
language as OWL individuals and then use complex SPARQL and/or SQWRL
queries to retrieve them as model elements expressed in another language. Another
strategy is to use construct matches to generate QVT or other transformations, along
the lines suggested in [19] which, however, does not build an extensive ontology. To
adopt their approach, UEMO must first be extended to account for intended
modelling-language and -construct syntax in addition to semantics.

5. Discussion

UEMO is still evolving and currently comprises 225 OWL classes (or DL concepts),
although this number is somewhat inflated because it explicitly defines many
anonymous concepts that may not be needed in the production version of the
ontology. Most of the OWL classes represent UEMO classes and properties, with
fewer representing UEML states and transformations so far. Compared to earlier
versions of the UEML ontology, many new UEMO properties have been introduced
to more precisely describe mutability and immutability, transients and persistence,
assignments, complex properties, behaviours and laws. UEMO restricts the OWL
classes with 567 subclass and 42 disjointness axioms and connects them with 96
object properties (or DL roles) that are in turn restricted by 97 sub-property
(owl:subPropertyOf, aka Bunge-precedence) and 257 other axioms.

The work has shown that a large part of UEMO can be expressed in OWL2 DL
and, so far, even in the relatively inexpressive SHIN sub-language [11], making a
wider range of reasoners and other tools available, because SHIN is supported by
both “OWL1” and OWL2. In addition, S(Q)WRL [15, 16] has been used to express
certain additional constraints. Unfortunately, these “externally expressed” restrictions
thereby become out of reach for DL-based reasoners, and further work must consider
how they can be best used to reason about modelling languages and constructs. Two
other groups of very general constraints seem infeasible to express even in S(Q)WRL,
because they may require modal and/or temporal axioms. One group comprises
UEMO concepts for transients and persistence and for certain types of mutability.
Another includes [6] definitions of couplings and of systems. Further work should
attempt to describe as many of these constraints as possible “inside” OWL2 DL,
investigating, e.g., whether the modal/temporal axioms may at least have implications
that can be expressed in DL form.

The present work has contributed both to making UEMO more precise and to
supporting it with automatic reasoning tools. It has also indicated that several of the
possible uses of UEMO have nice decision problems. UEMO also has the potential to
become simpler than the old UEML ontology by exploiting more of OWL's native
features. Firstly, it is prepared for using XML-namespaces where the old ontology
used elaborate naming schemes. Secondly, where the old ontology introduced
“association classes” to account for role names and cardinality constraints. UEMO
uses OWL's built-in sub-role and number restrictions to the same effect. Thirdly,
whereas the old ontology represented ontology concepts as OWL individuals, UEMO
represents its concepts as OWL classes. One advantage is that they are thereby better
supported by DL reasoning tools, which tend to solve decision problems on the
concept (or class) level. Another is that the ontology is thus prepared for representing
the semantics not only of modelling constructs, but also of model elements, which can
be mapped either to OWL classes in UEMO (e.g., for a particular UML-Class) or to
the OWL individuals that instantiate the classes (e.g., for a particular UML-Object).

Space prevents us from discussing several other important features of UEMO, such
as the possibility of parametric definitions that use place holders (such as <Property>
and <Value> below) to define powerful generic concepts like these:

PossessesProperty<Property> ≡ AnyState definedBy.Property⊓ ∃
PossessesPropertyValue<Property, Value> ≡

AnyState definedBy.(Property value.Value)⊓ ∃ ⊓ ∃

6. Conclusion and Further Work

The paper has outlined the Unified Enterprise Modelling Ontology (UEMO), which
supersedes the common ontology of the Unified Enterprise Modelling Language
(UEML [1]). UEMO goes further than other ontology-based approaches to enterprise
model interoperability (e.g., [4, 5]) because it offers an extensive framework for
systematically describing modelling constructs in fine detail and because it has been
explicitly designed to evolve and grow over time without becoming overly complex
(through the five taxonomies). It is an ontology in both the philosophical and
computer-science senses, and the paper has emphasised the latter side. It has
formulated UEMO in OWL2 DL with SHIN expressiveness, meaning that it so far
remains also in “OWL1” DL form. The paper has also outlined potential uses of
UEMO as a computer-science ontology and discussed its further development. The
paper has thereby contributed both to making UEMO more precise and to supporting
it with automatic reasoning tools.

UEMO has already grown large, and a short paper like this can only present a
selection of its concepts and features. Further work must present UEMO in fuller
detail as an ontology both in the philosophical sense (e.g., grounding its concepts
clearly in Bunge's ontology) and the computer-science sense (e.g., defining its
concepts in description logic form and detail their use by automated reasoners and
other relevant tools). Further work is also needed to extend the ontology with more
precise concepts for states and transformations and to properly validate it. The present
version of UEMO has already been extensively validated through iterative
development, by using several automated reasoners and by cross-checking with
earlier ontology versions. But additional validations are needed that use UEMO to
describe and support interoperability between existing modelling languages.

Acknowledgements. The author is indebted to all the researchers, assistants and
students who contributed to the Domain Enterprise Modelling in Interop-NoE, in
particular Giuseppe Berio, Mounira Harzallah and Raimundas Matulevi ius.č

References

1. Anaya, V., Berio, G., Harzallah, M., Heymans, P., Matulevi ius, R., Opdahl, A.L.,č
Panetto, H. and Verdecho, M.J. The Unified Enterprise Modelling Language – Overview
and Further Work. Computers in Industry 61(2). Elsevier (2010)

2. Opdahl, A.L. A Platform for Interoperable Domain-Specific Enterprise Modelling Based
on ISO 15926. In EDOC 2010 Workshop Proceedings, IEEE CS Press (2010)

3. Opdahl, A.L. Incorporation UML Class and Activity Constructs into UEML. In ER 2010
Workshop Proceedings, Springer LNCS 6413 (2010)

4. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger, W.
Schwinger, W. and Wimmer, M. Lifting metamodels to ontologies - a step to the semantic
integration of modeling languages, in Model Driven Engineering Languages and Systems,
Springer LNCS, pp. 528-542 (2006)

5. Ziemann, J., Ohren, O., Jäkel, F.-W., Kahl, T., and Knothe, T. Achieving Enterprise
Model Interoperability Applying a Common Enterprise Metamodel. In Enterprise
Interoperability New Challenges and Approaches, Doumeingts, G., Müller, J., Morel, G.
and Vallespir, B. (eds.), Springer, London (2007)

6. Bunge, M. Treatise on Basic Philosophy: Vol. 3: Ontology I: The Furniture of the World.
Boston, Reidel (1977)

7. Bunge, M. Treatise on Basic Philosophy: Vol. 4: Ontology II: A World of Systems.
Boston, Reidel (1979)

8. Wand, Y. and Weber, R. On the Ontological Expressiveness of Information Systems
Analysis and Design Grammars. Journal of Information Systems 3:217–237 (1993)

9. Opdahl, A.L. and Henderson-Sellers, B. Template-Based Definition of Information
Systems and Enterprise Modelling Constructs. Chapter 6 in Ontologies and Business
System Analysis, Green, P. and Rosemann, M. (eds.). Idea Group Publishing (2005)

10. Mahiat, J. A Validation Tool for the UEML Approach. Master thesis, University of
Namur (2006)

11. Horrocks, I., Kutz, O. and Sattler, U. The Even More Irresistible SROIQ. In Proc. of the
10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR2006), pp.
57-67 (2006)

12. Opdahl, A.L. The UEML Approach to Modelling Construct Description. In Enterprise
Interoperability – New Challenges and Approaches, Doumeingts, G., Müller, J., Morel, G.
and Vallespir, B. (eds.), Springer, Berlin (2007)

13. Donini, F.M., Lenzerini, M., Nardi, D. and Schaerf, A. Reasoning in Description Logic. In
Principles of Knowledge Representation and Planning, Brewka, G. (ed.), pp. 193-238.
CSLI Publications (1996)

14. Nardi, D. and Brachman, R.J. An Introduction to Description Logics. In The Description
Logic Handbook: Theory, Implementation, and Applications, Baader, F., Calvanese, D.,
McGuinness, D.L., Nardi, D. and Patel-Schneider, P.F. (eds.). Cambridge University Press
(2003)

15. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B. and Dean, M. SWRL:
A Semantic Web Rule Language Combining OWL and RuleML. W3C Member
Submission May 21 (2004)

16. O'Connor, M.J. and Das, A. SQWRL: a query language for OWL. OWL – Experiences
and Directions Workshop Series (2009)

17. Harel, D. and Rumpe, B. Modelling Languages: Syntax, Semantics and all that Stuff (or,
What's the Semantics of “Semantics”?). Technical Report, Technische Universität
Braunschweig (2004)

18. Matulevi ius, R., Heymans, P. and Opdahl, A.L. Comparing GRL and KAOS using theč
UEML Approach. In Enterprise Interoperability II – New Challenges and Approaches,
Gonçalves, R.J., Müller, J.P, Mertins, K. and Zelm, M. (eds.). Springer (2007)

19. Roser, S. and Bauer, B. Automatic Generation and Evolution of Model Transformations
Using Ontology Engineering Space. J. Data Semantics 11: 32-64 (2008)

