
HAL Id: hal-01567773
https://inria.hal.science/hal-01567773

Submitted on 24 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Automatic Extraction of a Contradiction Genealogic
Tree from Optimization with an Object-Oriented

Simulator
Céline Conrardy, Roland De Guio

To cite this version:
Céline Conrardy, Roland De Guio. Automatic Extraction of a Contradiction Genealogic Tree from
Optimization with an Object-Oriented Simulator. 4th Computer-Aided Innovation (CAI), Jun 2011,
Strasbourg, France. pp.71-94, �10.1007/978-3-642-22182-8_7�. �hal-01567773�

https://inria.hal.science/hal-01567773
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Automatic extraction of a contradiction genealogic tree

from optimization with an object-oriented simulator

Céline Conrardy
1
, Roland de Guio

2

1 Lafarge Centre de Recherche, Saint-Quentin Fallavier, France
celine.conrardy@lafarge.com

2 LGECO, INSA de Strasbourg, 24 bld. de la Victoire, 67000 Strasbourg, France
roland.deguio@insa-strasbourg.fr

Abstract. In order to go beyond optimization strategies in Computer Aided

Innovation, it has been demonstrated that model changes are required [1,2]

during Inventive Problem Solving Process (IPSP). TRIZ proposes a universal

way of generating model changes thanks to contradiction statement and

contradiction solving but it does not provide methods or tools for obtainting

them from typical CAD or other kind of standard data. The aim of the following

paper is to propose an algorithm which extracts from an object-oriented

simulator a ―genealogy‖ of contradictions systems (both physical and technical

contradictions) and formulates corresponding Substance-Field models at the

basis of TRIZ Inventive Standard application. This algorithm is fed by

optimizations performed on various assemblages of objects constituting the

simulator program. It helps disclosing contradictions that cannot be seen by

domain experts due to high complexity of problem and is an additional step

towards formalization and integration of TRIZ models.

Keywords: Optimization, Inventive design, Hilbert space, TRIZ, ARIZ,

Contradiction system, Problem formulation

1 Introduction

Various authors have proposed enhancements of problem formulation in border of

TRIZ. These methods are dedicated to improve effectiveness and efficiency of

Inventive Problem Solving Process (IPSP). For concision purpose, it is not discussed

in detail how those approaches contribute to that goal and what elements of the puzzle

are still missing. It is at least useful to mention that

─ some authors explore problem formulation and contradiction statement based on

networks of non formalized data [3,4,5,6,7,8,9 and 10], whereas others have

proposed to use mathematically formalized knowledge in order to disclose

geometrical contradictions (a specific kind of physical contradictions) by using

topological optimization algorithm[11] or disclose generalized contradictions by

using CSP or design of experiments [12,13];

─ a theoretical framework that enables comparison of such approaches still

requires to be built (this article is a step towards building this framework).

2 Céline Conrardy1, Roland de Guio2

1.1 Optimization in an infinite dimensional design space

Several facets of modeling activities and search strategies when using ARIZ 85-C

[14] (hereafter named ARIZ), a supposed convergent IPSP developed in border of

TRIZ have been studied in [15]. ―Convergent‖ should be understood as the property

of the algorithm to provide a set of successive partial solutions that satisfy step by

step more and more requirements of the design problem, until all requirements are

satisfied. Since the objects (i.e elements, properties, physical relations) that constitute

the various partial solutions and the requirements are not entirely known at the

beginning and are disclosed on the way, this study has been performed in an infinite

dimensional space. It has been proposed that parameters disclosed to describe objects

handled during ARIZ are preexisting dimensions of the infinite dimension space.

Define and reformulate contradictions at several system levels is a cognitive pattern in

that space. This article goes a step further in direction of a mathematical formalization

of search strategies in such a space.

1.2 Motivations

The algorithm of contradiction genealogic tree extraction is proposed hereafter in

order to:

─ Provide means of complex problems analysis by studying interaction between

unusual elements, when expert’s knowledge is lacking;

─ Disclose rapidly multi system-level problem statement;

─ Provide quantitative means of choosing which contradiction of a contradiction

system has to be solved in first part of ARIZ.

The following article is more particularly focussed on formalizing the interaction

of three elements of TRIZ (system view, contradiction systems, Su-Field models).

The contribution proposed may also help to understand in the future how other

elements of TRIZ (not considered in this paper) interact with the three elements

selected, when performing ARIZ.

With a more general perspective, mathematical formalization of ARIZ search

strategy in an infinite dimension space may enable a combination with evolutionary

computation [16,17 and 18] strategies for improving IPSP efficiency and

effectiveness. To the knowledge of authors, no model, enabling to understand the

convergence of ARIZ, have been proposed, although empirical results have shown

ARIZ is an algorithm that converges towards solutions for a vast range of complex

design problems. It is expected that elements of models developed for ARIZ study

may be easily extended in order to depict other IPSP. It will so contribute to form a

relevant meta-model of all IPSP.

1.3 Paper organization

The paper begins with some reminders about invention and optimization problems.

The second part of the paper describes the generic algorithm for extracting the

contradiction genealogic tree with their associated Su-Field models.

Automatic extraction of a contradiction genealogic tree from optimization with an object-

oriented simulator 3

The third part is devoted to application of this algorithm on a T shaped concrete

beam example.

Last part is a discussion about the limitations of the approach, the contributions

brought by the genealogic tree and the expected results that may be derived from it.

2 Optimization and invention problem models

2.1 From optimization problem…

Let us consider a computer simulator X. {P}={P[1], P[2], P[3],…} are input

parameters of the simulator X. The simulator may enable these parameters to vary in a

predefined range. When a value is given to each input parameter, we name this set of

values a configuration of X. The simulator is constituted of objective and constraint

functions. We have named objective function Evaluation Parameter and noted {EP} =

{EP[0]}. Constraint functions are named Constraint Requirements and noted

{CR}={CR[1], CR[2], CR[3], …}.

An optimization problem consists in finding the set of input parameter values that

lead to the best value of objective functions while satisfying constraint functions. In

the article, we restrain ourselves to mono-objective optimizations. During

optimization, we are interested in the various quantitative values taken by evaluation

parameter for different configurations in order to compare these configurations and in

knowing about the satisfaction of constraint requirements. This is given hereafter by

Boolean values, either satisfied (true) or not satisfied (false). However, for

computation purpose hereafter, we may also refer to a numerical value to measure

variations of the distance to the threshold delimiting satisfied or not satisfied

constraints.

An optimization result will be described with the following notations:

─
0P are the values of {P} that optimize EP[1] while keeping all constraints {CR}

satisfied.
0P is the result of this optimization problem and is a particular

configuration of X;

─ ,...,...,, 21 iPPP are configurations obtained by optimizing parameters {P} to

improve EP[1] when the i
th

 constraint CR[i] is relaxed. The result of such an

optimization problem will either lead to break the constraint, i.e.

falsePiCR i )]([or to satisfy the constraint, i.e. truePiCR i )]([if the

constraint had no influence on
0P . In the article, we restrain ourselves to mono-

constraint relaxation.

2.2 …To invention problem

We may then consider:

─),(0 iPP is the couple formed by the two configurations
0P and

iP ;

4 Céline Conrardy1, Roland de Guio2

─ if
iPP 0
, {P} is known as the action parameter,

0P and
iP as the couple of

opposite values of this action parameter, EP[0] and CR[i] as respectively the

evaluation parameters and constraint requirement of a contradiction system

noted];0[iCS . Those elements are depicted on Fig.1. NB: In the article, we

distinguish between evaluation parameters and constraint requirements. The two

of them may be known indifferently as evaluation parameters in TRIZ literature

[2] and this distinction is introduced here for convenience purpose. The

contradictions systems considered hereafter will always involve an evaluation

parameter and a constraint requirement. The restriction to this particular type of

contradiction systems will be discussed in section 4.

Fig. 1. Contradiction System CS[0;i]

In border of TRIZ, inventive problem solving consists in finding means of

obtaining satisfaction of constraint and improved value of EP[0], without generating

new problems in the system. ARIZ, for instance, is a cognitive algorithm to perform

such a task in a more or less controlled manner. For our concern, the important thing

is that this algorithm uses three TRIZ models in particular:

─ contradiction system, which link technical to physical contradiction

─ system view

─ Su-Field models which depict the nature of interaction between elements

involved in a contradiction system.

For details about these models, insight about convergence control during ARIZ IPSP,

please refer to [19].

2.3 Reformulate various invention problems linked with the former one

We may view any configuration P as an assemblage of components (known as sub-

systems in border of TRIZ). For the simulator X, which computes the behaviour of

any configuration, this decomposition of each configuration may be linked to an

- CR[i] not satisfied

+Improved value of EP[0]

+ Satisfaction of CR[i]

- Damaged value of EP[0]

P0

Pi

{P} = {P[1], P[2], P[3], …}

EP[0]

True False

CR[i]

T
hr

es
ho

ld
va

lu
e

G
o

al
 i

s
to

 d
ec

re
as

e
E

P
[0

]

Ideal target

P0

Pi

Automatic extraction of a contradiction genealogic tree from optimization with an object-

oriented simulator 5

object-oriented way of programming the functions of X. Details concerning common

points and differences between those concepts coming from optimization, software

science and TRIZ background are not discussed in this article but are to be found in

an upcoming paper. For clarity purpose, we remind hereafter few basic and simplified

elements concerning the structure of an object oriented program that will be a key

resource in the proposed contradiction tree extraction algorithm.

In such software architecture, the simulator is decomposed into various

components known as class of objects. An object is built by providing particular

values to the arguments of a class. On Fig.2, the simulator X is depicted as a graph of

classes O[m] (with boxes around). Each class defines the characteristics of all the

objects (noted hereafter
mO) it enables to build. Construction of objects of each class

requires providing as argument:

─ Objects of the classes depicted at next level and connected with arrow (in boxes)

─ Input parameters depicted at next level and connected with a line (circled

parameter).

The class also provides to any of its object additional functions that depict things

the object can do. These functions are noted O[m].F[k] and depicted on Fig.2 with a

triangle around. They will be used hereafter as partial evaluation parameters and

constraint requirements in the decomposition of invention problem. The function

O[m].F[k] of the class O[m] takes as argument either input parameters of O[m] (like

P[i] on Fig.2 for instance), or results returned by functions of objects passed as

arguments of O[m] (result returned by O[f].F[l] on Fig.2 for instance). We will note

km FO . the result returned by O[m].F[k].

Fig. 2. Structure of an object-oriented simulation program. Boxes are class of objects; circles

are parameters; triangles are functions linking parameters and functions of other classes of the

considered level.

The object-oriented program on Fig.2 will then take the following generic form:

Definition of classes and their instances

[…]

O[2]O[1]

X

P[5]

P[3]

O[6] […]

P[6]

O.F[1]
[…]

P[t]O[f]

O.F[2]

O[i].F[k]
[…]

O[m]

O[f].F[l]

Level 0

Level 1

Level 2

Level 3

6 Céline Conrardy1, Roland de Guio2

Class Object_i

constructor

Def_init_(Of, … other objects, Pt,… other parameters)

[...] # provide the values of the arguments to parameters of object

definition of the characteristics of the class (properties and methods)

 Fk = a formula that may involve Of, Pt, etc…

 […] # define of other functions

Main part of the program

Of = Object_f()

Oi = Object_i(Of, value of Pt, …)

O6 = Object_6(value of P7)

O3 = Object_3()

O2 = Object_2(value of P5, O6, …)

O0 = Object_0(O2, O3, P4, …, Oi)

This decomposition of a system into components is useful to reformulate the

invention problem at those levels. At each level of the decomposition, there may be

(or not) inventive problems that have impact on the inventive problem at previous

level of decomposition. A way to reformulate contradictions at next or previous level

has been proposed in [15]. Such a reformulation is useful when one tries to control

which part of the system will change and which part will remain as it is during ARIZ

IPSP. This mini-algorithm of contradiction statement formulation and reformulation

will be described in a more formalized manner in the next section. The algorithm

proposed also goes a step further since it enables the automation of Su-Field models

construction for each contradiction system disclosed.

3 The contradiction genealogic tree extraction algorithm

3.1 Definitions and notations

The contradiction genealogic tree is obtained thanks to a sequence of objects

generated by solving various optimization problems.

mP .0 is the configuration obtained by solving the following optimization problem:

─ try to improve input parameters leading to O[m] variation (i.e arguments of

O[m], for instance P[t] or parameters of objects built by classes at higher level

of decomposition, arguments of O[f] for instance) to improve EP[0]. We will

shortly say that component
mO of mP .0 was mobile during optimization;

─ while keeping values of other input parameters of X constant during the

computation, we will then say that other components of mP .0 were fixed during

optimization;

─ relax CR[i].

Automatic extraction of a contradiction genealogic tree from optimization with an object-

oriented simulator 7

By symmetry,
miP .

is obtained by optimizing parameters of O[m] to improve EP[0],

while satisfying CR[i] (and all other constraints) and keeping other components of
iP

constant.),(.00 mPP and),(. imi PP form then respectively the two contradiction

systems CS[0;0.m] and CS[i.m;i];

─ EP[0;i]=EP[0] and CR[0;i]=CR[i] are the evaluation parameter and the

constraint requirement of CS[0;0.m] and CS[i.m;i]

─ CS[0;i] is then the parent of CS[0;0.m], which is the child of CS[0;i] in the

contradiction tree (Fig.4);

─ Su-field models attached to the contradiction system CS[0;0.m] form a list noted

SF[0;0.m] and depict the nature of unsatisfying relationships between mobile

component
mO and other components of 0P remained fixed during optimization.

How to built Su-Field models will be detailed in the next section.

─ These other components of 0P are named adjacent components of
mO .

The notations above remain valid when the indexes ―0‖ and ―i‖ are replaced by

combination of index obtained when following the algorithm like 0.[...].0 m or

ii .[...] . If CS[i;j] is the parent of CS[i;i.m], CS[i;i.m] takes the generic form

depicted on Fig.3. By extension, we will also consider input parameters as

components, following the same computation process described above, i.e. O[m] may

be substituted by P[4] without any changes in the previously defined notations.

The goal of the algorithm is to extract a contradiction genealogic tree as depicted

on Fig.4. Each node of the genealogic tree is a contradiction system to which is bound

Su-Field models. The algorithm acting upon the object-oriented simulator consists of

a succession (with loops) of elementary steps detailed in Table 1. An example of

application is proposed in part 4.

Fig. 3. The two contradiction systems CS[i;j.m] and CS[i.m;j]]

EP[i;j]

True False CR[i;j]

G
o
al

 i
s

to
 d

ec
re

as
e

E
P

[i
;j

]

mO

mO
mO

mO
Ideal target

- CR[i,j] not satisfied

+Improved value of EP[i,j]

+ Satisfaction of CR[i,j]

- Damaged value of EP[i,j]

Pi

Pi.m

{P}
Pi

Pi.m

Pj

Pj.m

- CR[i,j] not satisfied

+Improved value of EP[i,j]

+ Satisfaction of CR[i,j]

- Damaged value of EP[i,j]

Pi.m

Pj

{P}

T
hr

es
ho

ld
va

lu
e

8 Céline Conrardy1, Roland de Guio2

Fig. 4. Partial contradiction genealogic tree related to decomposition depicted on Fig.2. The

branch CS[0;1] is partially developed. Circled contradictions systems are leaves of the tree,

which means that their physical contradiction involves a single input parameter.

3.2 Elementary steps of the algorithm

The algorithm proposed hereafter is a series of steps described in Table 1 and are

repeated until reaching the last level of decomposition.

Table 1. Elementary steps of the algorithm

N° Function Details on how to perform the step

1 Obtain a first set of

technical

contradictions

Optimize {P} in order to improve EP[0] while relaxing the

constraint CR[i]. Constraints are to be relaxed one by one.

2 Identify

contradiction system

CS[i;j.m] that is a

child of CS[i;j],

mO a component

of Pi.

Optimize parameters of O[m] to improve EP[i;j], while

keeping adjacent components to the values they have in Pi and

relaxing CR[i;j].
mO is the sole varying component of Pi

during optimization.

If a component is shared between varying and non varying

components, it should not vary during the optimization.

If
imi PP .
, there is no contradiction.

3 Identify the

contradiction system

CS[i.m;j] that is a

child of CS[i;j],

mO a component

of Pj.

Optimize parameters of O[m] to satisfy CR[i;j], while keeping

other component fixed and improving EP[i;j].

If a component is shared among varying and non varying

components, it should not vary during the optimization.

If
imi XX .

there is no contradiction.

4 State Su-Field

models of CS[i;j.m].
The nature of relationships between

mO and its various

adjacent components
uO in the configuration

iP (resp.
mjP .

)

is disclosed by examination of EP[i;j.m] (resp. CR[i;j.m])

variations. Variations in EP[i;j.m] (resp. CR[i;j.m]) =

f(O[m].F[1],O[m].F[k],O[m].F[l], …) take the following

generic form:

[…]

[…] […][…]

[…]

CS[0;1]

CS[0;1.2] CS[0.2;1] CS[0;1.3] CS[0;1.i] CS[0.i;1]

CS[0;1.2.5]CS[0.5;1.2] CS[0;1.2.6]

Level 0

Level 1

Level 2

Level 3

Automatic extraction of a contradiction genealogic tree from optimization with an object-

oriented simulator 9

][].[
][].[

...

][].[
][].[

...

]1[].[
]1[].[

]).;[.(

].;[

lFmO
lFmO

f

kFmO
kFmO

f

FmO
FmO

f

mjiCRresp

mjiEP





















For each variation function, the analysis proposed in table2 has

to be performed.

5 State Su-Field

models of CS[i.m;j]
The nature of relationships between

mO and its various

adjacent components
uO is disclosed by examination of

EP[i.m;j] (resp. CR[i.m;j]) variations, following the same

method than step 4 above.

6 Create new nodes in

contradiction

genealogic tree

Insert CS[i.m;j], CS[i;j.m] and their associated Su-Field

models as child of CS[i;j] in contradiction genealogic tree.

7 Disclose EP[i.m;j]

(resp. EP[i;j.m]) and

CR[i.m;j]

(resp.CR[i:j.m])

of CS[i.m;j]

These functions are obtained by replacing parameters of iP

(resp. jP) that remained constant during optimization (i.e.

input parameters involving adjacent components of
mO) by

their numerical values in EP[i;j] and CR[i;j]. This operation

provides new functions (EP[i.m;j] and CS[i;j.m]) that are

themselves two functions of the functions O[m].F[k],)(k

that belong to O[m].

Table 2. Interpretation of mathematical relations leading to SF[i;j.m]

Su-Field Model

Variations to be examined in Evaluation Parameter and Constraint

Requirement. EP and CR may be handled in the same way. For

concision purpose, only EP analysis has been developed.

If 0)(
][].[

].;[
.







 iPP
P

kFmO

f
mjiEP

mji

,

then km FO . and so mO has an insufficient action on all the

adjacent components
uO involved in the expression of

][].[kFmO

f




. A Su-Field is drawn for each

uO .

NB: if several components are involved, it may be considered in a

first approach that mO has an action on the relationship between

these objects. This point still requires to be clarified.

10 Céline Conrardy1, Roland de Guio2

If 0)(
][].[

].;[
.







 iPP
P

kFmO

f
mjiEP

mji

and
][].[kFmO

f




is a constant function, mO has a negative

effect on itself.

If 0)(
][].[

].;[
.







 iPP
P

kFmO

f
mjiEP

mji

,

and O[m].F[k] can be null in EP[i;j.m], then mO has an harmful

action on all the adjacent components involved in the expression of

][].[kFmO

f




. A Su-Field is drawn for each

uO .

NB: if several components are involved, it may be considered that

mO has an action on the relationship between these components.

This point still requires to be clarified.

If 0)(
][].[

].;[
.







 iPP
P

kFmO

f
mjiEP

mji

,

and
km FO . cannot be null in EP[i;j.m] (division for instance), then

mO has an excessive action on all the adjacent components involved

in expression of
][].[kFmO

f




. A Su-Field is drawn for each

uO .

If the analysis of EP[i;j.m] (resp. CR[i;j.m]) leads to extraction of an

harmful and an insufficient action between mO and the same other

components, it means there is both useful and harmful relationships

between them and the standards are transformed into this last

category of standard.

3.3 The loops to be performed

The steps of algorithm have to be performed in the following order:

For each constraint requirements i

 Perform step 1

 Level = top-level

 node=O0

 For each level

 For each node of the level

 For each component of the node

 Perform steps 2,3,4,5,6,7

 node=next node at same level

Automatic extraction of a contradiction genealogic tree from optimization with an object-

oriented simulator 11

 level=next level

 node=first node of the level

Last nodes of the genealogic tree are leaves, the physical contradictions of which

involve a single input parameter.

4 Application of the algorithm on an example

4.1 Optimization problem on T shaped beam example

The starting beam from which will be extracted the contradiction tree is the result of

the following optimization problem (see Fig.5):

─ {P}=(b,h,As,R) are the input parameters of the simulator;

─ 5 constraints on geometry of the beam and mechanical resistance should be

satisfied in order to obtain feasible solutions. Those constraints are either

satisfied (true) or not satisfied (false);

─ the cost of the beam is the evaluation parameter to be optimized;

─ due to constraints of the environment (insertion of the wings in adjacent

concrete slabs for example), c, hw and bw are fixed properties and will not

appear hereafter.

The optimized beam is found for a particular set of b, h, As, R values, so that all

constraints are satisfied while the cost is minimal. Decrease the cost even more

constitutes the starting administrative contradiction of the problem.

Fig. 5. Parametrization of T-shaped beam, Evaluation Parameters, Constraint Requirements and

values of parameters that will remain fixed during the whole process.

The various optimizations are performed thanks to a free library EASEA [20] and a

proprietary interface library. This library has been developed for linking automatically

any kind of simulators and building any kind of optimization problem on EASEA

Wing

Trunk

b

h

As

c

bw

hw

)..40)2(..2(]5[

))90max()10min((]4[

))1max()2.0min((]3[

))1max()2.0min((]2[

max)(]1[

bhcmAsbhCR

MPaRRMPaRCR

mbbmbCR

mhhmhCR

CR









 

R

()cos.]0[tbeamEP 

mbw

mhw

mc

4.0

2.0

09.0







12 Céline Conrardy1, Roland de Guio2

standard interface, which enables to construct and solve automatically the various

optimization problems handled through the presented generic algorithm.

4.2 Description of the simulator of T shaped beams used as example

Warning. Some details concerning the real mathematical equations and computation

results are omitted or simplified for concision purpose. Rough numerical values are

given in order to clarify examples.

The simulator, provided by courtesy of Lafarge, computes the behaviour of the

beam depicted on Fig.5.

Fig. 6. Structure of the object oriented simulator of T-shaped beam, with functions (triangle),

components (box) and input parameters (circle). Numbers provided below each object name are

used for easy reference purpose. . Trunk and Wing share the same component Concrete.

The structure of the simulator is an object oriented program (see Fig.6). The

simplified code is reproduced below.

Definition of classes and their instances

Class Concrete

 Def_init_(R)

cost = R*100.

contrib_sigma = 1/R

 Class Bar

Def_init_(As)

cost = As*900.

contrib_sigma = 1/ (As * 600)

 Class Trunk

Def_init_(b, Concrete, Bar)

cost_concrete = 20*b*Concrete.cost

cost_steel = Bar.cost

Level 0

Level 1

Level 2

Level 3

Wing

(4)
Trunk

(3)

Beam

(1)

B

(5)

h

(2)

Concrete

(6)

Bar

(7)

Concrete

(6)

R

(8)

As

(9)

R

(8)
Concrete.

Cost

Concrete.

Contrib_sigma

Wing.

Cost

Wing.

Contrib_sigma

……

…

Beam.

Cost

Beam.

Cost

Automatic extraction of a contradiction genealogic tree from optimization with an object-

oriented simulator 13

contrib_sigma = Bar.contrib_sigma – Bar.contrib_sigma^2

…/ (b*Concrete.contrib _sigma)

 Class Wing

Def_init_(Concrete)

bw = 0.3

hw = 0.2

contrib _sigma = Concrete.contrib _sigma *…

 hw * sqrt(bw)

cost = bw*hw*Concrete.cost

 Class Beam

Def_init_(h, Trunk, Wing)

 bt = 0.7

 c = 0.9

 l = 8.1

cost = h*Trunk.cost_concrete + Trunk.cost_steel +…

2*Wing.cost

sigma = (1/h^2) * Trunk.contrib _sigma +…

 2* Wing.contrib _sigma

Main part of the program

R=10

As=2.1

b=1

h=1

Concrete = Concrete(R)

Bar = Bar (As)

Trunk = Trunk (b, Concrete, Bar)

Wing = Wing (Concrete)

Beam = (h, Trunk, Wing)

4.3 The algorithm for contradiction genealogic tree extraction

Warning.Drawings of optimization results are given with an explanatory purpose

only and not as outcome of a real computation.

Let us relax one by one each constraint. Single constraint relaxation may lead (or

not) to technical contradiction. In the example, relaxing constraint on hmin for

instance has no impact on optimization and so does not lead to a contradiction.

However, Fig.7 shows some optimization results P1 and P2 when relaxing constraints

max and maxh respectively. (P0, P1) and (P0, P2) form respectively the

contradiction systems CS[0;1] and CS[0;2] at the level 0 of the genealogic tree (see

Fig.16).

Let us focus on CS[0;1] in order to identify physical contradictions at level n°1 of

the tree. We may first vary parameter h which is the component n°2 in the object-

oriented decomposition (Fig.6). Fig.8 shows contradiction system CS[0;0.2] obtained

by using h as a varying component. CS[1.2;1] does not exist since the best value of h

does not enable P1.2 to satisfy constraint requirement n°1 on max .

14 Céline Conrardy1, Roland de Guio2

Fig. 7. Results of optimization obtained when relaxing constraints one constraint. P1 is

obtained by relaxing max and P2 is obtained by maxh relaxation.

Fig. 8. Configurations P0 and P0.2 involved in CS[0;0.2]. Configuration P0.2 is obtained by

optimizing h in order to improve P0 on EP[0;1] while keeping other components of P0 fixed.

max 

Cost
Values of the design variables

T
h

e
g

o
al

 i
s

to
 d

ec
re

as
e

th
e

co
st

Constraint n°1 relaxed :

Constraint n°2 relaxed : h>hmax

P0={0.4, 1, 2.1, 25}

{P}={b, h, As, R}

P2={bmin, 1.7>hmax, 1>Asmin, Rmin}

P1={bmin, hmin, 0.08=Asmin, Rmin}



Cost

max

P.2= h

O.3 = trunk

True False

O.4 = wing

P0={0.4, 1, 2.1, 25} {P}={b, h, As, R}

P1={bmin, hmin, 0.08=Asmin, Rmin}

P0.2={0.4, hmin, 2.1, 25}

T
h
e

g
o

al
 i

s
to

 d
ec

re
as

e
th

e
co

st

Automatic extraction of a contradiction genealogic tree from optimization with an object-

oriented simulator 15

Since EP[0]=Beam.cost = h*Trunk.cost_concrete + Trunk.cost_steel +

2*Wing.cost,  cost = Trunk.cost_concrete* h and  cost(P0->P0.2) *

Trunk.cost_concrete(P0) <0, h has an harmful impact on the trunk. The height

increases indeed the cost of concrete in trunk, hence the harmful impact on the trunk

in Fig.15. Moreover, CR[1]=sigma = (1/h^2)* Trunk.contrib_sigma + 2 *

Wing.contrib_sigma,  sigma = - (1/h^3) * Trunk.contrib_sigma * h and 
sigma(P0.2->P0) * (- 1/h^3) * Trunk.contrib_sigma >0. The lever length effect on the

trunk has indeed a too weak effect on trunk to decrease , hence the Su-Field

proposed in Fig.9. A new contradiction node can be added in the contradiction

genealogic tree (Fig.10). Since CS[0;0.2] is a leave of the tree, the evaluation

parameters and constraint requirements functions at sub-level are not evaluated.

Fig. 9. CS[0;0.2] and associated Su-Field models.

Fig. 10. CS[0;0.2] is a child of CS[0;1] in contradiction genealogic tree.

Let us now vary the parameters of the trunk, the component n°3 in the object-

oriented decomposition (Fig.8). Fig.11 shows contradiction systems CS[0;0.3] and

CS[1.3;1] obtained by using trunk as a varying component.

Since EP[0] = h*Trunk.cost_concrete + Trunk.cost_steel + 2*Wing.cost,










steeltTrunk

concretetTrunkh
t

_cos.

_cos.*
cos .

 cost(P0->P0.3)*h(P0)<0, so the trunk has an harmful relationship with h which

leads to increase the cost of the beam, hence the harmful impact on height in Fig.12.

This relationship is in fact a geometrical relationship.  cost(P0->P0.3)*1<0, so the

trunk has also an harmful impact on itself (Fig.12). It is due to its own cost (due to

steel bar inside). Since CR[1]=sigma = (1/h^2) * Trunk.contrib_sigma + 2 *

Wing.contrib_sigma,  sigma = (1/h^2) * Trunk.contrib_sigma and  sigma(P0.3-

>P0)* (1/h^2) <0. The trunk has a harmful relationship with the height, which leads to

P0.2={0.4, hmin, 2.1, 25}P0={0.4, 1, 2.1, 25}

Cost : low but Sigma : falseSigma : true but Cost : high

P0.2={0.4, hmin, 2.1, 25}P0={0.4, 1, 2.1, 25}

Cost : low but Sigma : falseSigma : true but Cost : high

F

P.2 S.3

h (high)

:
h*Trunk.cost_concr
ete

F

P.2 S.3

h (high)

:
h*Trunk.cost_concr
ete

F

P.2
S.3

: (1/h^2) * Trunk.contrib
_sigma

h (low)

F

P.2
S.3

: (1/h^2) * Trunk.contrib
_sigma

h (low)

[…]

Level 0

Level 1

CS[0;1]

CS[0;0.2]

16 Céline Conrardy1, Roland de Guio2

increase the stress that the material constituting the beam has to endure, hence the Su-

Field proposed in Fig.12. The operations for CS[1.3;1] are the same, only the

numerical values change. The two new contradiction nodes can be added in the

contradiction genealogic tree.

Fig. 11. Configurations P0 and P0.3 involved in CS[0;0.3] and configurations P1.3 and P1

involved in CS[1;3;1]. Configuration P0.3 is obtained by optimizing the trunk while keeping

other components of P0 fixed in order to improve P0 on EP[0]. Configuration P1.3 is obtained

by optimizing the trunk while keeping other components of P1 fixed in order to satisfy CR[1].

We may now evaluate the evaluation parameter and the constraints requirements of

CS[0;0.3] and CS[1.3;1] children. Since EP[0] = Beam.cost= h*Trunk.cost_concrete

+ Trunk.cost_steel + 2*Wing.cost = h* b * Concrete.cost + Bar.cost + 2* bw* hw*

R* 100, EP[0;0.3] = b * Concrete.cost + Bar.cost + 400. and EP[1.3;1] = b *

Concrete.cost + Bar.cost + 160.

Symmetrically, CR[1] = (1/h^2)* Trunk.contrib _sigma + 2* Wing.contrib _sigma

= (1/h^2)* (Bar.contrib_sigma – Bar.contrib_sigma^2/(b*Concrete.contrib_sigma))+

2* 1/R * hw * sqrt(bw). So CR[0;0.3]= Bar.contrib_sigma + Bar.contrib_sigma^2/

(b* Concrete.contrib_sigma) + 0.010 and CR[1.3;1]= Bar.contrib_sigma +

Bar.contrib_sigma^2/(b*Concrete.contrib_sigma) + 0.025.



Cost

maxTrue False

P.2= h

O.3 = trunk

O.4 = wing

P1={bmin, hmin, 0.08=Asmin, Rmin}

P0={0.4, 1, 2.1, 25}
{P}={b, h, As, R}

P0.3={bmin, 1, 0.4=Asmin, 25}

P1.3={bmax, hmin, 8=Asmax, Rmin}

Automatic extraction of a contradiction genealogic tree from optimization with an object-

oriented simulator 17

Fig. 12. CS[0;0.3] and CS[1.3;1] and associated Su-Field models. The bold parameters are the

parameters varying during optimization. R is assumed to vary but cannot because it is also a

parameter of the wing which is fixed.

Fig. 13. Configurations P0 and P0.5 involved in CS[0;0.5]. Configuration P0.5 is obtained by

optimizing b in order to improve P0 on EP[0;0.3] while keeping other components components

of P0 fixed.

Let us now focus on CS[0;0.3] in order to identify physical contradictions at level

n°2 of the tree. We may first vary parameter b which is the component n°5 in the

Cost : low but Sigma : falseSigma : true but Cost : high

P0.3={bmin, 1, 0.4=Asmin, 25} P0={0.4, 1, 2.1, 25}

Cost : low but Sigma : falseSigma : true but Cost : high

P0.3={bmin, 1, 0.4=Asmin, 25} P0={0.4, 1, 2.1, 25}

F

S.3
P.2

: (1/h^2) * Trunk.contrib
_sigma

F

S.3 P.2

: h*Trunk.cost_concrete

S.3
F :

Trunk.cost_steel

P1={bmin, hmin, 0.08=Asmin, Rmin}P1.3={bmax, hmin, 8=Asmax, Rmin}

Cost : low but Sigma : falseSigma : true but Cost : high

P1={bmin, hmin, 0.08=Asmin, Rmin}P1.3={bmax, hmin, 8=Asmax, Rmin}

Cost : low but Sigma : falseSigma : true but Cost : high

F

S.3
P.2

: (1/h^2) * Trunk.contrib
_sigma

F

S.3 P.2

: h*Trunk.cost_concrete

S.3

F:

Trunk.cost_steel

True False

P.5 = b

0.6 = concrete

0.7 = bar

Constraint on Asmin

1*Trunk.cost_concrete

+ Trunk.cost_steel +400

1 * Trunk.contrib _sigma

+ 0.010

max

P0={0.4, 1, 2.1, 25}

P0.3={bmin, 1, 0.4=Asmin, 25}

P0.5={bmin, 1, 2.1, 25}

{P}={b, h, As, R}

18 Céline Conrardy1, Roland de Guio2

object oriented decomposition (Fig.6). Fig.13 shows contradiction system CS[0;0.5]

obtained by using b as a varying component. CS[0.3.5;0.3] does not exist since there

is no b value that enables P0.3.5 to satisfy constraint requirement n°5 on Asmin.

Since EP[0;0.3] = b * Concrete.cost + Bar.cost + 400. we have  EP[0;0.3] =  b

* Concrete.cost and  EP[0;0.3] (P0->P0.5)* Concrete.cost(P0) <0. b has an harmful

impact on the concrete due to a geometrical effect that increases the volume of

concrete, hence the harmful impact on the concrete modeled in Fig.21. Since

CR[0;0.3] = Bar.contrib_sigma + Bar.contrib_sigma^2/ (b*Concrete.contrib_sigma) +

0.010, we have CR[0;0.3](P0.5->P0)* (-Bar.contrib_sigma^2/ (b^2*

Concrete.contrib_sigma)>0. b has an insufficient action on the relation between bar

and concrete. It is indeed not high enough for elevating the position of neutral axis

separating the part of the beam that endures a tensile stress (bottom) and the part that

endures a compressive stress (top of the beam), hence the Su-Field proposed in

Fig.21. A new contradiction node can be added in the contradiction genealogic tree

(Fig.22). Since CS[0;0.5] is a leave of the tree, the evaluation parameters and

constraint requirements functions at sub-level are not evaluated.

Fig. 14. CS[0;0.5] and associated Su-Field models.

Fig. 15. CS[0;0.5] is a child of CS[0;0.3] in contradiction genealogic tree.

Let us focus on CS[1.3;1] in order to identify next physical contradictions at level

n°2 of the tree. We may first vary the Bar, which is the component n°7 in the object

oriented decomposition (Fig.6). Fig.16 shows contradiction system CS[1.3;1.3.7]

obtained by using the bar as a varying component.

P0.5={bmin, 1, 2.1, 25} P0={0.4, 1, 2.1, 25}

EP[0;0.3](X0.5) : low but CR[0;0.3](X0.5) : falseCR[0;0.3](X0) : true but EP[0;0.3](X0) : high

P0.5={bmin, 1, 2.1, 25} P0={0.4, 1, 2.1, 25}

EP[0;0.3](X0.5) : low but CR[0;0.3](X0.5) : falseCR[0;0.3](X0) : true but EP[0;0.3](X0) : high

F

P.5
(S.6

F

P.5 S.6

: b*Concrete_cost

S.7)

: Bar.contrib_sigma^2/

(b* Concrete.contrib_sigma)

[…]

Level 0

Level 1

CS[0;1]

CS[0;0.2] CS[0;0.3] CS[1.3;1]

CS[0;0.5]
Level 2

Automatic extraction of a contradiction genealogic tree from optimization with an object-

oriented simulator 19

Fig. 16. Configurations P1.3 and P1.3.7 involved in CS[1.3;1.3.7]. Configuration P1.3.7 is

obtained by optimizing the bar in order to improve P1.3 on EP[1.3;1] while keeping other

components of P1.3 fixed.

Fig. 17. CS[1.3;1.3.7] and associated Su-Field models.

Fig. 18. CS[1.3;1.3.7] is a child of CS[1.3;1] in contradiction genealogic tree.

True False

P.5 = b

O.6 = concrete

O.7 = bar

1 * Trunk.contrib _sigma

+ 0.025

P1.3={bmax, hmin, 8=Asmax, Rmin}

P1={bmin, hmin, 0.08=Asmin, Rmin}

P1.3.7={bmax, hmin, 0.4=Asmin, Rmin}

{P}={b, h, As, R}

P1.3.7={bmax, hmin, 0.4=Asmin, Rmin} P1.3={bmax, hmin, 8=Asmax, Rmin}

EP[1.3;1](X1.3.7) : low

but CR[1.3;1](X1.3.7) : false

CR[1.3;1](X1.3) : true,

but EP[1.3;1](X1.3) : high

P1.3.7={bmax, hmin, 0.4=Asmin, Rmin} P1.3={bmax, hmin, 8=Asmax, Rmin}

EP[1.3;1](X1.3.7) : low

but CR[1.3;1](X1.3.7) : false

CR[1.3;1](X1.3) : true,

but EP[1.3;1](X1.3) : high

F : Bar.cost
: Bar.contrib_sigma

F

S.7

: Bar.contrib_sigma^2/

(b* Concrete.contrib_sigma)

(S.6 P.5)
S.7

F

S.7

[…]

Level 0

Level 1

CS[0;1]

CS[0;0.2] CS[0;0.3] CS[1.3;1]

CS[0;0.5]
Level 2

CS[1.3;1.3.7]

20 Céline Conrardy1, Roland de Guio2

Since EP[1.3;1] = b * Concrete.cost + Bar.cost + 160., we have  EP[1;1.3] =  b

Concrete.cost and  EP[0;0.3] (P1.3->P1.3.7) 1 < 0. The bar has a harmful impact

on itself, hence the Su-Field in Fig.17. The steel that constitutes the bar has indeed a

high cost. Since CR[1.3;1] = Bar.contrib_sigma + Bar.contrib_sigma^2 / (b*

Concrete.contrib_sigma) + 0.025., we have



 


)_.*/(_.*2

_cos.
]1;3.1[

sigmacontribConcretebsigmacontribBar

concretetTrunk
CR .

CR[1.3;1](P1.3.7->P1.3)*1 < 0 means that the bar has a harmful action on itself in

configuration P1.3.7 since it increases the contribution it has to provide to the beam in

order to help resist to the stress.  CR[1.3;1](P1.3.7->P1.3)* 2 Bar.contrib_sigma /

(b* Concrete.contrib_sigma)< 0. The bar has a harmful action on the relation between

concrete and b, hence the Su-Field proposed in Fig.17. It means the configuration of

the bar in P1.3.7 tends to oblige b and concrete to increase their contribution to

resistance. A new contradiction node can be added in the contradiction genealogic

tree (Fig.18).

The algorithm may be continued until all leaves are reached.

5 Discussion and conclusion

The approach of formalization proposed in this article provides insight about the

crucial role of components organization when indentifying contradictions consistent

with Su-Field modelling and reformulating them. A particular extraction algorithm of

those contradictions has been detailed. However, many other TRIZ elements still

require to be better formalized in order to obtain a complete framework to define and

study convergence of ARIZ and other IPSP.

5.1 What are the possible extensions of the genealogic contradiction tree

extraction algorithm presented here-above?

Table 3. Summary of limitations and opportunities of improvement of the algorithm

Limitations of current algorithm Work to be performed in the future

Contradiction systems

studied are only the ones that

involve an evaluation

parameter and a constraint

requirement of the simulator.

We plan to develop a similar algorithm that starts from

technical contradictions generated by decomposing the

starting evaluation parameter into two evaluation

parameters.

The proposed algorithm is

restricted to object-oriented

simulator in which the

program text of each

function of simulator can be

formally derived.

The formal derivation has been used for Su-Field

analysis. How to extract the Su-Field without formal

derivation? The nature of knowledge that is mandatory to

extract appropriate information requires to be further

studied and we plan to develop alternative solutions for

―black-box‖ simulators.

The contradiction systems

disclosed have all the same

This may be viewed as an additional contribution of the

article, since reformulating a contradiction system into

Automatic extraction of a contradiction genealogic tree from optimization with an object-

oriented simulator 21

structure which enable a

straightforward extraction of

Su-Field models.

Su-Field models has not been yet formalized in part 1 of

ARIZ. This lack of consistency in TRIZ models often

leads to difficulties of practice for TRIZ beginners.

However, it should be studied if the particular structure

we propose (in which action parameter concerns a

component of the system on which evaluation parameters

are defined), enables to disclose all the Su-Field models

that may have resulted from a less structured approach.

This topic is difficult because such model reformulation

may lead to add knowledge previously hidden in mind of

ARIZ user.

The algorithm deals and relaxes

constraints that were purposely

defined as such. It does not

enable to define new evaluation

parameters.

An extension of this algorithm may also consider the

fixed parameters p1…pj as constraints to be relaxed.

Other source of embedded information may be also

explored. Understanding why a source of information is

more relevant than another is also a potential issue?

The algorithm considers only

contradiction systems involving

two EP (indeed one EP and one

CR)

Another extension of the algorithm could consist in

relaxing combination of constraints. The management of

such ―poly-contradictions‖ cannot be handled with TRIZ-

classic tools and may eventually be studied with the

purpose of reformulating them into TRIZ-classic

contradictions.

In the Su-Field extraction

algorithm proposed, it is

assumed that, as soon as a

mathematical relation exists

between evaluation functions of

sub-systems, a direct interaction

involving a physical field also

exists.

The proposed algorithm is based on the paradigm that an

object-oriented simulator has been developed in a way

that fits to designer representation of a real object

(current paradigm in computer science). However, we

plan to examine more in detail the similarities and

differences in analysis when analyzing systems in TRIZ

way and when defining objects to compute quantitative

functions in computer science.

If the object-oriented

decomposition of the simulator

changes, the contradiction

systems and Su-Field change.

Are there better system decompositions than others? The

proposed algorithm may help us to understand what types

of decompositions are leading to the most interesting

contradiction systems. It should also be examined in

which manner the best decomposition found fits with the

4 elements decomposition model proposed in TRIZ to

analyze key elements of any system.

The object-oriented simulator

considered from up to now has a

simple structure: evaluation

parameters and constraint

requirements are computed

thanks to the same object

decomposition, functions

involve expression that can be

explicitly computed, etc…

NB: the problem generated by complexification of

simulators only concerns Su-Fields extraction.

Each complexification way could be studied step by step

in order to check weather they can be transformed into a

canonical way.

This problem may also disappear if a Su-Field extraction

algorithm is provided, which does not require access to

the program text.

If several components are

involved in the Su-Field

description, it has been

considered that O[m] has an

action on the relationship

between these objects.

There is no rationale so far for such an interpretation.

This point should be examined more in particular in order

to understand why this situation occurs (since, based on

our knowledge, it seems not to occur when humans

perform ARIZ).

22 Céline Conrardy1, Roland de Guio2

The algorithm does not solve the

Su-Field model problem!

Merge this contradiction extraction selection approach

with an algorithm that automatically provides model

change proposals as proposed in [21] may enable to build

an algorithm that invents

A new evolutionary computation paradigm could then

consist in starting the design process with very simplistic

models and then enhance the modeling approach step by

step in a controlled and efficient way. When optimization

reaches its limit (either because of the computational

complexity of reaching global optimum or because of the

unsatisfying value of global optimum), model changes

suggested by Inventive Standards may enable to bypass

the limits. However, the entire automation of model

changes proposed in [21] to support quantitative

computation remains an open issue.

5.2 What does the proposed model contribute to? What does it fail to

provide?

Table 4. Summary of contributions and partial results brought in the article

Targets of the research work Partial answer proposed in the article

Provide means of complex

systems analysis, in order to

study interaction between

elements when expert’s

knowledge is lacking.

By use of an object oriented simulator, a vast range of

contradictions can be stated and organized. Such a

systematic extraction may lead to consider configurations

not taken into account by experts.

Disclose rapidly multi-system

level problem statement

The step by step formalization of contradiction statement

process and reformulation at sub-system levels proposed

herein may enable a straightforward implementation of

the algorithm in computer and so increase the rapidity of

problem formulation, providing a simulation program is

available. Computer validation will be proposed in a

further paper. This result may be improved by developing

an algorithm that deals with more complex simulators.

Provide quantitative means of

contradiction choice.

Thanks to automation and the capacity to evaluate

performances of the sequence of configurations obtained,

we expect to build quantitative indicators in order to ease

the selection of contradiction. Other criteria of

contradiction choice may also be implemented in the

algorithm.

However, we also expect various aspects linked with the

reformulation process in ARIZ to be responsible of

difficulty in defining such an impact measure a priori.

Help formulating Substance-

Field models at the basis of

TRIZ Inventive Standard

application

Su-Field modeling is a direct consequence of

mathematical relations at each decomposition level, given

an object oriented simulator. Hence Su-Field models of

problem are fully determined by the process presented

above.

Reduce modelling complexity Automation enables to obtain problem models in a

Automatic extraction of a contradiction genealogic tree from optimization with an object-

oriented simulator 23

and modelling work leading to

low marginal payoff during

inventive problem solving.

straightforward manner. However, this relative rapidity

has to be put in balance with the invisible work of

developing mathematical models and programming the

simulator used for extraction.

Control of knowledge handled

during IPSP and its source.

Since knowledge is embeded since the beginning in the

object oriented code or consists of some elementary

mathematical transformations (derivation), no additional

knowledge is required for the restricted part or IPSP

depicted in this article. This point may be useful for

research purpose in inventive problem solving, because it

enables to study separately phenomena that are currently

always linked (analysis and reformulation process for

instance).

Moreover, the algorithm may provide unexpected result

that will raise questions about ―human implicit control‖

while performing ARIZ. Those control functions may

then be eventually implemented in the algorithm,

depending on knowledge they are based on.

Acknowledgments

To Lafarge Research Center for supporting this research, to Philippe Lussou for

developing the structural part of the simulator used as example and to Pierre Collet

for introducing us to EASEA platform.

References

1. Dubois S., Rasovska I. and De Guio R.: Comparison of non solvable problem solving

principles issued from CSP and TRIZ, pp: 83--94, IFIP International Federation for

Information Processing, Ed., Computer-Aided Innovation: Springer Boston (2008)

2. Dubois S., Eltzer T., De Guio R.: A dialectical based model coherent with inventive and

optimization problems, vol. 60, issue 8, pp: 575--583, Computers in Industry, ISSN: 0166-

3615 (October 2009)

3. Cavallucci D., Eltzer T.: Parameter network as a means for driving problem solving process,

vol. 30, issue1-2, pp: 125--136, International Journal of Computer Applications in

Technology, ISSN: 0952-8091 (November 2007)

4. Cavallucci D., Khomenko N.: From TRIZ to OTSM-TRIZ: addressing complexity

challenges in inventive design, vol 4, issue 1-2, pp: 4--21, International Journal of Product

Development (2007)

5. Cavallucci D., Rousselot F., Zanni C.: Initial situation analysis through problem graph, vol

2, issue 4 pp: 310--317, CIRP Journal of Manufacturing Science and Technology (2010)

6. Eltzer T., Lutz P., Khomenkho N., Cavallucci D. Contribution to to early stages of analysis :

a framework for contradiction’s complexity representation. In: TRIZ Future, Firenze, Italy

(2004)

24 Céline Conrardy1, Roland de Guio2

7. Kucharavy D., De Guio R., Gautier L., Marrony M.: Problem Mapping for the Assessment

of Technological Barriers in the Framework of Innovative Design. In: 16th International

Conference on Engineering Design, ICED’07, Ecole Centrale Paris, Paris, France, 2007.

8. Khomenko N., De Guio R., Lelait L. & Kaikov I.: A framework for OTSM-TRIZ based

computer support to be used in complex problem management, Vol. 30, No. 1/2, pp 88--104,

International Journal of Computer Applications in Technology (2007)

9. Khomenko N., De Guio R. & Cavallucci D. Enhancing ECN’s abilities to address inventive

strategies using OTSM-TRIZ, vol. 1 pp: 98-113, International Journal of Collaborative

Engineering (2009)

10.Khomenko N., De Guio R.: OTSM Network of Problems for representing and analysing

problem situations with computer support, 2nd IFIP Working Conference on Computer

Aided Innovation, October 8th and 9th, 2007, Delphi Corporation, Technical Center

Brighton, 12501 E. Grand River, Brighton, MI 48114, USA., Springer Publishers (2007)

11.Cugini U, Cascini G, Ugolotti M.: Enhancing interoperability in the design process – The

PROSIT approach. Proceedings of the 2nd IFIP Working Conference on Computer Aided

Innovation, Brighton (MI), USA, 8-9 October, 2007; pp. 189—200, Trends in Computer-

Aided Innovation, Springer, ISBN 9780387754550 (2007)

12.Dubois S., Rasovska I. and De Guio R. (2009) , Towards an automatic extraction of

Generalized System of Contradictions out of solutionless Design of Experiments, pp 70-79.

In, Growth and Development of Computer -Aided Innovation: Springer Boston, 2009

13.Rasovska I., Dubois S. and De Guio R. (2010), Study of different principles for automatic

identification of generalized system of contradictions out of design of experiments, 8th

International Conference of Modeling and Simulation - MOSIM’10 - ―Evaluation and

optimization of innovative production systems of goods and services‖, May 10-12, 2010,

Hammamet – Tunisia

14.Altshuller G.: Inventive Problem Solving Algorithm: ARIZ-85C© G.S., 1956-1985. English

version to be found at http://www.seecore.org/d/ariz85c_en.pdf

15.Conrardy C., De Guio R., Zuber B.: Facetwise study of modelling activities in the algorithm

for inventive problem solving ARIZ and evolutionary algorithms, Proceedings of the Fourth

International Conference on Design Computing and Cognition, University of Stuttgart,

Stuttgart, Germany (July 2010)

16.Koza J-R.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection. The MIT Press ed. ISBN 0262111705 (1992)

17. Koza, J. R.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence.

New York, NY: Springer, ISBN: 1402074468 (2003)

18. Goldberg D.E.: The Design of Innovation: Lessons from and for Competent Genetic

Algorithms. Kluwer, Dordrecht ISBN 1402070985 (2002)

19.Cascini, G., et al.: TETRIS, TEaching TRIz at School, available from: http://www.tetris-

project.org/ (2009)

20.Collet P. et al.: EASEA platform, SONIC (Stochastic Optimisation and Nature Inspired

Computing) theme of the FDBT team at Université de Strasbourg, available from

https://lsiit.u-strasbg.fr/easea/index.php/EASEA_platform

21.Bultey A., De Bertrant De Beuvron F. Rousselot F.: A substance-field ontology to support

the TRIZ thinking approach, vol. 30, issue 1/2, pp: 113—124, International Journal of

Computer Applications in Technology, ISSN: 0952-8091 (November 2007)

