
HAL Id: hal-01571466
https://inria.hal.science/hal-01571466

Submitted on 2 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Intelligent Software Project Scheduling and Team
Staffing with Genetic Algorithms
Constantinos Stylianou, Andreas S. Andreou

To cite this version:
Constantinos Stylianou, Andreas S. Andreou. Intelligent Software Project Scheduling and Team
Staffing with Genetic Algorithms. 12th Engineering Applications of Neural Networks (EANN 2011)
and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. pp.169-
178, �10.1007/978-3-642-23960-1_21�. �hal-01571466�

https://inria.hal.science/hal-01571466
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Intelligent Software Project Scheduling and Team
Staffing with Genetic Algorithms

Constantinos Stylianou1 and Andreas S. Andreou2

1Department of Computer Science,
University of Cyprus,

75 Kallipoleos Avenue, P.O. Box 20537, Nicosia, 1678, Cyprus
cstylianou@cs.ucy.ac.cy

2Department of Electrical Engineering and Information Technology,
Cyprus University of Technology,

31 Archbishop Kyprianos Avenue, P.O. Box 50329, Limassol, 3603, Cyprus
andreas.andreou@cut.ac.cy

Abstract. Software development organisations are under heavy pressure to
complete projects on time, within budget and with the appropriate level of
quality, and many questions are asked when a project fails to meet any or all of
these requirements. Over the years, much research effort has been spent to find
ways to mitigate these failures, the reasons of which come from both within and
outside the organisation’s control. One possible risk of failure lies in human
resource management and, since humans are the main asset of software
organisations, getting the right team to do the job is critical. This paper
proposes a procedure for software project managers to support their project
scheduling and team staffing activities – two areas where human resources
directly impact software development projects and management decisions – by
adopting a genetic algorithm approach as an optimisation technique to help
solve software project scheduling and team staffing problems.

Keywords: Software project management, project scheduling, team staffing,
genetic algorithms

1 Introduction

A major problem that still exists in the area of software engineering is the high rate of
software project failures. According to the 2009 Standish Group CHAOS Report [1],
only 32% of software projects are delivered on time, within budget and with the
required functionality, whereas 44% are delivered late, over budget and/or with less
than the required functionality. The remaining 24% of software projects are cancelled
prior to completion or delivered and never used. These figures reveal that project
success rates have fallen from the group’s previous study and, more alarmingly, that
project failures are at the highest they’ve been in the last decade. Consequently, as
more projects continue to fail, questions need to be asked of project management.

2 Constantinos Stylianou and Andreas S. Andreou

Questions such as “Was the team technically skilled to undertake the project?” or
“Was it the project manager’s fault for under-costing and bad planning?” provide a
strong incentive to address the shortcomings of software project management by
focusing on two activities that project managers undertake. In particular, project
scheduling and team staffing are examined because these activities are closely tied
with human resources and since human resources are the only major resource of
software development organisations, they are areas that warrant investigation. The
paper approaches project scheduling and team staffing as an optimisation problem and
employs a genetic algorithm to perform optimisation

The remainder of the paper is organised as follows: section 2 provides an overview
of software project scheduling and team staffing activities. Subsequently, section 3
describes in brief how genetic algorithms work and presents how this optimisation
technique was designed and adapted to solve the project scheduling and team staffing
problem. Section 4 illustrates the experiments carried out on several test projects to
evaluate the proposed approach followed by a discussion on the results obtained.
Finally, section 5 concludes with a brief summary and notes on future work.

2 Literature Overview

2.1 Software Project Scheduling

One of the main responsibilities of a software project manager is to determine what
work will be carried out, how and when it will be done. This responsibility consists of
identifying the various products to be delivered, estimating the effort for each task to
be undertaken, as well as constructing the project’s schedule. Due to the importance
of this activity, it should have priority over all others, and furthermore, a project’s
schedule needs to be updated regularly to coincide with the project’s current status.

One of the major issues of project scheduling is that of representation [2].
Specifically, the representations that most project scheduling tools provide “cannot
model the evolutionary and concurrent nature of software development”. One of the
most practical challenges project managers face in constructing project schedules is
the fact that project scheduling problems are NP-complete. There are no algorithms
that can provide an optimal solution in polynomial time, which means that brute force
methods are basically inadequate [3, 4]. This problem is heightened due to the fact
that software projects are intangible in nature and labour-intensive, and thus involve
an even higher level of complexity and uncertainty. As a consequence of the
uniqueness of software, project managers cannot completely depend on using
experiences from previous projects nor can they use past project information unless
used as indicative guidelines. Furthermore, goals may be different with respect to
what type of optimisation is required (e.g., minimal cost, maximum resource usage,
etc.). Finally, another issue is attributed to the level of information available to
construct a project schedule. Similarly to software cost estimation, information
available at the start of a project is usually missing or incomplete [2]. Therefore, any

Intelligent Software Project Scheduling and Team Staffing with Genetic Algorithms 3

mechanism adopted must be able to provide a means to continuously update the
schedule [5].

2.2 Software Team Staffing

People and their role in teams are highly important for project success, and they are
even taken into account in many cost estimation models, as for instance in the
COCOMO model [6]. Therefore, employees in software development organisations
should be characterised as “human capital”, which is considered the most important
asset of the company [7]. The more effectively this capital is managed, the higher the
competitive benefit achieved over other organisations. Therefore, when a company
undertakes the development of a new project, another of the main responsibilities of a
project manager is to decide who will be working on the project. Team formation
therefore is a task that, although seemingly easy at first, requires experience and
careful execution. Not getting the right team to do the job could possibly lead to
overrunning its schedule, exceeding its budget or compromising the necessary quality.

Recent changes in software development processes have also brought on changes
into the way project managers view teamwork and this has lead to new approaches
and methods being proposed for enhancing teamwork processes. An example of such
attempt can be found in [8] who provide a Team Software Process (TSP) as an
extension of the Personal Software Process (PSP). Another approach is proposed by
[9] who employ a grey decision-making (fuzzy) approach that selects members based
on their characteristics. The Analytical Hierarchy Process (AHP) is another method
that can be used for team formation as a decision-making tool as shown in [10], who
use multifunctional knowledge ratings and teamwork capability ratings. Recently,
[11] have presented the Web Ontology Language (OWL) – a model that represents
semantic knowledge – as a useful technique for team composition.

As stated in [12], the most common staffing methods available to software project
managers rely heavily on the project manager’s personal experiences and knowledge.
However, these are highly biased techniques and subjectivity does not always yield
the correct or best results. Another issue is the fact that because every project is
unique, the application of a specific recruiting and staffing method on a project may
not yield the expected results as it was applied on another project because of the
differences in project characteristics [13]. And this links to the fact that skill-based
and experience-based methods are not suitable enough for project managers to deal
with interpersonal relationships and social aspects which strongly exist is software
development organisations [14].

3 Methodology

3.1 Genetic Algorithm Overview

Project scheduling and team staffing may be considered optimisation problems, and
as such will require specialised techniques to be solved. Genetic algorithms are one

4 Constantinos Stylianou and Andreas S. Andreou

such optimisation technique, with which it is possible to adequately model the
mathematical nature of project scheduling and team staffing.

Genetic algorithms, introduced by John Holland in 1975 [15], work iteratively with
populations of candidate solutions competing as a generation, in order to achieve the
individual (or the set of individuals) considered as an optimal solution to a problem.
Based on the process of natural evolution, their aim is for fitter individual solutions to
prevail over those that are less strong at each generation. To achieve this, the fitness
of every individual solution is evaluated using some criteria relative to the problem,
and subsequently those evaluated highly are more probable to form the population of
the next generation. Promoting healthy, better-off individuals and discarding less
suitable, weaker individuals in a given generation is aided by the use of variations of
the selection, crossover, and mutation operators, which are responsible for choosing
the individuals of the next population and altering them to increase fitness as
generations progress – making thus the whole process resemble the concept of
‘survival of the fittest’.

3.2 Representation and Encoding

For the problem of project scheduling and team staffing, the candidate solutions for
optimisation need to represent two pieces of information. On the one hand, schedule
constraint information, regarding when and in which order tasks are executed and, on
the other hand, skill constraint information, concerning the assignment of employees
to tasks based on skill sets and experience required for a task. Fig. 1 below gives an
example of the representation of a software project schedule containing 4 tasks and 5
possible employees. As shown, the genetic algorithm uses a mixed-type encoding:
schedule information is represented by a positive, non-zero integer symbolising the
start day of the task, whereas employee assignment information is represented by a
binary code, wherein each bit signifies whether an employee is (a value of 1) or is not
(a value of 0) assigned to execute the task.

Fig. 1. Example of project schedule representation

In Fig. 1, the first task starts at day 1 and employee 1 and 3 will execute it, task 2
starts at day 11 with only employee 4 assigned to it, and so on.

3.3 Fitness Evaluation Process

The evaluation of the fitness of each individual solution consists of an assessment
across the two constraint dimensions that are the focus of this research (i.e., schedule
constraints and skill constraints), and for each constraint dimension a corresponding
objective function was constructed.

Intelligent Software Project Scheduling and Team Staffing with Genetic Algorithms 5

Schedule constraint objective. This objective concerns assessing the degree to which
the dependencies of the tasks in the software project are upheld as well as the
unnecessary delays existing between dependent tasks. The objective requires a
maximisation function and requires information only from the start days of the tasks
since it is not affected by which employees are assigned to carry out the task. For each

௧ in the project, the fitness is calculated based on Eq. 1. If a task’s start day does
not satisfy all its predecessor dependencies then it is given a value of zero. Otherwise,
the number of idle days between the task and its predecessor task is calculated. The
lower the number, the higher the value allocated. In the case where ݇ݏܽݐ௧ has more
than one predecessor tasks, the predecessor task that ends the latest is used for the
value ܿ݁݀݁ݎ݌ .ݐ

݇ݏܽݐ

ݕܽ݀_݀݊݁_ݎ݋ݏݏ݁

ሻݐ݇ݏܽݐሺݏ݁݅ܿ݊݁݀݊݁݌݂݁݀ ൌ ൝
0 ݐݕܽ݀_ݐݎܽݐݏ ൑ ݕܽ݀_݀݊݁_ݎ݋ݏݏ݁ܿ݁݀݁ݎ݌
1

1൅݈݅݀݁_݀ܽݏݕ

ݐ

ݐݕܽ݀_ݐݎܽݐݏ ൐ ݐݕܽ݀_݀݊݁_ݎ݋ݏݏ݁ܿ݁݀݁ݎ݌

ݏݕܽ݀_݈݁݀݅ ൌ ௧ݕܽ݀_ݐݎܽݐݏ െ ௧ݕܽ݀_݀݊݁_ݎ݋ݏݏ݁ܿ݁݀݁ݎ݌ െ 1

௦

ሻݏ݈݈݅݇ݏሺ݁ܿ݊݁݅ݎ݁݌ݔ݁ ൌ maxሺ݁ݏݏ݈݁ݒ݈݁_݁ܿ݊݁݅ݎ݁݌ݔሻ ൅ avgሺ݁ݏݏ݈݁ݒ݈݁_݁ܿ݊݁݅ݎ݁݌ݔሻ

 (1)

where

 . (2)

The values obtained for each task in the project are then averaged over the total
number of tasks to give the final evaluation for this objective for the individual.

Skill constraint objective. Employees assigned to work on tasks are evaluated based
on the degree of experience they possess in the skills required by the task. The
objective function in Eq. 3 shows the formula used to make this evaluation.
Experience in a skill is not considered as cumulative in this maximisation function
and therefore is not presented as simply the summation of the skill experience value
of all employees assigned. Instead, for each ݈݈݅݇ݏ௦ required by a task, it makes use of
the highest experience value (i.e., the level of the most experienced employee
assigned with ݈݈݅݇ݏ௦) and adds to that the mean level of experience of all the
employees assigned to work on the task requiring ݈݈݅݇ݏ .

 ݂ (3)

In this way, the objective function helps assign highly experienced employees to a
task and simultaneously prevents the assignment of employees without the skills
required (i.e., non-contributors) as the average experience of the team will be
lowered. As with the previous objective function, the values obtained for each skill
are then averaged over the total number of skills to produce an individual’s final skill
constraint evaluation.

Conflict objective. The two aforementioned objective functions individually target to
realise the shortest project duration or to assign the most experienced employees
respectively. However, when used together, there will be cases where conflicts will
arise due to assigning one or more employees to work on tasks that have been
scheduled to execute simultaneously. For this reason a third objective function was
created to handle assignment conflicts by taking into account the number of days each

6 Constantinos Stylianou and Andreas S. Andreou

݁݁ݕ݋݈݌݉݁

൯݁݁݁ݕ݋݈݌൫݁݉ݐ݈݂ܿ݅݊݋݂ܿ ൌ 1 െ
݁ݏݕܽ݀_݃݊݅ݐ݈݂ܿ݅݊݋ܿ

݁ݏݕܽ݀_݃݊݅݇ݎ݋ݓ_݈ܽݐ݋ݐ

௘ has been assigned to work and how many of these days they have been
assigned to more than one permitted task.

 (4)

Subsequently, the overall fitness for conflicts is computed as the average of all
employees. Finally, adding all three evaluations gives an individual’s total fitness.

3.4 Parameters and Execution

The parameters selected for the genetic algorithm are summarised in Table 1 below.

Table 1. Genetic algorithm parameters

Population size: 100 individuals Selection method: Roulette wheel
Maximum number of iterations: 10000 Crossover rate: 0.2 5

Mutation rate: 2 ⁄݄ݐ݈݃݊݁_݁݉݋ݏ݋݉݋ݎ݄ܿ

The genetic algorithm is initialised with random individuals and is set to execute

for a maximum number of iterations. The population is evaluated using the objective
functions described in subsection 3.3. However, it should be noted that each objective
value is given a weight so as to allow guidance of the genetic algorithm based on the
preference of project managers. For instance, a project manager may want to focus
primarily on the construction of a project schedule with the shortest possible duration
and secondarily on the experience of employees. In such a case, a higher weight will
be assigned to the objective function evaluating the schedule constraint and a lower
weight will be assigned to the objective function evaluating the skill constraint. If the
most experienced employee is assigned to work on two parallel tasks (i.e., leading to a
conflict), then preference will be given to keeping the duration of the project the same
but assigning the next most experienced to either one of the tasks. Conversely, if a
project manager prefers to have a team that is the most experienced and gives lower
priority to project duration then, when a conflict occurs, the project schedule will
grow in duration so that the most experienced employee remains assigned to the two
tasks. Subsequent to the population evaluation, those individual solutions ranked the
highest in terms of fitness will be passed on to the next generation after being
transformed using crossover and mutation operators. This is repeated until a suitable
solution (or number of suitable solutions) has been found.

4 Application and Experimental Results

4.1 Design of Experiments

Experiments were carried out to validate the approach on several aspects. Foremost, it
is essential to examine whether the objective functions used in the optimisation
algorithm were sufficient enough to produce the correct results individually but also

Intelligent Software Project Scheduling and Team Staffing with Genetic Algorithms 7

in their competitive environment. For this purpose, a number of test projects of
different sizes were designed and constructed that also allowed investigation of the
behaviour of the optimisation algorithm. The two test projects are depicted in the task
precedence graph (TPG) in Fig. 2 below, which was used in [3]. The smaller test
project comprises a subset of 10 tasks (T1-T10) of the TPG, whereas the larger test
project contains all the tasks (T1-T15) in the TPG. All dependencies between tasks
are finish-to-start, and the duration and the set of skills required for each task is given
inside the respective tasks nodes. In addition, Table 2 provides the degree of
experience that employees possess in the skills required by the project’s tasks.

Fig. 2. Task precedence graph for test projects

Table 2. Employees’ level of experience for
the test projects

 S1 S2 S3 S4 S5
E1 0 0 0.4 0.8 0
E2 0.2 0 0.4 0 0
E3 0 0.8 0 0 0
E4 0 0 0.4 0.8 0.6
E5 0 0.6 0 0 0
E6 0 0.6 0.4 0.8 0
E7 0 0.4 0.4 0 0
E8 0 0.6 0.6 0.8 0
E9 0 0.2 0.4 0 0

E10 0.6 0.4 0 0 0.6

The genetic algorithm was executed thirty times for each test project in each
experiment. The results reported in the following subsections contain examples of
some of the best executions that converged or that came very close to converging to
the optimal solution in each experiment. For Experiment 1, roughly 60% of the
executions resulted in finding the optimal solution (i.e., the project schedule with the
shortest makespan), whereas for Experiment 2 all executions obtained the optimal
solution (i.e., the project schedule with the most experienced employees assigned).
Finally, for Experiment 3, only around 5% of executions converged to the correct
solution. It should also be noted here that genetic algorithms are random in nature
with respect to initialisation and application of genetic operations. Because this
randomness affects convergence, that is,. the number of iterations required to find the
optimal solution, the time taken to complete an execution varied. Hence, any figures
regarding execution time can only give a very rough indication of the overall
behaviour of the genetic algorithm in terms of performance. Execution time ranged
between 17 sec and 5 min, depending also on the size of the project.

4.2 Results and Discussion

Experiment 1. The first experiment involved executing the genetic algorithm on the
test projects to evaluate the objective function for the schedule constraint only. This
was done to assess that dependencies between tasks were in fact satisfied and no

8 Constantinos Stylianou and Andreas S. Andreou

unnecessary delays existed. An example of the behaviour of the genetic algorithm,
one for each test project, can be seen in Fig. 3. For the smaller test project the optimal
solution was found around 1000 iterations whereas, as expected, for the larger test
project the optimal solution required a higher number of iterations (roughly 3000).
Construction of the corresponding optimal project schedules correctly shows that the
shortest possible duration for the first test project is 90 days and for the second test
project the shortest makespan is 110 days (Fig. 4).

Fig. 3. Evolution of the best individual
for the two test projects

Fig. 4. Optimal project schedule for large test
project (15 tasks)

Experiment 2. The second experiment examined whether the genetic algorithm was
indeed able to find the optimal project team with regards to experience by only
evaluating the objective function for the skill constraint. For both test projects, the
genetic algorithm successfully managed to assign to each task the most experienced
employee or group of employees so that all skills were satisfied and no “idle” or
“surplus” employees were used. Table 3 shows an example of a resulting assignment
matrix that displays which employees will staff the small software test project.

Table 3. Employee-task assignment matrix (small test project)

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

E4 0 0 1 0 0 0 0 0 0 1
E6 0 0 0 0 0 0 1 0 0 0
E8 1 1 0 1 1 1 0 0 1 0
E10 1 0 0 1 0 0 0 1 0 0

Experiment 3. The third and final experiment was carried out to investigate the
behaviour of the genetic algorithm when all three objectives were included in the
evaluation. Since the objective functions are considered to be competing with each
other, each objective function was multiplied by its preference weight as explained in
subsection 3.4.

Firstly in this series of experiments, greater preference was given to the schedule
constraint than to the skill constraint. The results obtained showed that with all three

Intelligent Software Project Scheduling and Team Staffing with Genetic Algorithms 9

objective functions active, the genetic algorithm was successfully able to find the
optimal schedule for both test projects and, in order to avoid conflicts, managed to
assign the next best employees in terms of experience to parallel tasks. An example of
the assigned employees of the smaller test project is given in Table 4.

Table 4. Employee-task assignment matrix keeping shortest possible project schedule

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

E2 1 0 0 1 0 0 0 0 0 0
E4 0 0 1 0 0 0 0 0 0 1
E6 0 0 0 0 1 0 1 0 0 0
E8 0 1 0 0 0 1 0 0 1 0

E10 1 0 0 1 0 0 0 1 0 0

Secondly, a higher preference was given to the skill constraint and a lower

preference to the schedule constraint. This was done to examine whether the genetic
algorithm was able to keep the most experienced employees assigned by lengthening
the project duration. Results obtained here showed that the genetic algorithm found it
difficult to reach an optimal solution. Specifically, runs carried out on the test projects
show that, as expected, the genetic algorithm draws its attention to the skill constraint
objective (as seen in the example in Fig. 5), and thus the project duration is prolonged
(Fig. 6). However, a minor dependence violation in one task of the order of 1 day is
caused due to the non-multiobjective nature of the algorithm.

Fig. 5. Evolution of best individual for
small test project (10 tasks)

Fig. 6. Project schedule for small test
project (10 tasks)

5 Concluding Remarks

This paper presented an approach to solving the problem of software project
scheduling and team staffing by adopting a genetic algorithm as an optimisation
technique in order to construct a project’s optimal schedule and to assign the most
experienced employees to tasks. The genetic algorithm uses corresponding objective
functions to handle constraints and the results obtained when using either one of the
objective functions show that the genetic algorithm is capable of finding optimal
solutions for projects of varying sizes. However, when the objective functions were

10 Constantinos Stylianou and Andreas S. Andreou

combined, the genetic algorithm presents difficulties in reaching optimal solutions
especially when having preference to assign the most experienced employees over the
project’s duration. Through observation of a number of executions, it was noticed that
in this case the genetic algorithm couldn’t reduce idle “gaps” or was not able to
produce a conflict-free schedule. One possible reason for this observation is due to the
competitive nature of the objective functions, and a definite improvement to the
approach will be to use multi-objective optimisation rather than using the aggregation
of individual objective functions, which is how the genetic algorithm presently works.
This could possibly be a means to handle the competitiveness of the objective
functions and also allow for a set of optimal solutions to be produced throughout both
constraint dimensions simultaneously, thus removing the need for using weights to
give preference to either one of the constraints. Also, refinements may be needed to
help the algorithm escape from local optima and, thus, improve its convergence rate.

References

1. Standish Group.: Standish Group CHAOS Report. Standish Group International, Inc, Boston
(2009)

2. Chang, C.K., Jiang, H., Di, Y., Zhu, D., Ge, Y.: Time-Line Based Model for Software
Project Scheduling with Genetic Algorithms. Inform. Software Tech. 50(11), 1142--1154
(2008)

3. Chang, C.K., Christensen, M.J., Zhang, T.: Genetic Algorithms for Project Management.
Ann. Softw. Eng. 11(1), 107--139 (2001)

4. Pan, N., Hsaio, P., Chen, K.: A Study of Project Scheduling Optimization using Tabu
Search Algorithm. Eng. Appl. Artif. Intel. 21(7), 1101--1112 (2008)

5. Joslin, D., Poole, W.: Agent-based Simulation for Software Project Planning. In: 37th Winter
Simulation Conference, pp. 1059--1066. IEEE Press, New York (2005)

6. Boehm, B.W.: Software Engineering Economics. Prentice Hall Inc., New Jersey (1981)
7. Acuña, S.T., Juristo, N., Moreno, A.M., Mon, A.: A Software Process Model Handbook for

Incorporating People’s Capabilities. Springer, New York (2005)
8. Humphrey, W.S.: The Team Software ProcessSM (TSPSM). Technical Report, Carnegie-

Mellon University (2000)
9. Tseng, T.-L., Huang, C.-C., Chu, H.-W., Gung, R.R.: Novel Approach to Multi-Functional

Project Team Formation. Int. J. Proj. Manage. 22(2), 147--159 (2004)
10.Chen S.-J., Lin, L.: Modeling Team Member Characteristics for the Formation of a

Multifunctional Team in Concurrent Engineering. IEEE T. Eng. Manage. 51(2), 111--124
(2004)

11. Chi, Y., Chen, C.: Project Teaming: Knowledge-Intensive Design for Composing Team
Members. Expert Sys. Appl. 36(5), 9479--9487 (2009)

12. Acuña, S.T., Juristo, N., Moreno, A.M.: Emphasizing Human Capabilities in Software
Development. IEEE Softw. 23(2), 94--101 (2006)

13. Wi, H., Oh, S., Mun, J., Jung, M.: A Team Formation Model Based on Knowledge and
Collaboration. Expert Sys. Appl. 36(5), 9121--9134 (2009)

14. Amrit, C.: Coordination in Software Development: The Problem of Task Allocation. In: 27th
International Conference on Software Engineering, pp. 1--7. ACM, New York (2005)

15. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Michigan (1975)

