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Abstract. The paper presents a method for automatic detection and
monitoring of small waterlogged areas in farmland, using multispectral
satellite images and neural network classifiers. In the waterlogged areas,
excess water significantly damages or completely destroys the plants, thus
reducing the average crop yield. Automatic detection of (waterlogged)
crops damaged by rising underground water is an important tool for
government agencies dealing with yield assessment and disaster control.

The paper describes the application of two different neural network al-
gorithms to the problem of identifying crops that have been affected
by rising underground water levels in WorldView-2 satellite imagery. A
satellite image of central European region (North Serbia), taken in May
2010, with spatial resolution of 0.5m and 8 spectral bands was used to
train the classifiers and test their performance when it comes to identi-
fying the water-stressed crops. WorldView-2 provides 4 new bands po-
tentially useful in agricultural applications: coastal-blue, red-edge, yel-
low and near-infrared 2. The results presented show that a Multilayer
Perceptron is able to identify the damaged crops with 99.4% accuracy.
Surpassing previously published methods.

Keywords: Water stress, Agriculture, Satellite imagery, Neural net-
works, Waterlogged farmland, Remote sensing

1 Introduction

The advances in the satellite imaging technology provide researchers and prac-
titioners with ever more data that needs to be processed to extract meaningful
and useful information.

In agriculture, the applications of satellite imagery typically deal with crop
monitoring [23][5][19][15][2]. A general goal is to be able to predict the yield of
specific crops and monitor their health. Such information can be used directly by
government agencies to ensure that the subsidies given to farmers are allocated
correctly and that they are compensated for damage occurring in their fields.
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While satellite imagery for crop monitoring is a practice with more than 30
years of tradition [5][19], the sensors have only recently gained resolution that
allows for precision monitoring in the case of agriculture practices based on small
land parcels [15][2][8][23].

In the work presented here we address the problem of detecting small wetland
areas in the farmland. Particularly, we are interested to detect these areas in the
plains of Northern Serbia (Central Europe), where the small areas of wetland
appear in the arable land as the consequence of the rise of a groundwater. This
phenomenon emerges usually after the period of heavy rains, affects small mu-
tually isolated areas, and disappears in a couple of weeks. Although temporary,
it influences crop yields significantly and therefore it is necessary to discover it
in order to perform damage assessment. In addition, farmers in Serbia are en-
titled to compensation if more than 30% of their crop is affected. Since crops
are still present in the wetland areas, their stress due to excess water can be
used to detect the stretches of waterlogged area within arable land. In addition,
the presence of the crops in the water occludes the water surface, rendering the
methods which wold rely on reflection from water inapplicable.

High-resolution 8-band images, provided by the remote sensing equipment
mounted on the recently launched WorldView-2 satellite are used to detect crops
damaged by excess water. Besides the standard red, green, blue and near-infra
red band, WorldView-2 it offers new bands: costal blue, yellow, red-edge and
an additional near-infra red band [11]. The new channels carry significant infor-
mation one one is concerned with watelogged areas detection [18]. In addition,
multispectral images are available in high spatial resolution of 50 cm, making
them suitable for applications in areas with small-land-parcel-based agriculture.

Human-annotated ground truth was used to train 2 types of neural network
classifiers to distinguish between pixels pertinent to waterlogged land and other
pixels: Multi Layer Perceptron (MLP) and Radial Basis Function (RBF) neural
nets. The experimental results presented show that the MLP approach achieves
superior performance both in terms of accuracy and detection speed, when com-
pared to previously published results [18]. RBF however, proved unsuitable for
the task at hand, since it achieves accuracy below the simplest (logistic regres-
sion) classifier.

The rest of the paper is organized as follows: Section 2 provides an overview
of the relevant published work. Section 3 provides the details of our approach.
Section 4 describes the experiments conducted and the results achieved. Finally,
Section 5 provides our conclusions.

2 Related work

The problem of waterlogged areas detection falls into the scope of land-cover
classification. Lu and Weng [10] provide a comprehensive and fairly recent survey
of the different approaches used to distinguish between different types of cover.
Within their taxonomy the proposed approach is supervised, non-parametric,
per-pixel, spectral and makes hard decisions. This means that we use ground
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truth data created by human experts to train the classifier, make no assumptions
about the data itself, consider single pixels with no notion of spatial dependencies
and derive unambiguous classification decisions.

As far as precision agriculture applications are concerned, using satellite
imagery for crop identification and crop-covered area estimation is a practice
with more than 30 years of tradition [5][19]. Initially low-resolution Landsat
MSS and TM data was used [5][19][21][14]. As new satellites became available
SPOT imagery [13][1], Indian Remote Sensing (IRS) satellite data [4][16] and
moderate-resolution Moderate Resolution Imaging Spectroradiometer (MODIS)
[9][20] data has been used. More recently several studies have looked at using
high-resolution satellite imagery from QuickBird [15][2], IKONOS [8] and SPOT
5 [23].

Using neural networks for classification of multispectral image pixels was
considered as early as 1992 [7]. At the time, the authors of the study were con-
cerned with the feasibility of training the network classifying the pixels of a
satellite image in reasonable time, using the hardware available. The considered
a single hidden layer feed-forward neural network trained and proposed an adap-
tive back-propagation algorithm, which reduced the training time from 3 weeks
to 3 days, for a network with 24, 24 and 5 nodes in the input, hidden and out-
put layer. At the time, a single input neuron was used for each bit in the RGB
pixel value of a Landsat image. The authors concluded that the neural network
is able to generalize well across different images, both real and synthetic. Since
this early work there have been numerous applications of neural networks to
classification of remotely sensed data. Mas and Flores provide an overview [12].

A recent study by Marchisio et al. [11] evaluated the capability of new
WorldView-2 data, when it comes to general land-cover classification. They con-
sidered the relative predictive value of the new spectral bands in the WorldWiew-
2 sensor. Four types of classifiers were employed: logistic regression, decision
trees, random forest and neural network classifiers. The study showed that new
bands lead to an improvement of 5-20% in classification accuracy on 6 different
scenes. In addition, the authors proposed an approach to evaluate the relative
contribution of each spectral band to the learned models and, thus, provide a
list of bands important for the identification of each specific land cover class.
Although the neural network classifiers used by Marchisio et al. [11] have not
been described in detail, they state that they used a topology with two hidden
layers, containing 10 − 20 neurons. The neural network used was most likely a
Multilayer Perceptron trained by back propagation.

Our work builds up on the study of Petrovic et al. [18]. The authors used
WorldView-2 data to address the problem of water-logged agricultural land de-
tection. They evaluated logistic regression, Support Vector Machines (SVMs)
and Genetic Programming (GP) classifiers. SVMs and GP achieved best classi-
fication results when cross validated (98,80% and 98,87% accurate respectively).
The GP solution was deemed the best by the authors, since it was able to achieve
best classification and do it significantly faster than the SVM classifier that con-
tained 6000 support vectors. Neural network classifiers were not considered in
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that study, and to the best of our knowledge were never applied to the problem
of waterlogged area detection nor the problem of plant water-stress detection.

3 Detecting Waterlogged Crops Using WorldView-2 Data

3.1 WorldView-2 Data

The data used in this work is provided by commercial satellite WorldView-2.
The image was made during July 2010 and covers the area of arable land from
in the northern part of Serbia. Figure 1 shows visible light components of a part
of the scene. The discolored irregular shaped blotches within the arable land
correspond to waterlogged parts.

WorldView-2 is the first commercial satellite which provides eight high-
resolution spectral bands. Its sensors are sensitive to visible and near-infrared
spectral bands and producce images of 50 cm resolution. This satellite detects
radiation in following spectral bands: red (630-690 nm), green (510-580 nm), blue
(450-510 nm), near-infrared 1 (NIR1 - 770-895 nm), coastal blue (400-450 nm),
yellow (585-625 nm), red-edge (705-745 nm) and near-infrared 2 (NIR2 - 860-
1040 nm). The last four components provide additional value when compared to
the data available from other commercial satellites and each of them has been
designed with specific applications in mind. The costal blue is least absorbed
by water, but it is absorbed by chlorophyll in healthy plants. NIR2 component
to some extent resembles the characteristics of NIR1 component, initially aimed
at vegetation detection and classification tasks, but is less influenced by atmo-
spheric interference. Red-edge is especially designed for maximal reflection from
vegetation and is intended for the measurement of plant health and classification
of vegetation [3].

The data set used for training and testing of classifiers was derived based on
ground truth, manually annotated on a part of a single satellite image covering
an area of 10km2. It contains environ 200,000 data samples, corresponding to
the values of 8 bands for both waterlogged and non-waterlogged pixels, selected
out some 25,000,000 pixels in the single scene. The values for each of the 8 bands
are 16 bits wide. All values were normalized in our experiments.

3.2 Neural Network Classification

Two types of feed forward neural networks were considered for the classification
of multispectral pixel values: Multilayer Perceptron (MLP)[6] and Radial Basis
Function (RBF)[17].

Both architectures represent feed-forward networks the signals are propa-
gated from the input to output neurons, with no backward connections. The
MLP contained a single hidden layer and was trained using a back-propagation
algorithms as detailed in [22].

The parameters of the RBF network used were determined using k-means
clustering. Both MLP and RBF implementation is available within the open-
source data mining and artificial intelligence suite Wakaito Environment for
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Fig. 1. Part of the satellite image used to derive the training data set and test the
classifiers. Only red, green and blue bands are shown.

Knowledge Discovery (WEKA) [22]. This is the suite that has been used to
conduct experiments detailed in Section 4.

Once the neural networks are trained they are used to classify each pixel in
the image separately.

4 Experiments and Results

To evaluate the performance of the two neural network models 10-fold cross
validation was used. The process involves holding out 10 percent of data in the
training data set and using the rest to train the classifier. The 10% is used to test
the model. The process is repeated 10 times and average performance measures
are reported for each type of classifier.

The MLP contained 100 neurons in a single hidden layer, learning rate was
set to 0.3, momentum to 0.2 and 500 training epochs were used. The time taken
to build the model on an Intel Core2Duo processor running at 2.93 GHz was
6251 seconds. Table 1 provides the performance statistics for the MLP model:
true-positive (TP) rate, false-positive (FP) rate, precision, recall, f-measure and
Response Operating Characteristic (ROC) Area. The accuracy achieved by the
MLP is 99.4043%.

The RBF model was built much faster. It took only 43.69 seconds to train
the network. Minimum standard deviation for the clusters was set to 0.1, while
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Table 1. Classification results for Multilayer Perceptron

TP Rate FP Rate Precision Recall F-Measure ROC Area

Not waterlogged 0.998 0.037 0.995 0.998 0.997 0.995
Waterlogged 0.963 0.002 0.987 0.963 0.975 0.995
Weighted Avg. 0.994 0.033 0.994 0.994 0.994 0.995

the ridge parameter for the logistic regression was set to 10−8. Table 1 provides
the performance statistics for the RBF model. The accuracy achieved by the
RBF is significantly lover than that of the MLP (94.3538%).

Table 2. Classification results for RBF

TP Rate FP Rate Precision Recall F-Measure ROC Area

Not waterlogged 0.992 0.410 0.947 0.992 0.969 0.925
Waterlogged 0.590 0.008 0.904 0.590 0.714 0.925
Weighted Avg. 0.944 0.362 0.942 0.944 0.938 0.925

Figures 2 and 3 show the classification results for a part of the satellite image
shown in Figure 1. The parts of the scene classified as waterlogged are indicated
by white pixels. Since the waterlogged areas represent a relatively small part of
the overall area, the classification result shown in two images differs significantly,
although the difference in accuracy between two methods is just 5%.

When compared to the results of other classifiers as reported in [18], the MLP
achieved results superior to any of the classifiers reported there. The best clas-
sifier reported in the previous study was achieved by Genetic Programming and
its accuracy was 98.87% on the same data set. Unfortunately the RBF classifier
performed worse even than the simple logistic regression, which achieved 97.58%
accuracy, as reported previously. This can only be attributed to the errors in the
k-means clustering used to position the kernels of the RBF.

5 Conclusion

The application of two different neural network classifiers to the problem of
detecting waterlogged farmland using multispectral satellite imagery, has been
evaluated in the study presented.

Using imagery acquired by the new WorldView-2 satellite, we showed that
Multilayer Perceptron can achieve accuracy superior to that of other published
approaches and classify 99.4% of the pixels in the scene accurately.

RBFs have not proved successful when applied to the problem at hand, since
the k-means procedure used to position the kernel functions was unable to cope.
Other ways of doing this, such as random sampling from the training data or



Water-Stress Detection in Satellite Imagery 7

Fig. 2. MLP classification result for the image shown in Fig. 1.

Fig. 3. MLP classification result for the image shown in Fig. 1.
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orthogonal least square learning should be considered if RBFs are to be used in
this scenario.

As a direction for further research, the methodology could be evaluated in
terms of detecting less pronounced effects of water stress, where plants are not
irreparably damaged. It could also be possible to design crop yield estimation
models, akin to the methodology presented in [15].
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