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Abstract. Software development organisations are under heavy pressure to 
complete projects on time, within budget and with the appropriate level of 
quality, and many questions are asked when a project fails to meet any or all of 
these requirements. Over the years, much research effort has been spent to find 
ways to mitigate these failures, the reasons of which come from both within and 
outside the organisation’s control. One possible risk of failure lies in human 
resource management and, since humans are the main asset of software 
organisations, getting the right team to do the job is critical. This paper 
proposes a procedure for software project managers to support their project 
scheduling and team staffing activities – two areas where human resources 
directly impact software development projects and management decisions – by 
adopting a genetic algorithm approach as an optimisation technique to help 
solve software project scheduling and team staffing problems. 

Keywords: Software project management, project scheduling, team staffing, 
genetic algorithms 

1 Introduction 

A major problem that still exists in the area of software engineering is the high rate of 
software project failures. According to the 2009 Standish Group CHAOS Report [1], 
only 32% of software projects are delivered on time, within budget and with the 
required functionality, whereas 44% are delivered late, over budget and/or with less 
than the required functionality. The remaining 24% of software projects are cancelled 
prior to completion or delivered and never used. These figures reveal that project 
success rates have fallen from the group’s previous study and, more alarmingly, that 
project failures are at the highest they’ve been in the last decade. Consequently, as 
more projects continue to fail, questions need to be asked of project management. 
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Questions such as “Was the team technically skilled to undertake the project?” or 
“Was it the project manager’s fault for under-costing and bad planning?” provide a 
strong incentive to address the shortcomings of software project management by 
focusing on two activities that project managers undertake. In particular, project 
scheduling and team staffing are examined because these activities are closely tied 
with human resources and since human resources are the only major resource of 
software development organisations, they are areas that warrant investigation. The 
paper approaches project scheduling and team staffing as an optimisation problem and 
employs a genetic algorithm to perform optimisation  

The remainder of the paper is organised as follows: section 2 provides an overview 
of software project scheduling and team staffing activities. Subsequently, section 3 
describes in brief how genetic algorithms work and presents how this optimisation 
technique was designed and adapted to solve the project scheduling and team staffing 
problem. Section 4 illustrates the experiments carried out on several test projects to 
evaluate the proposed approach followed by a discussion on the results obtained. 
Finally, section 5 concludes with a brief summary and notes on future work. 

2 Literature Overview 

2.1 Software Project Scheduling 

One of the main responsibilities of a software project manager is to determine what 
work will be carried out, how and when it will be done. This responsibility consists of 
identifying the various products to be delivered, estimating the effort for each task to 
be undertaken, as well as constructing the project’s schedule. Due to the importance 
of this activity, it should have priority over all others, and furthermore, a project’s 
schedule needs to be updated regularly to coincide with the project’s current status. 

One of the major issues of project scheduling is that of representation [2]. 
Specifically, the representations that most project scheduling tools provide “cannot 
model the evolutionary and concurrent nature of software development”. One of the 
most practical challenges project managers face in constructing project schedules is 
the fact that project scheduling problems are NP-complete. There are no algorithms 
that can provide an optimal solution in polynomial time, which means that brute force 
methods are basically inadequate [3, 4]. This problem is heightened due to the fact 
that software projects are intangible in nature and labour-intensive, and thus involve 
an even higher level of complexity and uncertainty. As a consequence of the 
uniqueness of software, project managers cannot completely depend on using 
experiences from previous projects nor can they use past project information unless 
used as indicative guidelines. Furthermore, goals may be different with respect to 
what type of optimisation is required (e.g., minimal cost, maximum resource usage, 
etc.). Finally, another issue is attributed to the level of information available to 
construct a project schedule. Similarly to software cost estimation, information 
available at the start of a project is usually missing or incomplete [2]. Therefore, any 



Intelligent Software Project Scheduling and Team Staffing with Genetic Algorithms      3 

mechanism adopted must be able to provide a means to continuously update the 
schedule [5]. 

2.2 Software Team Staffing 

People and their role in teams are highly important for project success, and they are 
even taken into account in many cost estimation models, as for instance in the 
COCOMO model [6]. Therefore, employees in software development organisations 
should be characterised as “human capital”, which is considered the most important 
asset of the company [7]. The more effectively this capital is managed, the higher the 
competitive benefit achieved over other organisations. Therefore, when a company 
undertakes the development of a new project, another of the main responsibilities of a 
project manager is to decide who will be working on the project. Team formation 
therefore is a task that, although seemingly easy at first, requires experience and 
careful execution. Not getting the right team to do the job could possibly lead to 
overrunning its schedule, exceeding its budget or compromising the necessary quality. 

Recent changes in software development processes have also brought on changes 
into the way project managers view teamwork and this has lead to new approaches 
and methods being proposed for enhancing teamwork processes. An example of such 
attempt can be found in [8] who provide a Team Software Process (TSP) as an 
extension of the Personal Software Process (PSP). Another approach is proposed by 
[9] who employ a grey decision-making (fuzzy) approach that selects members based 
on their characteristics. The Analytical Hierarchy Process (AHP) is another method 
that can be used for team formation as a decision-making tool as shown in [10], who 
use multifunctional knowledge ratings and teamwork capability ratings. Recently, 
[11] have presented the Web Ontology Language (OWL) – a model that represents 
semantic knowledge – as a useful technique for team composition. 

As stated in [12], the most common staffing methods available to software project 
managers rely heavily on the project manager’s personal experiences and knowledge. 
However, these are highly biased techniques and subjectivity does not always yield 
the correct or best results. Another issue is the fact that because every project is 
unique, the application of a specific recruiting and staffing method on a project may 
not yield the expected results as it was applied on another project because of the 
differences in project characteristics [13]. And this links to the fact that skill-based 
and experience-based methods are not suitable enough for project managers to deal 
with interpersonal relationships and social aspects which strongly exist is software 
development organisations [14]. 

3 Methodology 

3.1 Genetic Algorithm Overview 

Project scheduling and team staffing may be considered optimisation problems, and 
as such will require specialised techniques to be solved. Genetic algorithms are one 
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such optimisation technique, with which it is possible to adequately model the 
mathematical nature of project scheduling and team staffing.  

Genetic algorithms, introduced by John Holland in 1975 [15], work iteratively with 
populations of candidate solutions competing as a generation, in order to achieve the 
individual (or the set of individuals) considered as an optimal solution to a problem. 
Based on the process of natural evolution, their aim is for fitter individual solutions to 
prevail over those that are less strong at each generation. To achieve this, the fitness 
of every individual solution is evaluated using some criteria relative to the problem, 
and subsequently those evaluated highly are more probable to form the population of 
the next generation. Promoting healthy, better-off individuals and discarding less 
suitable, weaker individuals in a given generation is aided by the use of variations of 
the selection, crossover, and mutation operators, which are responsible for choosing 
the individuals of the next population and altering them to increase fitness as 
generations progress – making thus the whole process resemble the concept of 
‘survival of the fittest’. 

3.2 Representation and Encoding 

For the problem of project scheduling and team staffing, the candidate solutions for 
optimisation need to represent two pieces of information. On the one hand, schedule 
constraint information, regarding when and in which order tasks are executed and, on 
the other hand, skill constraint information, concerning the assignment of employees 
to tasks based on skill sets and experience required for a task. Fig. 1 below gives an 
example of the representation of a software project schedule containing 4 tasks and 5 
possible employees. As shown, the genetic algorithm uses a mixed-type encoding: 
schedule information is represented by a positive, non-zero integer symbolising the 
start day of the task, whereas employee assignment information is represented by a 
binary code, wherein each bit signifies whether an employee is (a value of 1) or is not 
(a value of 0) assigned to execute the task. 

 
Fig. 1. Example of project schedule representation 

In Fig. 1, the first task starts at day 1 and employee 1 and 3 will execute it, task 2 
starts at day 11 with only employee 4 assigned to it, and so on. 

3.3 Fitness Evaluation Process 

The evaluation of the fitness of each individual solution consists of an assessment 
across the two constraint dimensions that are the focus of this research (i.e., schedule 
constraints and skill constraints), and for each constraint dimension a corresponding 
objective function was constructed. 
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Schedule constraint objective. This objective concerns assessing the degree to which 
the dependencies of the tasks in the software project are upheld as well as the 
unnecessary delays existing between dependent tasks. The objective requires a 
maximisation function and requires information only from the start days of the tasks 
since it is not affected by which employees are assigned to carry out the task. For each 

௧ in the project, the fitness is calculated based on Eq. 1. If a task’s start day does 
not satisfy all its predecessor dependencies then it is given a value of zero. Otherwise, 
the number of idle days between the task and its predecessor task is calculated. The 
lower the number, the higher the value allocated. In the case where ݇ݏܽݐ௧ has more 
than one predecessor tasks, the predecessor task that ends the latest is used for the 
value ܿ݁݀݁ݎ݌   .ݐ
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 (1) 

where 

  . (2) 

The values obtained for each task in the project are then averaged over the total 
number of tasks to give the final evaluation for this objective for the individual. 

Skill constraint objective. Employees assigned to work on tasks are evaluated based 
on the degree of experience they possess in the skills required by the task. The 
objective function in Eq. 3 shows the formula used to make this evaluation. 
Experience in a skill is not considered as cumulative in this maximisation function 
and therefore is not presented as simply the summation of the skill experience value 
of all employees assigned. Instead, for each ݈݈݅݇ݏ௦ required by a task, it makes use of 
the highest experience value (i.e., the level of the most experienced employee 
assigned with ݈݈݅݇ݏ௦) and adds to that the mean level of experience of all the 
employees assigned to work on the task requiring ݈݈݅݇ݏ . 

 ݂  (3) 

In this way, the objective function helps assign highly experienced employees to a 
task and simultaneously prevents the assignment of employees without the skills 
required (i.e., non-contributors) as the average experience of the team will be 
lowered. As with the previous objective function, the values obtained for each skill 
are then averaged over the total number of skills to produce an individual’s final skill 
constraint evaluation. 

Conflict objective. The two aforementioned objective functions individually target to 
realise the shortest project duration or to assign the most experienced employees 
respectively. However, when used together, there will be cases where conflicts will 
arise due to assigning one or more employees to work on tasks that have been 
scheduled to execute simultaneously. For this reason a third objective function was 
created to handle assignment conflicts by taking into account the number of days each 
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݁݁ݕ݋݈݌݉݁

൯݁݁݁ݕ݋݈݌൫݁݉ݐ݈݂ܿ݅݊݋݂ܿ ൌ 1 െ
݁ݏݕܽ݀_݃݊݅ݐ݈݂ܿ݅݊݋ܿ

݁ݏݕܽ݀_݃݊݅݇ݎ݋ݓ_݈ܽݐ݋ݐ

௘ has been assigned to work and how many of these days they have been 
assigned to more than one permitted task. 

  (4) 

Subsequently, the overall fitness for conflicts is computed as the average of all 
employees. Finally, adding all three evaluations gives an individual’s total fitness. 

3.4 Parameters and Execution 

The parameters selected for the genetic algorithm are summarised in Table 1 below. 

Table 1. Genetic algorithm parameters 

Population size: 100 individuals Selection method: Roulette wheel 
Maximum number of iterations: 10000 Crossover rate: 0.2  5

Mutation rate: 2 ⁄݄ݐ݈݃݊݁_݁݉݋ݏ݋݉݋ݎ݄ܿ  
 
The genetic algorithm is initialised with random individuals and is set to execute 

for a maximum number of iterations. The population is evaluated using the objective 
functions described in subsection 3.3. However, it should be noted that each objective 
value is given a weight so as to allow guidance of the genetic algorithm based on the 
preference of project managers. For instance, a project manager may want to focus 
primarily on the construction of a project schedule with the shortest possible duration 
and secondarily on the experience of employees. In such a case, a higher weight will 
be assigned to the objective function evaluating the schedule constraint and a lower 
weight will be assigned to the objective function evaluating the skill constraint. If the 
most experienced employee is assigned to work on two parallel tasks (i.e., leading to a 
conflict), then preference will be given to keeping the duration of the project the same 
but assigning the next most experienced to either one of the tasks. Conversely, if a 
project manager prefers to have a team that is the most experienced and gives lower 
priority to project duration then, when a conflict occurs, the project schedule will 
grow in duration so that the most experienced employee remains assigned to the two 
tasks. Subsequent to the population evaluation, those individual solutions ranked the 
highest in terms of fitness will be passed on to the next generation after being 
transformed using crossover and mutation operators. This is repeated until a suitable 
solution (or number of suitable solutions) has been found.  

4 Application and Experimental Results 

4.1 Design of Experiments 

Experiments were carried out to validate the approach on several aspects. Foremost, it 
is essential to examine whether the objective functions used in the optimisation 
algorithm were sufficient enough to produce the correct results individually but also 
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in their competitive environment. For this purpose, a number of test projects of 
different sizes were designed and constructed that also allowed investigation of the 
behaviour of the optimisation algorithm. The two test projects are depicted in the task 
precedence graph (TPG) in Fig. 2 below, which was used in [3]. The smaller test 
project comprises a subset of 10 tasks (T1-T10) of the TPG, whereas the larger test 
project contains all the tasks (T1-T15) in the TPG. All dependencies between tasks 
are finish-to-start, and the duration and the set of skills required for each task is given 
inside the respective tasks nodes. In addition, Table 2 provides the degree of 
experience that employees possess in the skills required by the project’s tasks.  

 
Fig. 2. Task precedence graph for test projects 

Table 2. Employees’ level of experience for 
the test projects 

 S1 S2 S3 S4 S5 
E1 0 0 0.4 0.8 0 
E2 0.2 0 0.4 0 0 
E3 0 0.8 0 0 0 
E4 0 0 0.4 0.8 0.6 
E5 0 0.6 0 0 0 
E6 0 0.6 0.4 0.8 0 
E7 0 0.4 0.4 0 0 
E8 0 0.6 0.6 0.8 0 
E9 0 0.2 0.4 0 0 

E10 0.6 0.4 0 0 0.6 
 

The genetic algorithm was executed thirty times for each test project in each 
experiment. The results reported in the following subsections contain examples of 
some of the best executions that converged or that came very close to converging to 
the optimal solution in each experiment. For Experiment 1, roughly 60% of the 
executions resulted in finding the optimal solution (i.e., the project schedule with the 
shortest makespan), whereas for Experiment 2 all executions obtained the optimal 
solution (i.e., the project schedule with the most experienced employees assigned). 
Finally, for Experiment 3, only around 5% of executions converged to the correct 
solution. It should also be noted here that genetic algorithms are random in nature 
with respect to initialisation and application of genetic operations. Because this 
randomness affects convergence, that is,. the number of iterations required to find the 
optimal solution, the time taken to complete an execution varied. Hence, any figures 
regarding execution time can only give a very rough indication of the overall 
behaviour of the genetic algorithm in terms of performance. Execution time ranged 
between 17 sec and 5 min, depending also on the size of the project. 

4.2 Results and Discussion 

Experiment 1. The first experiment involved executing the genetic algorithm on the 
test projects to evaluate the objective function for the schedule constraint only. This 
was done to assess that dependencies between tasks were in fact satisfied and no 
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unnecessary delays existed. An example of the behaviour of the genetic algorithm, 
one for each test project, can be seen in Fig. 3. For the smaller test project the optimal 
solution was found around 1000 iterations whereas, as expected, for the larger test 
project the optimal solution required a higher number of iterations (roughly 3000). 
Construction of the corresponding optimal project schedules correctly shows that the 
shortest possible duration for the first test project is 90 days and for the second test 
project the shortest makespan is 110 days (Fig. 4). 
 

Fig. 3. Evolution of the best individual 
for the two test projects  

Fig. 4. Optimal project schedule for large test 
project (15 tasks) 

Experiment 2. The second experiment examined whether the genetic algorithm was 
indeed able to find the optimal project team with regards to experience by only 
evaluating the objective function for the skill constraint. For both test projects, the 
genetic algorithm successfully managed to assign to each task the most experienced 
employee or group of employees so that all skills were satisfied and no “idle” or 
“surplus” employees were used. Table 3 shows an example of a resulting assignment 
matrix that displays which employees will staff the small software test project. 

Table 3. Employee-task assignment matrix (small test project) 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

E4 0 0 1 0 0 0 0 0 0 1 
E6 0 0 0 0 0 0 1 0 0 0 
E8 1 1 0 1 1 1 0 0 1 0 
E10 1 0 0 1 0 0 0 1 0 0 

 
Experiment 3. The third and final experiment was carried out to investigate the 
behaviour of the genetic algorithm when all three objectives were included in the 
evaluation. Since the objective functions are considered to be competing with each 
other, each objective function was multiplied by its preference weight as explained in 
subsection 3.4. 

Firstly in this series of experiments, greater preference was given to the schedule 
constraint than to the skill constraint. The results obtained showed that with all three 
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objective functions active, the genetic algorithm was successfully able to find the 
optimal schedule for both test projects and, in order to avoid conflicts, managed to 
assign the next best employees in terms of experience to parallel tasks. An example of 
the assigned employees of the smaller test project is given in Table 4. 

Table 4. Employee-task assignment matrix keeping shortest possible project schedule  

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

E2 1 0 0 1 0 0 0 0 0 0 
E4 0 0 1 0 0 0 0 0 0 1 
E6 0 0 0 0 1 0 1 0 0 0 
E8 0 1 0 0 0 1 0 0 1 0 

E10 1 0 0 1 0 0 0 1 0 0 
 
Secondly, a higher preference was given to the skill constraint and a lower 

preference to the schedule constraint. This was done to examine whether the genetic 
algorithm was able to keep the most experienced employees assigned by lengthening 
the project duration. Results obtained here showed that the genetic algorithm found it 
difficult to reach an optimal solution. Specifically, runs carried out on the test projects 
show that, as expected, the genetic algorithm draws its attention to the skill constraint 
objective (as seen in the example in Fig. 5), and thus the project duration is prolonged 
(Fig. 6). However, a minor dependence violation in one task of the order of 1 day is 
caused due to the non-multiobjective nature of the algorithm. 
 

Fig. 5. Evolution of best individual for 
small test project (10 tasks) 

Fig. 6. Project schedule for small test 
project (10 tasks) 

5 Concluding Remarks 

This paper presented an approach to solving the problem of software project 
scheduling and team staffing by adopting a genetic algorithm as an optimisation 
technique in order to construct a project’s optimal schedule and to assign the most 
experienced employees to tasks. The genetic algorithm uses corresponding objective 
functions to handle constraints and the results obtained when using either one of the 
objective functions show that the genetic algorithm is capable of finding optimal 
solutions for projects of varying sizes. However, when the objective functions were 
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combined, the genetic algorithm presents difficulties in reaching optimal solutions 
especially when having preference to assign the most experienced employees over the 
project’s duration. Through observation of a number of executions, it was noticed that 
in this case the genetic algorithm couldn’t reduce idle “gaps” or was not able to 
produce a conflict-free schedule. One possible reason for this observation is due to the 
competitive nature of the objective functions, and a definite improvement to the 
approach will be to use multi-objective optimisation rather than using the aggregation 
of individual objective functions, which is how the genetic algorithm presently works. 
This could possibly be a means to handle the competitiveness of the objective 
functions and also allow for a set of optimal solutions to be produced throughout both 
constraint dimensions simultaneously, thus removing the need for using weights to 
give preference to either one of the constraints. Also, refinements may be needed to 
help the algorithm escape from local optima and, thus, improve its convergence rate. 
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