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Abstract. The  Unified  Enterprise  Modelling  Language  (UEML)  aims  to 
become a hub for  integrated use of  enterprise  and information systems (IS) 
models expressed using different languages. A central part  of this hub is an 
extendible ontology into which modelling languages and their constructs can be 
mapped,  so  that  precise  semantic  relations  between  the  languages  and 
constructs can be established by comparing their ontology mappings. The paper 
presents and discusses ongoing work on reformulating the UEML ontology as 
an OWL2 DL ontology, the Unified Enterprise Modelling Ontology (UEMO).
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1. Introduction

The  Unified  Enterprise  Modelling  Language  (UEML)  supports  precise  semantic  
definition of a wide variety of enterprise and IS-modelling languages. It aims to use 
the definitions to also facilitate integrated use of models expressed in those languages 
[1]. The aim is an important one because information and software technologies are 
becoming increasingly driven by models, making interoperability between modelling 
languages and models a helpful step on the way to achieving interoperability between 
model-driven information and software systems. 

To facilitate integrated use of models expressed in a wide variety of languages, the 
language definitions must be made semantically interoperable. UEML approaches this 
problem through  a  structured  approach  to  describing  enterprise  and  IS-modelling 
constructs  in  terms of an evolving ontology [2,  3].  So far,  130 constructs  from a 
selection of 10 languages have been mapped into the ontology, although with varying 
degrees of precision. Whereas the idea of using an ontology to describe and integrate  
modelling  languages  is  not  new  in  itself,  UEML  describes  and  integrates  the 
semantics of modelling constructs in a novel way that combines (1) a systematic, fine-
grained  approach  to  describing  the  semantics  of  modelling  constructs  with  (2)  a 
systematic approach to structuring and evolving the underlying ontology. UEML thus 



goes  further  than  other  ontology-based  approaches  to  enterprise  model 
interoperability (e.g., [4, 5]) because it is complemented by an extensive framework 
for systematically describing modelling constructs and because it has been explicitly  
designed to evolve and grow over time without becoming overly complex.

It is the common ontology at the heart of UEML that is the focus of this paper. On  
the  meta-ontology  (or  structure)  level  it  distinguishes  itself  from  comparable 
approaches by simultaneously (1) promoting states and transformations to first-order 
concepts alongside things/classes and their properties, (2) providing better support for 
complex properties,  (3)  treating relations between things and classes  as  a  type of 
mutual (or relational, shared) property of things/classes alongside intrinsic properties 
and  (4)  considering  laws  as  another  type  of  property  of  things/classes.  On  the 
ontology (or content) level it is distinct (1) by being the first middle-level ontology 
dedicated to enterprise and IS modelling in general, (2) by being explicitly grounded 
in Mario Bunge's philosophical ontology [6, 7] and (3) by offering particularly precise 
and elaborate dynamic and systemic concepts. Because of its grounding in Bunge's 
ontology and its adaptation to the information systems field (e.g., [8]), the common 
UEML ontology is ontological in both the philosophical and computer-science senses, 
although its mathematically formal underpinnings have been less developed so far. A 
set  of  OCL-constraints were presented in [9] and later extended and re-written in 
Prolog [10, 1]. But, beyond that, the UEML ontology has not been formalised so far.

This  paper  therefore  presents  a  first  formalisation  of  UEML's  central  ontology 
concepts  by  reformulating  its  classes,  properties,  states  and  transformations  using 
OWL2 DL [11]. The purpose of the resulting Unified Enterprise Modelling Ontology  
(UEMO) is threefold. Firstly, we want to contribute towards a more precise UEML, to 
which the formalisation is a direct contribution. Secondly, we want to make UEML 
supported  by  formal  reasoning  approaches  and  tools.  Although  the  old  UEML 
ontology was represented in OWL, it did not leverage the full potential of OWL DL 
as  a  specification  and  reasoning  language  and  did  not  explore  the  stronger 
expressiveness of OWL2. Thirdly and finally, we want to be able to show that the 
core  of  UEML  has  nice  decision  problems,  i.e.,  that  it  is  sound,  complete  and 
tractable with respect to many of its anticipated uses.

The  rest  of  the  paper  is  organised  as  follows.  Section  2  presents  the  Unified 
Enterprise  Modelling  Language (UEML).  Section  3  presents  the  backbone of  the 
Unified Enterprise Modelling Ontology (UEMO). Section 4 outlines how UEMO can 
be  used  to  facilitate  interoperability  between  modelling  constructs.  Section  5 
discusses the results. Finally, Section 6 concludes the paper and suggests paths for 
further work.  Of course, a conference-length paper such as this can only explain a 
selection  of  UEMO's  most  important  concepts.  Several  of  our  definitions  have 
therefore been simplified because they rely on concepts that are not explained in the 
paper. Development versions of UEMO are available on http://www.uemlwiki.org/ .



2. Theory

Construct description in UEML: UEML describes a modelling language mainly in 
terms of its modelling constructs. For each construct, both its syntax and semantics 
are  described.  The intended semantics  of  a  modelling  construct  is  described  in  a 
structured way according to the following six parts (see, e.g., [12]):
1. Instantiation  level: A  modelling  construct  may  be  used  to  represent  either 

individual things (the  instance level), classes of things (the  type level) or  both 
levels.

2. Modality: A modelling construct (or  part  thereof)  may represent either a  fact 
about or someone's belief about, knowledge of, obligation within, intention for a 
domain, and so on  (in addition the model itself can have yet another modality, 
e.g., it may represent a possible or wanted future situation).

3. Classes of  things: Regardless of instantiation level and modality,  a modelling 
construct will represent one or more things (if it is instance level) or classes of 
things (if it is type level). 

4. Properties of things: Most modelling constructs will also represent one or more 
properties  that  this  or  these thing(s)/class(es)  possess.  The properties  may be 
complex,  having other  properties  as  sub-properties. In  UEML, some complex 
properties even constrain their sub-properties and their values. Such properties 
are called laws [6, pp. 77-80].

5. States  of  things: Some  behavioural  modelling  constructs  represent  particular 
states in their things or classes. States are defined in terms of a thing's properties 
by a state constraint that restricts these properties' values.

6. Transformations of things: Behavioural modelling constructs may even represent 
transformations of things/classes from a pre- to a post-state. Transformations are 
described  by  the  properties  that  define the  pre-  and  post-states  and  by  a 
transformation function that prescribes changes to these properties' values.

Instead of  mapping modelling constructs one-to-one with concepts in an ontology, 
UEML thereby describes each modelling construct as a scene of interrelated roles that 
are played by ontology concepts, so that the roles are either  classes/things (item 3 
above), their  properties (item 4), their  states (item 5) or their  transformations (item 
6).  The  roles  are  interrelated  so  that classes/things  possess properties  (that 
characterise the classes); properties define states; transformations have pre- and post-
states;  state  constraints  restrict states;  transformation  functions  prescribe 
transformations; and by taxonomical/hierarchical relations we will explain later. The 
scene can be described in further  detail  by cardinality  constraints on the relations 
between roles; by equivalence and/or disjointness axioms on roles; and by other types 
of constraints [3].

For example,  a  scene that  describes the Class construct  in UML would have a 
“class” role  that  describes  the  class  of  things  that  UML-Class  is  intended  to 
represent. Because UML-Class is a very general modelling construct, the “class” role 
is played by Anything, which we will see is the most general of all classes in UEMO. 
The scene would also comprise a “name” role that describes the name property that  



has been assigned to the class and zero or more “attribute” and “operation” properties 
to describe its attributes and operations, each of them played by a precisely defined 
ontology property.  Further roles would be used to describe associations,  including 
aggregation/composition, and generalization relationships between UML-Classes.

Description logic: Description logic (DL) is a family of knowledge representation 
languages that are well suited for automated reasoning [13]. The SHOIN and SROIQ 
[11] variants of description logic correspond roughly to the ontology representation 
languages OWL and OWL2, respectively,  so that  OWL classes correspond to DL 
concepts and OWL object  properties  correspond to DL roles.  There  are even DL 
features that correspond to OWL datatype properties, but we will not use them here. 
Description logics can be considered a fragment of 1. order predicate calculus, but 
with nicer decision problems. [13] and [14] offer introductions to basic DL notation 
and reasoning.

3. The Unified Enterprise Modelling Ontology (UEMO)

Overall structure: UEMO's concepts are partitioned into classes of things, properties, 
states and transformations, as in the UEML ontology. In addition, UEMO introduces 
values of  properties. These  five  types  of  ontology  concepts  are  disjoint  but 
interrelated, so that classes of things  possess properties; properties have  values and 
define states;  and  transformations  have  pre- and  post-states.  Furthermore,  state  
constraints and transformation functions are sub-types of properties that restrict states 
and prescribe transformations, respectively The resulting ontology structure is shown 
in  Figure 1.  Hence,  UEMO  has  the  same  structure  as  the  scenes  that  describe 
individual modelling constructs, so that each scene can be considered an excerpt from 
UEMO, possibly with added role names, tighter cardinalities and other constraints.

UEMO defines each concept as an OWL2 class (or description logic concept) and 
its interrelations as OWL2 object properties (or description logic roles) as follows:

Anything ≡ possesses.AnyProperty  possesses.AnyProperty∃ ⊓ ∀
AnyProperty ≡ belongsTo.Anything  belongsTo.Anything∃ ⊓ ∀
StateConstraint ≡ AnyProperty  restricts.AnyState  (=1 restricts)⊓ ∀ ⊓
TransformationFunction ≡ AnyProperty  prescribes.AnyTransformation  (=1 prescribes)⊓ ∀ ⊓
AnyState ≡ ∀restrictedBy.StateConstraint  (=1 restrictedBy)⊓  ⊓ 

definedBy.ConstrainedProperty∃
AnyTransformation ≡ prescribed∀ By.TransformationFunction  ⊓ (=1 prescribedBy) ⊓

∀preState.MutableState  (=1 preState)  ⊓ ⊓ ∀postState.AnyState  (=1 postState)⊓
AnyValue ≡ valueOf.ValuedProperty∀
Anything  AnyProperty  AnyState  ⊓ ⊓ ⊓ AnyTransformation  AnyValue ⊓ ⊑ ⊥

Figure 1. High-level OWL2 classes that show the structure of UEMO.



Restrictions  like  restricts.AnyState  ⋯∀ ⊓ (=1  restricts)⋯ are  used  instead  of  the 
conciser  (=1 restricts).⋯ AnyState⋯ to limit the ontology to  SHIN expressiveness 
(e.g., [11], which, however, discuss slightly more powerful DL variants), which is 
supported by both “OWL1” and OWL2, thus giving access to a broader selection of 
reasoners and other tools.

Additional  taxonomy  relations organise  the  ontology  concepts  into  five 
taxonomies. (1) Classes may specialise other classes. The root of the class taxonomy 
is Anything. (2) Properties may precede other properties, so all things that possess a 
property,  such  as  “being-human”,  necessarily  possess  its  precedents  too,  such  as 
“being-alive”. The root of this taxonomy is AnyProperty. (3) States may refine other 
states  (OR-decomposition),  with  AnyState  at  the  root  of  the  taxonomy.  (4) 
Transformations  may  elaborate  other  transformations  (OR-decomposition),  with 
AnyTransformation as taxonomical root.  (5)  Values may  extend other  values.  The 
root of this taxonomy is AnyValue. The five root concepts were shown  Figure 1, 
which also depicted StateConstraint and TransformationFunction as important sub-
types of AnyProperty. UEMO comprises several hierarchical relations in addition to 
the taxonomical ones: properties may be sub-properties of complex ones; states may 
be  regions  of  composite  states  (AND-decomposition);  transformations  may  be 
components  of parallel  transformations and  steps in sequential  ones (two ways to 
AND-decompose transformations). We now present each taxonomy in some detail.

Class  taxonomy: According to  [8],  “[A]  class is  a  set  of  things that  possess a 
common property”, where things and their properties are the most basic concepts in 
Bunge's ontology [6]. Anything is the root of the class taxonomy, so the Anything 
class in our OWL2 DL reformulation subsumes all the other class concepts in UEMO. 
Immediately  below  Anything  are  ChangingThing  and  RelatedThing  along  with 
Composite and Component (Figure 2). ChangingThing is characterised by possessing 
at  least  one  mutable property,  whereas RelatedThing must  possess some  relation, 
which  is  a  shared  (or  mutual)  property.  Composite  and  Component  are  both 
characterised by possessing a part-whole relation, in which Composite plays the role 
of  'whole'  and Component the role of 'part'.  Composites and Components are  not 
RelatedThings because part-whole relations are ontologically different from regular 
relations (shared/mutual properties) between other things.

ChangingThing ≡ Anything  possesses.SomewhatMutableProperty⊓ ∃
RelatedThing ≡ Anything  possesses.Relation⊓ ∃
Composite ≡ Anything  possessesAsWhole.PartWholeRelation⊓ ∃
Component ≡ Anything  possessesAsPart.PartWholeRelation⊓ ∃

Figure 2. Top-level classes in UEMO.



The definitions of Composite and Component illustrate how we introduce sub-roles 
(through owl:subPropertyOf axioms on object properties), such as possessesAsWhole 
⊑ possesses and possessesAsPart ⊑ possesses, of the possesses role to indicate more 
specific roles that UEML's properties may play in relation to their things/classes. For  
example,  without  sub-roles,  it  would  have  been  difficult  to  formally  distinguish 
Composite from Component. It would also have been impossible to limit the current 
UEMO to SHIN expressiveness. We will encounter more sub-roles later.

According to Bunge [6], a CoupledThing is one that interacts with one or more 
other  things  so  that  their  histories  of  states  and  events  depend  on  one  another. 
Together, these things form a System. Hence, a CoupledThing is both a RelatedThing, 
a ChangingThing and a Component in a System. In addition, there are LawfulThings 
(similar to  natural kinds [6, p. 143]) that possess law properties, which we will say 
more about later. We have to omit many other UEMO classes, such as the different 
types of active and executing things and resources, which have been included in the 
ontology either because they are needed directly to describe modelling constructs as 
part of the UEML work or indirectly to make other UEMO concepts clearer.

In  addition  to  the  named  classes,  we  can  use  description  logic  expressions  to 
introduce anonymous classes (and anonymous properties, states and transformations). 
Such a class can be used to define modelling constructs just like named classes, but 
does not contribute to making the ontology unwieldy. If it turns out to be useful over 
time, it can be named and included in the ontology later. For example:

UnrelatedThing ≡ Anything  possesses.(IntrinsicProperty  PartWholeRelation) ⊓ ∀ ⊔
≡ AnyThing  ¬ possesses.Relation ≡ ¬RelatedThing⊓ ∃

UnchangingThing ≡ Anything  possesses.CompletelyImmutableProperty⊓ ∀
≡ ¬ChangingThing

Property  taxonomy: In  Bunge's  ontology  [6],  properties  belong  to  things  and 
characterise  classes.  According to  [8],  “[A]  property is  modelled  via an  attribute  
function that maps the thing into some value.” Because AnyProperty is the root of the  
property taxonomy, the AnyProperty class in our OWL2 DL reformulation subsumes 
all  the  other  property  concepts  in  UEMO,  where  subsumption  between  property 
concepts has been defined to correspond to Bunge's property precedence, i.e., that all 
things that possess a property necessarily possess its precedents too [6]. Immediately 
below  AnyProperty  in  the  taxonomy  is  IntrinsicProperty,  Relation  and 
PartWholeRelation  (Figure  3).  IntrinsicProperty  belongs  to  a  single  thing  only. 
Relation  belongs  to  more  than  one  thing,  but  is  not  a  part-whole  relation. 
PartWholeRelation belongs to a whole thing (the Composite) and its part thing (the 
Component).

IntrinsicProperty ≡ AnyProperty  belongsTo.Anything  (=1 belongsTo)⊓ ∀ ⊓
Relation ≡ AnyProperty  belongsTo.RelatedThing  (≥2 belongsTo)⊓ ∀ ⊓   ⊓

¬ belongsToWhole.Composite  ¬ belongsToPart.Component∃ ⊓ ∃
PartWholeRelation ≡ AnyProperty  ⊓

belongsToWhole.Composite  (=1 belongsToWho∀ ⊓ le)  ⊓
belongsToPart.Component  (=1 belongsToPart)∀ ⊓   ⊓
belongsToPartOrWhole.Component  (=2 belongsToPartOrWhole)∀ ⊓

belongsTo ≡ possesses-1



Here,  the  belongsToPartOrWhole  role  is  introduced  so  we  can  assert  that  the 
Component and the Composite are different things. Because OWL2 DL prohibits role 
disjunction, this role has been derived using SWRL [15]:

belongsToPart(?c1, ?c2) → belongsToPartOrWhole(?c1, ?c2)
belongsToWhole(?c1, ?c2) → belongsToPartOrWhole(?c1, ?c2)

UEMO thereby circumvents OWL2 DL limitations by using SWRL and its extension 
SQWRL [16], which allows sets and bags to be used in rules.

These  three  successors  of  AnyProperty,  i.e.,  IntrinsicProperty,  Relation  and 
PartWholeRelation, are  disjoint, or  mutually exclusive, in OWL2 terms, so that no 
property can be preceded by more than one of them. But they are not incompatible, 
meaning that the same thing can possess several of them at the same time.

An  Association  relates  (non-coupled)  AssociatedThings,  whereas  a  Coupling 
relates  CoupledThings.  A SystemPartWholeRelation  relates  a  CoupledThing to its 
System just  like a Component is  related to a Composite.  A ValuedProperty has a 
specific value, whereas a ComplexProperty has one or more other properties as sub-
properties.  A Behaviour is a Valued- and ComplexProperty that describes either a 
state (when it is a StateConstraint) or a transformation (when it is a Transformation-
Function).  A  Behaviour  that  is  naturally  or  socially  enforced is  a  Law.  Hence, 
StateLaws  are  enforced  StateConstraints  and  TransformationLaws  are  enforced 
TransformationFunctions, defined along these lines:

Law ≡ Behaviour  constrainedSubproperty.LawfullyConstrainedProperty⊓ ∀
StateLaw ≡ Law  StateConstraint  constrainedSubproperty.LawfullyConstrainedProperty⊓ ⊓ ∀
TransformationLaw ≡ Law  TransformationFunction  ⊓ ⊓

manipulatedSubproperty.LawfullyManipulatedProperty∃

Of course, there are many property concepts we cannot discuss here, including more 
specific  types of  behaviours and  laws. For example,  UEMO has  socially  assigned 
properties,  such  as  Name,  which  is  an  association  between  a  Namegiver  and  a 
NamedThing. Information and SocialLaws are other examples of assigned properties. 
UEMO also has concepts for Mutable- and ImmutableProperties, which come in both 
strong  (e.g.,  CompletelyImmutableProperty)  and  weak  (e.g.,  SomewhatMutable-
Property) forms, because a property can change in many different ways, i.e., it can be 

Figure 3. Top-level properties in UEMO.



dropped by its thing, it can have its value changed, it can drop a sub-property if it is 
complex or be dropped by its superior if it is a sub-property.

State taxonomy: According to [8], a state is “[T]he vector of values for all attribute 
functions of  a  thing” at  a  particular  time,  where  an attribute function describes a 
property  by  mapping  the  thing  to  some  value.  AnyState  is  the  root  of  the  state 
taxonomy. Hence, the AnyState class in our OWL2 DL reformulation subsumes all 
the other state concepts in UEMO, where subsumption between state concepts has 
been defined to correspond to OR-decomposition of states.

A state in UEMO is either mutable or immutable. A MutableState is defined in 
terms  of  at  least  one  SomewhatMutableProperty,  whereas  an  ImmutableState  is 
defined only by CompletelyImmutableProperties.

MutableState ≡ AnyState  definedBy.SomewhatMutableProperty⊓ ∃
ImmutableState ≡ AnyState  definedBy.CompletelyImmutableProperty⊓ ∀

UEMO  states  are  also  either  stable  or  unstable.  A  StableState  is  restrictedBy a 
StateLaw, whereas an UnstableState is  restrictedBy a StateViolation property. Like 
StateLaw,  StateViolation  is  a  Behaviour  (specifically,  a  StateConstraint).  But, 
whereas a StateLaw is naturally or socially enforced, a StateViolation is only socially 
sanctioned.  UnstableState refines  MutableState,  because the thing must  eventually 
return to a stable state.

StableState ≡ AnyState  restrictedBy.StateLaw  (=1 restrictedBy)⊓ ∀ ⊓
UnstableState ≡ MutableState  ⊓ restrictedBy.StateViolation  (=1 restrictedBy)∀ ⊓

Transformation taxonomy: According to  [8],  a  transformation of  a  thing “is  a 
mapping  from  a  domain  comprising  states  to  a  co-domain  comprising  states.” 
AnyTransformation  is  the  root  of  the transformation  taxonomy.  The 
AnyTransformation class in our OWL2 DL reformulation therefore subsumes all the 
other transformation concepts in UEMO, where subsumption between transformation 
concepts has been defined to correspond to OR-decomposition of transformations. 

A  SelfTransformation  in  a  thing  only  manipulates  the  thing's  own  properties, 
whereas an ExternalTransformation manipulates at least one Relation property that 
the  thing  shares  (possesses  mutually  with)  another  thing.  A  Destabilising 
transformation takes the thing from a Stable- to an UnstableState and a Stabilising 
takes it back. A Destabilising is always an ExternalTransformation, because nothing 
destabilises itself, i.e., there are no Destabilising SelfTransformations.

SelfTransformation ≡ AnyTransformation  ¬ manipulatedProperty.Relation⊓ ∃
ExternalTransformation ≡ AnyTransformation  manipulatedProperty.Relation⊓ ∃
Destabilising ≡ ExternalTransformation  ⊓ ∀prescribedBy.Destabilising  ⊓

(=1 prescribedBy)  ⊓ preState.StableState  (=1 preState)  ∀ ⊓ ⊓
postState.UnstableState  (=1 postState)∀ ⊓

Stabilising ≡ AnyTransformation  ⊓ ∀prescribedBy.StabilisingLaw  (=1 ⊓ prescribedBy)  ⊓
preState.UnstableState  (=1 preState)∀ ⊓   ⊓ postState.StableState  (=1 postState)∀ ⊓

A  SequentialTransformation  is  composed  of  two  or  more  TransformationSteps, 
whereas  a  ParallelTransformation  is  composed  of  two  or  more  Transformation-
Components. UEMO defines both non-sequential (single-step Firings) and sequential 
(multi-step Executions) transformations for describing behavioural constructs.



SequentialTransformation ≡ AnyTransformation  ⊓
sequenceOf.TransformationStep  (≥2 sequenceOf)∀ ⊓

TransformationStep ≡ AnyTransformation  stepIn.SequentialTransformation⊓ ∃
ParallelTransformation ≡ AnyTransformation  ⊓

composedOf.TransformationComponent  (≥ 2 composedOf)∀ ⊓
TransformationComponent ≡ AnyTransformation  componentOf.ParallelTransformation⊓ ∃

Value taxonomy: Bunge's ontology [6] does not account for values directly, but 
treats  properties as dichotomous (either  possessed by the thing or  not).  Instead of 
valued properties such as a “has-age” property that maps to values like “25” and “50”, 
Bunge therefore uses properties such as “has-age-of-25” and “has-age-of-50”. UEMO 
offers valued properties because they are simpler to use. No generality is lost, because 
valued  properties  (“property-name”  =  “value”)  can  trivially  be  transformed  into 
dichotomous ones (“property-name-of-value”).

AnyValue is the root of the value taxonomy, so that the AnyValue class in our  
OWL2 DL reformulation subsumes all the other value concepts in UEMO, where 
subsumption between value concepts has  been defined to cover both regular  sub-
setting and something we call augmentation (adding new components to tuples). A 
Set has other values as elements, whereas a Tuple has other values as components.  
We name inverse roles of values by adding the suffix -Of, e.g.,  valueOf ≡ value-1, 
componentOf ≡ component-1 and elementOf ≡ element-1 etc. 

AnyValue ≡ valueOf.ValuedProperty∀
Set ≡ AnyValue  element.AnyValue  ¬ component.AnyValue⊓ ∀ ⊓ ∃
Tuple ≡ AnyValue  ⊓ component.AnyValue  (≥1 component)  ¬ element.AnyValue∀ ⊓ ⊓ ∃

The basic idea is that certain sub-types of values are Constraints that describe States,  
whereas  other  sub-types  of  values  are  Functions  that  describe  Transformations. 
However, we have so far only covered transformations that are simple mappings from 
pre-  to  post-states,  not  transformations  where  inputs  arrive  and  outputs  depart  at  
different times, with some outputs possibly being produced before all inputs have 
been  consumed.  A  fuller  definition  of  transformation  functions  along  the  lines 
discussed, e.g., in [17] has to be left for further work.

4. Using UEMO

The preceding section has formulated UEMO as an OWL2 DL ontology with SHIN 
expressiveness (e.g., [11]). While using UEMO to facilitate interoperability between 
models expressed using different languages remains work in progress,  this section 
suggests how UEMO can facilitate describing and comparing  modelling constructs 
semantically.

Describing  modelling constructs: To describe  modelling constructs in terms of 
UEMO, the ontology must be extended with an additional OWL class (DL concept) 
for  ModellingConstructs  and  a  new  OWL  object  property  (DL  role)  that  map 
ModellingConstructs to the OntologyConcepts they represent: 



OntologyConcept ≡ ¬ represents  ∃ ⊓
(Anything  AnyProperty  AnyState  AnyTransformation  AnyValue)⊔ ⊔ ⊔ ⊔

ModellingConstruct ≡ represents.OntologyConcept  represents.OntologyConcept∃ ⊓ ∀

ModellingConstruct  formalises the earlier concept of  scene, so that each role in the 
scene is an OntologyConcept that the ModellingConstruct represents. Sub-roles of the 
represents role are used to distinguish between the different roles of the scene. For 
example, the “class” role in the scene that describes the Class construct in UML is 
accounted for by the DL-role  representsClass ⊑ represents. In consequence, UML-
Class can be described as follows (leaving out association, aggregation/composition, 
generalisation and a few other details for now):

UMLClass ≡ ModellingConstruct  ⊓
representsClass.Anything  (=1 representsClass)∃ ⊓   ⊓
representsName.Name  (=1 representsName)∃ ⊓   ⊓
representsAttribute.(IntrinsicProperty  AssignedProperty)  ∀ ⊔ ⊓
representsOperation.FiringLaw  representsAssociation.Relation  ∀ ⊓ ∀ ⊓ ⋯

Further axioms can be introduced for a  modelling construct,  e.g.,  to  constrain the 
relations between the roles in its scene or their cardinalities. The internal consistency 
of a modelling construct description thereby becomes a concept satisfiability problem 
(e.g., [13]). For UMLClass, this problem has the following form, where T is the set of 
terminological axioms (the TBox) for ontology concepts and modelling constructs in 
UEMO:

T ⊭ UMLClass ≡  ⊥

Comparing  modelling constructs: We approach detailed comparison of  modelling 
constructs as a sub-role matching problem. The above example introduced UMLClass 
with the sub-roles representsClass, representsName, representsAttribute etc. We now 
want  to  compare UMLClass  to  another  ModellingConstruct,  GRLGoal,  which has 
sub-roles  such as  representsAgent,  representsTarget and  representsGoal [18].  One 
possible  matching  of  sub-roles  is  between  representsClass (of  UMLClass)  and 
representsGoal (of  GRLGoal),  which  are  restricted  as  follows  by  their  respective 
modelling constructs:

 representsClass.Anyth⋯ ∃ ing  (=1 representsClass) ⊓ ⋯ (by UMLClass)
 representsGoal.Behaviour ⋯ ∃ ⊓ (=1 representsBehaviour) ⋯ (by GRLGoal)

We match the two sub-roles by giving them the same name (ignoring possible name 
clashes  for  now),  e.g.,  representsClassAndGoal.  As  a  result,  the  conjunction 
UMLClass'   GRLGoal'  of  the  renamed  concepts  UMLClass'  and  GRLGoal'⊓  
contains this combined restriction:

 representsClassAndBehaviour.(Anything ⋯ ∃ ⊓ Behaviour)  ⊓
(=1 representsClassAndBehaviour) ⋯

We compare the UMLClass and GRLGoal constructs by investigating all possible 
matchings of UMLClass sub-roles with GRLGoal sub-roles, including combinations 
where some or all sub-roles of either construct remain unmatched. The result will be a 
large number of candidate matches, each of which combines sub-roles of UMLClass 
with sub-roles of GRLGoal in a different way.  Fortunately, most candidate matches 



can  be  immediately  discarded,  because  they  contain  self-contradictory  role 
restrictions,  i.e.,  restrictions  whose  conjunction  is  not  satisfiable.  In  the  above 
example,  UMLClass'   GRLGoal'  can  be  safely  discarded  ⊓ because  Anything  (a 
UEMO-class  concept)  and  Behaviour (a  UEMO-property  concept)  are  disjoint  by 
definition.  In other  cases,  it  is  the number restrictions or  other  restrictions on the 
renamed sub-roles that are self-contradictory. The above test for internal consistency 
of modelling constructs can be used to eliminate candidate matches too:

T ⊭ UMLClass'  GRLGoal'⊓    ≡⊥

We expect that most candidate matches generated by brute-force combination of sub-
roles can be immediately discarded because they are not satisfiable. The much smaller 
set  of  satisfiable matches must be considered further by other  means,  most likely 
involving  human  inspection  and  assessment,  which  can  possibly  be  aided  by 
automatic  ontology classification that arranges the remaining candidates in a more 
easily explored subsumption hierarchy. The top match of this hierarchy would be the 
least  restrictive  candidate,  the  one  that  does  not  match  any sub-roles  of  the  two 
constructs, whereas each leaf would be a candidate that is not restricted further by any 
other  candidate.  The  search  for  the  best  candidate  can  proceed  bottom-  up  and 
breadth-first from the leaves of the subsumption hierarchy. The selected best match 
can  be  written  on  the  form  UMLClass*   GRLGoal*⊓  so  that  the  information 
represented by UMLClass* and not by GRLGoal* and vice versa can be written

InformationLostFromUMLClassToGRLGoal ≡ UMLClass*  ¬GRLGoal*⊓
InformationMissingFromUMLClassToGRLGoal ≡ ¬UMLClass*  GRLGoal*⊓

These two concepts describe, respectively, the information that will be lost and the 
information that is missing and must somehow be provided when translating from a  
UMLClass to a GRLGoal (of course, they also describe the missing/lost information 
when translating back from GRLGoal to UMLClass).

Comparing  modelling languages: Not accounted for here is the complementary 
problem of aligning modelling languages construct-wise, identifying which constructs 
or groups of constructs in one language that correspond most closely to the constructs 
or groups in the other, as a necessary preparation for detailed construct comparison.

Facilitating cross-language interoperability: Further work should explore how to 
facilitate cross-language model-to-model translations based on the detailed construct 
matchings described here. One approach is to store model elements expressed in one 
language  as  OWL  individuals  and  then  use  complex  SPARQL  and/or  SQWRL 
queries to retrieve them as model elements expressed in another language. Another 
strategy is to use construct matches to generate QVT or other transformations, along 
the lines suggested in [19] which, however, does not build an extensive ontology. To 
adopt  their  approach,  UEMO  must  first  be  extended  to  account  for  intended 
modelling-language and -construct syntax in addition to semantics.



5. Discussion

UEMO is still evolving and currently comprises 225 OWL classes (or DL concepts), 
although  this  number  is  somewhat  inflated  because  it  explicitly  defines  many 
anonymous  concepts that  may  not  be  needed  in  the  production  version  of  the 
ontology. Most of the OWL classes represent UEMO classes and properties,  with 
fewer  representing  UEML states  and  transformations  so  far.  Compared  to  earlier 
versions of the UEML ontology, many new UEMO properties have been introduced 
to more precisely describe mutability and immutability,  transients and persistence, 
assignments,  complex properties,  behaviours and  laws.  UEMO restricts  the  OWL 
classes  with 567 subclass  and 42 disjointness  axioms and connects  them with 96 
object  properties  (or  DL  roles)  that  are  in  turn  restricted  by  97  sub-property 
(owl:subPropertyOf, aka Bunge-precedence) and 257 other axioms. 

The work has shown that a large part of UEMO can be expressed in OWL2 DL 
and, so far, even in the relatively inexpressive  SHIN sub-language [11], making a 
wider range of reasoners and other tools available,  because  SHIN is  supported by 
both “OWL1” and OWL2. In addition, S(Q)WRL [15, 16] has been used to express 
certain additional constraints. Unfortunately, these “externally expressed” restrictions 
thereby become out of reach for DL-based reasoners, and further work must consider 
how they can be best used to reason about modelling languages and constructs. Two 
other groups of very general constraints seem infeasible to express even in S(Q)WRL, 
because  they  may  require  modal  and/or  temporal  axioms.  One  group  comprises 
UEMO concepts for transients and persistence and for certain types of mutability. 
Another includes [6] definitions of couplings and of systems. Further work should 
attempt  to  describe as  many of  these  constraints  as possible “inside” OWL2 DL, 
investigating, e.g., whether the modal/temporal axioms may at least have implications 
that can be expressed in DL form.

The present  work has  contributed both to  making UEMO more  precise  and to 
supporting it with automatic reasoning tools. It has also indicated that several of the 
possible uses of UEMO have nice decision problems. UEMO also has the potential to 
become simpler than the old UEML ontology by exploiting more of OWL's native 
features. Firstly, it is prepared for using XML-namespaces where the old ontology 
used  elaborate  naming  schemes.  Secondly,  where  the  old  ontology  introduced 
“association classes” to account for  role names and  cardinality constraints. UEMO 
uses  OWL's  built-in  sub-role  and  number  restrictions  to  the  same effect.  Thirdly, 
whereas the old ontology represented ontology concepts as OWL individuals, UEMO 
represents its concepts as OWL classes. One advantage is that they are thereby better 
supported  by  DL reasoning  tools,  which  tend  to  solve  decision  problems  on  the 
concept (or class) level. Another is that the ontology is thus prepared for representing 
the semantics not only of modelling constructs, but also of model elements, which can 
be mapped either to OWL classes in UEMO (e.g., for a particular UML-Class) or to 
the OWL individuals that instantiate the classes (e.g., for a particular UML-Object).



Space prevents us from discussing several other important features of UEMO, such 
as the possibility of parametric definitions that use place holders (such as <Property> 
and <Value> below) to define powerful generic concepts like these:

PossessesProperty<Property> ≡ AnyState  definedBy.Property⊓ ∃
PossessesPropertyValue<Property, Value> ≡ 

AnyState  definedBy.(Property  value.Value)⊓ ∃ ⊓ ∃

6. Conclusion and Further Work

The paper has outlined the Unified Enterprise  Modelling Ontology (UEMO), which 
supersedes the  common  ontology of  the  Unified  Enterprise  Modelling Language 
(UEML [1]). UEMO goes further than other ontology-based approaches to enterprise 
model  interoperability  (e.g.,  [4,  5])  because  it  offers  an  extensive  framework  for 
systematically describing modelling constructs in fine detail and because it has been 
explicitly designed to evolve and grow over time without becoming overly complex 
(through  the  five  taxonomies).  It  is  an  ontology  in  both  the  philosophical  and 
computer-science  senses,  and  the  paper  has  emphasised the  latter  side.  It  has 
formulated UEMO in OWL2 DL with  SHIN expressiveness, meaning that it so far 
remains also in “OWL1” DL form. The paper has also outlined potential  uses  of  
UEMO as a computer-science ontology and discussed its further development. The 
paper has thereby contributed both to making UEMO more precise and to supporting 
it with automatic reasoning tools.

UEMO has already grown large, and a short paper like this can only present a  
selection of  its  concepts and features.  Further  work must present UEMO in fuller 
detail  as an ontology both in the philosophical  sense (e.g.,  grounding its  concepts 
clearly  in  Bunge's  ontology)  and  the  computer-science  sense  (e.g.,  defining  its 
concepts in description logic form and detail their use by automated reasoners and 
other relevant tools). Further work is also needed to extend the ontology with more 
precise concepts for states and transformations and to properly validate it. The present 
version  of  UEMO  has  already  been  extensively  validated  through  iterative 
development,  by  using  several  automated  reasoners  and  by  cross-checking  with 
earlier ontology versions. But additional validations are needed that use UEMO to 
describe and support interoperability between existing modelling languages.

Acknowledgements. The author is indebted to all the researchers, assistants and 
students  who contributed  to  the  Domain  Enterprise  Modelling in  Interop-NoE, in 
particular Giuseppe Berio, Mounira Harzallah and Raimundas Matulevi ius.č

References

1. Anaya,  V.,  Berio,  G.,  Harzallah,  M.,  Heymans,  P.,  Matulevi ius,  R.,  Opdahl,  A.L.,č  
Panetto, H. and Verdecho, M.J. The Unified Enterprise Modelling Language – Overview 
and Further Work. Computers in Industry 61(2). Elsevier (2010)



2. Opdahl, A.L. A Platform for Interoperable Domain-Specific Enterprise Modelling Based 
on ISO 15926. In EDOC 2010 Workshop Proceedings, IEEE CS Press (2010)

3. Opdahl, A.L. Incorporation UML Class and Activity Constructs into UEML. In ER 2010 
Workshop Proceedings, Springer LNCS 6413 (2010)

4. Kappel,  G.,  Kapsammer,  E.,  Kargl,  H.,  Kramler,  G.,  Reiter,  T.,  Retschitzegger,  W. 
Schwinger, W. and Wimmer, M. Lifting metamodels to ontologies - a step to the semantic 
integration of modeling languages, in Model Driven Engineering Languages and Systems, 
Springer LNCS, pp. 528-542 (2006)

5. Ziemann,  J.,  Ohren,  O.,  Jäkel,  F.-W.,  Kahl,  T.,  and  Knothe,  T.  Achieving  Enterprise 
Model  Interoperability  Applying  a  Common  Enterprise  Metamodel.  In  Enterprise 
Interoperability New Challenges and Approaches, Doumeingts, G., Müller, J., Morel, G. 
and Vallespir, B. (eds.), Springer, London (2007)

6. Bunge, M. Treatise on Basic Philosophy: Vol. 3: Ontology I: The Furniture of the World. 
Boston, Reidel (1977)

7. Bunge,  M.  Treatise  on  Basic  Philosophy:  Vol.  4:  Ontology  II:  A World  of  Systems. 
Boston, Reidel (1979)

8. Wand,  Y.  and  Weber,  R.  On the  Ontological  Expressiveness  of  Information  Systems 
Analysis and Design Grammars. Journal of Information Systems 3:217–237 (1993)

9. Opdahl,  A.L.  and  Henderson-Sellers,  B.  Template-Based  Definition  of  Information 
Systems and  Enterprise  Modelling  Constructs.  Chapter  6  in  Ontologies  and  Business  
System Analysis, Green, P. and Rosemann, M. (eds.). Idea Group Publishing (2005)

10. Mahiat,  J.  A  Validation  Tool  for  the  UEML Approach.  Master  thesis,  University  of 
Namur (2006)

11. Horrocks, I., Kutz, O. and Sattler, U. The Even More Irresistible SROIQ. In Proc. of the  
10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR2006), pp. 
57-67 (2006)

12. Opdahl, A.L. The UEML Approach to Modelling Construct Description. In  Enterprise 
Interoperability – New Challenges and Approaches, Doumeingts, G., Müller, J., Morel, G. 
and Vallespir, B. (eds.), Springer, Berlin (2007)

13. Donini, F.M., Lenzerini, M., Nardi, D. and Schaerf, A. Reasoning in Description Logic. In 
Principles of Knowledge Representation and Planning,  Brewka, G. (ed.),  pp. 193-238. 
CSLI Publications (1996)

14. Nardi, D. and Brachman, R.J. An Introduction to Description Logics. In The Description 
Logic Handbook: Theory, Implementation, and Applications, Baader, F., Calvanese, D., 
McGuinness, D.L., Nardi, D. and Patel-Schneider, P.F. (eds.). Cambridge University Press 
(2003)

15. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B. and Dean, M. SWRL: 
A  Semantic  Web  Rule  Language  Combining  OWL  and  RuleML.  W3C  Member 
Submission May 21 (2004)

16. O'Connor, M.J. and Das, A. SQWRL: a query language for OWL. OWL – Experiences 
and Directions Workshop Series (2009)

17. Harel, D. and Rumpe, B. Modelling Languages: Syntax, Semantics and all that Stuff (or, 
What's  the  Semantics  of  “Semantics”?).  Technical  Report,  Technische  Universität 
Braunschweig (2004)

18. Matulevi ius, R., Heymans, P. and Opdahl, A.L. Comparing GRL and KAOS using theč  
UEML Approach. In  Enterprise Interoperability II – New Challenges and Approaches, 
Gonçalves, R.J., Müller, J.P, Mertins, K. and Zelm, M. (eds.). Springer (2007)

19. Roser, S. and Bauer, B. Automatic Generation and Evolution of Model Transformations 
Using Ontology Engineering Space. J. Data Semantics 11: 32-64 (2008)


