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Abstract. In order to go beyond optimization strategies in Computer Aided 

Innovation, it has been demonstrated that model changes are required [1,2] 

during Inventive Problem Solving Process (IPSP). TRIZ proposes a universal 

way of generating model changes thanks to contradiction statement and 

contradiction solving but it does not provide methods or tools for obtainting 

them from typical CAD or other kind of standard data. The aim of the following 

paper is to propose an algorithm which extracts from an object-oriented 

simulator a ―genealogy‖ of contradictions systems (both physical and technical 

contradictions) and formulates corresponding Substance-Field models at the 

basis of TRIZ Inventive Standard application. This algorithm is fed by 

optimizations performed on various assemblages of objects constituting the 

simulator program. It helps disclosing contradictions that cannot be seen by 

domain experts due to high complexity of problem and is an additional step 

towards formalization and integration of TRIZ models. 

Keywords: Optimization, Inventive design, Hilbert space, TRIZ, ARIZ, 

Contradiction system, Problem formulation 

1 Introduction 

Various authors have proposed enhancements of problem formulation in border of 

TRIZ. These methods are dedicated to improve effectiveness and efficiency of 

Inventive Problem Solving Process (IPSP). For concision purpose, it is not discussed 

in detail how those approaches contribute to that goal and what elements of the puzzle 

are still missing. It is at least useful to mention that 

─ some authors explore problem formulation and contradiction statement based on 

networks of non formalized data [3,4,5,6,7,8,9 and 10], whereas others have 

proposed to use mathematically formalized knowledge in order to disclose 

geometrical contradictions (a specific kind of physical contradictions) by using 

topological optimization algorithm[11] or disclose generalized contradictions by 

using CSP or design of experiments [12,13]; 

─ a theoretical framework that enables comparison of such approaches still 

requires to be built (this article is a step towards building this framework). 
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1.1 Optimization in an infinite dimensional design space 

Several facets of modeling activities and search strategies when using ARIZ 85-C 

[14] (hereafter named ARIZ), a supposed convergent IPSP developed in border of 

TRIZ have been studied in [15]. ―Convergent‖ should be understood as the property 

of the algorithm to provide a set of successive partial solutions that satisfy step by 

step more and more requirements of the design problem, until all requirements are 

satisfied. Since the objects (i.e elements, properties, physical relations) that constitute 

the various partial solutions and the requirements are not entirely known at the 

beginning and are disclosed on the way, this study has been performed in an infinite 

dimensional space. It has been proposed that parameters disclosed to describe objects 

handled during ARIZ are preexisting dimensions of the infinite dimension space. 

Define and reformulate contradictions at several system levels is a cognitive pattern in 

that space. This article goes a step further in direction of a mathematical formalization 

of search strategies in such a space. 

1.2 Motivations 

The algorithm of contradiction genealogic tree extraction is proposed hereafter in 

order to: 

─ Provide means of complex problems analysis by studying interaction between 

unusual elements, when expert’s knowledge is lacking; 

─ Disclose rapidly multi system-level problem statement; 

─ Provide quantitative means of choosing which contradiction of a contradiction 

system has to be solved in first part of ARIZ. 

The following article is more particularly focussed on formalizing the interaction 

of three elements of TRIZ (system view, contradiction systems, Su-Field models). 

The contribution proposed may also help to understand in the future how other 

elements of TRIZ (not considered in this paper) interact with the three elements 

selected, when performing ARIZ. 

With a more general perspective, mathematical formalization of ARIZ search 

strategy in an infinite dimension space may enable a combination with evolutionary 

computation [16,17 and 18] strategies for improving IPSP efficiency and 

effectiveness. To the knowledge of authors, no model, enabling to understand the 

convergence of ARIZ, have been proposed, although empirical results have shown 

ARIZ is an algorithm that converges towards solutions for a vast range of complex 

design problems. It is expected that elements of models developed for ARIZ study 

may be easily extended in order to depict other IPSP. It will so contribute to form a 

relevant meta-model of all IPSP. 

1.3 Paper organization 

The paper begins with some reminders about invention and optimization problems.  

The second part of the paper describes the generic algorithm for extracting the 

contradiction genealogic tree with their associated Su-Field models. 



Automatic extraction of a contradiction genealogic tree from optimization with an object-

oriented simulator  3 

The third part is devoted to application of this algorithm on a T shaped concrete 

beam example. 

Last part is a discussion about the limitations of the approach, the contributions 

brought by the genealogic tree and the expected results that may be derived from it.  

2 Optimization and invention problem models 

2.1 From optimization problem… 

Let us consider a computer simulator X. {P}={P[1], P[2], P[3],…} are input 

parameters of the simulator X. The simulator may enable these parameters to vary in a 

predefined range. When a value is given to each input parameter, we name this set of 

values a configuration of X. The simulator is constituted of objective and constraint 

functions. We have named objective function Evaluation Parameter and noted {EP} = 

{EP[0]}. Constraint functions are named Constraint Requirements and noted 

{CR}={CR[1], CR[2], CR[3], …}. 

An optimization problem consists in finding the set of input parameter values that 

lead to the best value of objective functions while satisfying constraint functions. In 

the article, we restrain ourselves to mono-objective optimizations. During 

optimization, we are interested in the various quantitative values taken by evaluation 

parameter for different configurations in order to compare these configurations and in 

knowing about the satisfaction of constraint requirements. This is given hereafter by 

Boolean values, either satisfied (true) or not satisfied (false). However, for 

computation purpose hereafter, we may also refer to a numerical value to measure 

variations of the distance to the threshold delimiting satisfied or not satisfied 

constraints. 

An optimization result will be described with the following notations:  

─ 
0P are the values of {P} that optimize EP[1] while keeping all constraints  {CR} 

satisfied. 
0P  is the result of this optimization problem and is a particular 

configuration of X; 

─ ,...,...,, 21 iPPP  are configurations obtained by optimizing parameters {P} to 

improve EP[1] when the i
th

 constraint CR[i] is relaxed. The result of such an 

optimization problem will either lead to break the constraint, i.e. 

falsePiCR i )]([  or to satisfy the constraint, i.e. truePiCR i )]([ if the 

constraint had no influence on 
0P . In the article, we restrain ourselves to mono-

constraint relaxation. 

2.2 …To invention problem 

We may then consider: 

─ ),( 0 iPP  is the couple formed by the two configurations
0P  and 

iP ; 
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─ if
iPP 0
, {P} is known as the action parameter, 

0P  and 
iP  as the couple of 

opposite values of this action parameter, EP[0] and CR[i] as respectively the 

evaluation parameters and constraint requirement of a contradiction system 

noted ];0[ iCS . Those elements are depicted on Fig.1. NB: In the article, we 

distinguish between evaluation parameters and constraint requirements. The two 

of them may be known indifferently as evaluation parameters in TRIZ literature 

[2] and this distinction is introduced here for convenience purpose. The 

contradictions systems considered hereafter will always involve an evaluation 

parameter and a constraint requirement. The restriction to this particular type of 

contradiction systems will be discussed in section 4. 

 

 

Fig. 1. Contradiction System CS[0;i] 

In border of TRIZ, inventive problem solving consists in finding means of 

obtaining satisfaction of constraint and improved value of EP[0], without generating 

new problems in the system. ARIZ, for instance, is a cognitive algorithm to perform 

such a task in a more or less controlled manner. For our concern, the important thing 

is that this algorithm uses three TRIZ models in particular: 

─ contradiction system, which link technical to physical contradiction 

─ system view 

─ Su-Field models which depict the nature of interaction between elements 

involved in a contradiction system.  

For details about these models, insight about convergence control during ARIZ IPSP, 

please refer to [19].  

2.3 Reformulate various invention problems linked with the former one 

We may view any configuration P as an assemblage of components (known as sub-

systems in border of TRIZ). For the simulator X, which computes the behaviour of 

any configuration, this decomposition of each configuration may be linked to an 
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object-oriented way of programming the functions of X. Details concerning common 

points and differences between those concepts coming from optimization, software 

science and TRIZ background are not discussed in this article but are to be found in 

an upcoming paper. For clarity purpose, we remind hereafter few basic and simplified 

elements concerning the structure of an object oriented program that will be a key 

resource in the proposed contradiction tree extraction algorithm.  

In such software architecture, the simulator is decomposed into various 

components known as class of objects. An object is built by providing particular 

values to the arguments of a class. On Fig.2, the simulator X is depicted as a graph of 

classes O[m] (with boxes around). Each class defines the characteristics of all the 

objects (noted hereafter
mO ) it enables to build. Construction of objects of each class 

requires providing as argument: 

─ Objects of the classes depicted at next level and connected with arrow (in boxes)  

─ Input parameters depicted at next level and connected with a line (circled 

parameter). 

The class also provides to any of its object additional functions that depict things 

the object can do. These functions are noted O[m].F[k] and depicted on Fig.2 with a 

triangle around. They will be used hereafter as partial evaluation parameters and 

constraint requirements in the decomposition of invention problem. The function 

O[m].F[k] of the class O[m] takes as argument either input parameters of O[m] (like 

P[i] on Fig.2 for instance), or results returned by functions of objects passed as 

arguments of O[m] (result returned by O[f].F[l] on Fig.2 for instance). We will note 

km FO . the result returned by O[m].F[k].  

 

 

Fig. 2. Structure of an object-oriented simulation program. Boxes are class of objects; circles 

are parameters; triangles are functions linking parameters and functions of other classes of the 

considered level. 

The object-oriented program on Fig.2 will then take the following generic form: 

# Definition of classes and their instances  

[…] 

O[2]O[1]

X

P[5]

P[3]

O[6] […]

P[6]

O.F[1]
[…]

P[t]O[f]

O.F[2]

O[i].F[k]
[…]

O[m]

O[f].F[l]

Level 0

Level 1

Level 2

Level 3
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Class Object_i 

# constructor 

Def_init_(Of, … other objects,  Pt,… other parameters) 

[...]  # provide the values of the arguments to parameters of object 

# definition of the characteristics of the class (properties and methods) 

    Fk = a formula that may involve Of, Pt, etc… 

   […]   # define of other functions 

# Main part of the program 

Of = Object_f() 

Oi = Object_i(Of, value of Pt, …)  

O6 = Object_6(value of P7) 

O3 = Object_3() 

O2 = Object_2(value of P5, O6, …) 

O0 = Object_0(O2, O3, P4, …, Oi) 

This decomposition of a system into components is useful to reformulate the 

invention problem at those levels. At each level of the decomposition, there may be 

(or not) inventive problems that have impact on the inventive problem at previous 

level of decomposition. A way to reformulate contradictions at next or previous level 

has been proposed in [15]. Such a reformulation is useful when one tries to control 

which part of the system will change and which part will remain as it is during ARIZ 

IPSP. This mini-algorithm of contradiction statement formulation and reformulation 

will be described in a more formalized manner in the next section. The algorithm 

proposed also goes a step further since it enables the automation of Su-Field models 

construction for each contradiction system disclosed. 

3 The contradiction genealogic tree extraction algorithm 

3.1 Definitions and notations 

The contradiction genealogic tree is obtained thanks to a sequence of objects 

generated by solving various optimization problems.  

mP .0 is the configuration obtained by solving the following optimization problem: 

─ try to improve input parameters leading to O[m] variation (i.e arguments of 

O[m], for instance P[t] or parameters of objects built by classes at higher level 

of decomposition, arguments of O[f] for instance) to improve EP[0]. We will 

shortly say that component
mO  of mP .0  was mobile during optimization; 

─ while keeping values of other input parameters of X constant during the 

computation, we will then say that other components of mP .0  were fixed during 

optimization; 

─ relax CR[i].  
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By symmetry, 
miP .

is obtained by optimizing parameters of O[m] to improve EP[0], 

while satisfying CR[i] (and all other constraints) and keeping other components of 
iP  

constant. ),( .00 mPP and ),( . imi PP form then respectively the two contradiction 

systems CS[0;0.m] and CS[i.m;i];  

─ EP[0;i]=EP[0] and CR[0;i]=CR[i] are the evaluation parameter and the 

constraint requirement of CS[0;0.m] and CS[i.m;i] 

─ CS[0;i] is then the parent of CS[0;0.m], which is the child of CS[0;i] in the 

contradiction tree (Fig.4); 

─ Su-field models attached to the contradiction system CS[0;0.m] form a list noted 

SF[0;0.m] and depict the nature of unsatisfying relationships between mobile 

component
mO and other components of 0P remained fixed during optimization. 

How to built Su-Field models will be detailed in the next section. 

─ These other components of 0P are named adjacent components of 
mO . 

The notations above remain valid when the indexes ―0‖ and ―i‖ are replaced by 

combination of index obtained when following the algorithm like 0.[...].0 m or

ii .[...] . If CS[i;j] is the parent of CS[i;i.m], CS[i;i.m] takes the generic form 

depicted on Fig.3. By extension, we will also consider input parameters as 

components, following the same computation process described above, i.e. O[m] may 

be substituted by P[4] without any changes in the previously defined notations. 

The goal of the algorithm is to extract a contradiction genealogic tree as depicted 

on Fig.4. Each node of the genealogic tree is a contradiction system to which is bound 

Su-Field models. The algorithm acting upon the object-oriented simulator consists of 

a succession (with loops) of elementary steps detailed in Table 1. An example of 

application is proposed in part 4.  

 

 
Fig. 3. The two contradiction systems CS[i;j.m] and CS[i.m;j]] 
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Fig. 4. Partial contradiction genealogic tree related to decomposition depicted on Fig.2. The 

branch CS[0;1] is partially developed. Circled contradictions systems are leaves of the tree, 

which means that their physical contradiction involves a single input parameter. 

3.2 Elementary steps of the algorithm 

The algorithm proposed hereafter is a series of steps described in Table 1 and are 

repeated until reaching the last level of decomposition.  

Table 1. Elementary steps of the algorithm  

N° Function Details on how to perform the step 

1 Obtain a first set of 

technical 

contradictions  

Optimize {P} in order to improve EP[0] while relaxing the 

constraint CR[i]. Constraints are to be relaxed one by one. 

2 Identify 

contradiction system 

CS[i;j.m] that is a 

child of  CS[i;j], 

mO a component 

of Pi. 

Optimize parameters of O[m] to improve EP[i;j], while 

keeping adjacent components to the values they have in Pi and 

relaxing CR[i;j]. 
mO is the sole varying component of Pi 

during optimization.  

If a component is shared between varying and non varying 

components, it should not vary during the optimization. 

If
imi PP .
, there is no contradiction.  

3 Identify the 

contradiction system 

CS[i.m;j] that is a 

child of CS[i;j], 

mO a component 

of Pj. 

Optimize parameters of O[m] to satisfy CR[i;j], while keeping 

other component fixed and improving EP[i;j]. 

If a component is shared among varying and non varying 

components, it should not vary during the optimization. 

If
imi XX .

there is no contradiction.  

4 State Su-Field 

models of CS[i;j.m]. 
The nature of relationships between

mO and its various 

adjacent components 
uO in the configuration 

iP (resp.
mjP .

) 

is disclosed by examination of EP[i;j.m] (resp. CR[i;j.m]) 

variations. Variations in EP[i;j.m] (resp. CR[i;j.m]) = 

f(O[m].F[1],O[m].F[k],O[m].F[l], …) take the following 

generic form:   

[…]

[…] […][…]

[…]

CS[0;1]

CS[0;1.2] CS[0.2;1] CS[0;1.3] CS[0;1.i] CS[0.i;1]

CS[0;1.2.5]CS[0.5;1.2] CS[0;1.2.6]

Level 0

Level 1

Level 2

Level 3
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]1[].[
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]).;[.(

].;[

lFmO
lFmO

f

kFmO
kFmO

f

FmO
FmO

f

mjiCRresp

mjiEP



















  

For each variation function, the analysis proposed in table2 has 

to be performed. 

5 State Su-Field 

models of CS[i.m;j] 
The nature of relationships between 

mO and its various 

adjacent components 
uO  is disclosed by examination of 

EP[i.m;j]  (resp. CR[i.m;j]) variations, following the same 

method than step 4 above. 

6 Create new nodes in 

contradiction 

genealogic tree 

Insert CS[i.m;j], CS[i;j.m] and their associated Su-Field 

models as child of CS[i;j] in contradiction genealogic tree. 

7 Disclose EP[i.m;j] 

(resp. EP[i;j.m]) and 

CR[i.m;j] 

(resp.CR[i:j.m]) 

of CS[i.m;j] 

These functions are obtained by replacing parameters of iP

(resp. jP ) that remained constant during optimization (i.e. 

input parameters involving adjacent components of
mO ) by 

their numerical values in EP[i;j] and CR[i;j]. This operation 

provides new functions (EP[i.m;j] and CS[i;j.m])  that are 

themselves two functions of the functions O[m].F[k], )( k  

that belong to O[m].  

 

Table 2. Interpretation of mathematical relations leading to SF[i;j.m] 

Su-Field Model 

Variations to be examined in Evaluation Parameter and Constraint 

Requirement. EP and CR may be handled in the same way. For 

concision purpose, only EP analysis has been developed. 

 

If 0)(
][].[

].;[
.







 iPP
P

kFmO

f
mjiEP

mji

,  

then km FO .  and so mO  has an insufficient action on all the 

adjacent components 
uO  involved in the expression of

][].[ kFmO

f




. A Su-Field is drawn for each

uO . 

NB: if several components are involved, it may be considered in a 

first approach that mO  has an action on the relationship between 

these objects. This point still requires to be clarified. 
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If 0)(
][].[

].;[
.





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 iPP
P

kFmO

f
mjiEP

mji

 

and 
][].[ kFmO

f




is a constant function,  mO  has a negative 

effect on itself. 

 

If 0)(
][].[

].;[
.







 iPP
P

kFmO

f
mjiEP

mji

,  

and O[m].F[k] can be null in EP[i;j.m], then mO  has an harmful 

action on all the adjacent components involved in the expression of 

][].[ kFmO

f




. A Su-Field is drawn for each 

uO . 

NB: if several components are involved, it may be considered that 

mO  has an action on the relationship between these components. 

This point still requires to be clarified. 

 

If 0)(
][].[

].;[
.







 iPP
P

kFmO

f
mjiEP

mji

,  

and 
km FO . cannot be null in EP[i;j.m] (division for instance), then 

mO  has an excessive action on all the adjacent components involved 

in expression of 
][].[ kFmO

f




. A Su-Field is drawn for each

uO . 

 

If the analysis of  EP[i;j.m] (resp. CR[i;j.m]) leads to extraction of an 

harmful and an insufficient action between mO  and the same other 

components, it means there is both useful and harmful relationships 

between them and the standards are transformed into this last 

category of standard. 

 

3.3 The loops to be performed 

The steps of algorithm have to be performed in the following order: 
 

For each constraint requirements i 

  Perform step 1 

  Level = top-level  

  node=O0     

    For each level 

      For each node of the level 

        For each component of the node 

      Perform steps 2,3,4,5,6,7 

      node=next node at same level 
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  level=next level 

  node=first node of the level 

 

Last nodes of the genealogic tree are leaves, the physical contradictions of which 

involve a single input parameter. 

 

4 Application of the algorithm on an example 

4.1 Optimization problem on T shaped beam example 

The starting beam from which will be extracted the contradiction tree is the result of 

the following optimization problem (see Fig.5): 

─ {P}=(b,h,As,R) are the input parameters of the simulator; 

─  5 constraints on geometry of the beam and mechanical resistance should be 

satisfied in order to obtain feasible solutions. Those constraints are either 

satisfied (true) or not satisfied (false); 

─ the cost of the beam is the evaluation parameter to be optimized; 

─ due to constraints of the environment (insertion of the wings in adjacent 

concrete slabs for example), c, hw and bw are fixed properties and will not 

appear hereafter.  

The optimized beam is found for a particular set of b, h, As, R values, so that all 

constraints are satisfied while the cost is minimal. Decrease the cost even more 

constitutes the starting administrative contradiction of the problem. 

 

 

Fig. 5. Parametrization of T-shaped beam, Evaluation Parameters, Constraint Requirements and 

values of parameters that will remain fixed during the whole process. 

The various optimizations are performed thanks to a free library EASEA [20] and a 

proprietary interface library. This library has been developed for linking automatically 

any kind of simulators and building any kind of optimization problem on EASEA 
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standard interface, which enables to construct and solve automatically the various 

optimization problems handled through the presented generic algorithm. 

4.2 Description of the simulator of T shaped beams used as example 

Warning. Some details concerning the real mathematical equations and computation 

results are omitted or simplified for concision purpose. Rough numerical values are 

given in order to clarify examples. 

The simulator, provided by courtesy of Lafarge, computes the behaviour of the 

beam depicted on Fig.5.  

 

 

Fig. 6. Structure of the object oriented simulator of T-shaped beam, with functions (triangle), 

components (box) and input parameters (circle). Numbers provided below each object name are 

used for easy reference purpose. . Trunk and Wing share the same component Concrete. 

The structure of the simulator is an object oriented program (see Fig.6). The 

simplified code is reproduced below. 

 

# Definition of classes and their instances  

Class Concrete 

 Def_init_(R) 

cost = R*100. 

contrib_sigma = 1/R 

 Class Bar 

Def_init_(As) 

cost = As*900. 

contrib_sigma = 1/ (As * 600) 

 Class Trunk 

Def_init_(b, Concrete, Bar) 

cost_concrete = 20*b*Concrete.cost 

cost_steel = Bar.cost 

Level 0

Level 1

Level 2

Level 3

Wing

(4)
Trunk

(3)

Beam

(1)

B

(5)

h 

(2)

Concrete

(6)

Bar

(7)

Concrete

(6)

R

(8)

As

(9)

R

(8)
Concrete.

Cost

Concrete.

Contrib_sigma

Wing.

Cost

Wing.

Contrib_sigma

……

…

Beam.

Cost

Beam.

Cost
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contrib_sigma = Bar.contrib_sigma – Bar.contrib_sigma^2    

…/ (b*Concrete.contrib _sigma) 

 Class Wing 

Def_init_(Concrete) 

bw = 0.3 

hw = 0.2 

contrib _sigma = Concrete.contrib _sigma *… 

 hw * sqrt(bw) 

cost = bw*hw*Concrete.cost 

 Class Beam 

Def_init_(h, Trunk, Wing) 

 bt = 0.7 

 c = 0.9  

 l = 8.1 

cost = h*Trunk.cost_concrete + Trunk.cost_steel +… 

2*Wing.cost 

sigma = (1/h^2) * Trunk.contrib _sigma +… 

 2* Wing.contrib _sigma 

 

# Main part of the program 

R=10 

As=2.1 

b=1 

h=1 

Concrete = Concrete(R) 

Bar = Bar (As)  

Trunk = Trunk (b, Concrete, Bar) 

Wing = Wing (Concrete) 

Beam = (h, Trunk, Wing) 

4.3 The algorithm for contradiction genealogic tree extraction 

Warning.Drawings of optimization results are given with an explanatory purpose 

only and not as outcome of a real computation.  

Let us relax one by one each constraint. Single constraint relaxation may lead (or 

not) to technical contradiction. In the example, relaxing constraint on hmin for 

instance has no impact on optimization and so does not lead to a contradiction. 

However, Fig.7 shows some optimization results P1 and P2 when relaxing constraints 

max and maxh  respectively. (P0, P1) and (P0, P2) form respectively the 

contradiction systems CS[0;1] and CS[0;2] at the level 0 of the genealogic tree (see 

Fig.16). 

Let us focus on CS[0;1] in order to identify physical contradictions at level n°1 of 

the tree. We may first vary parameter h which is the component n°2 in the object-

oriented decomposition (Fig.6). Fig.8 shows contradiction system CS[0;0.2] obtained 

by using h as a varying component. CS[1.2;1] does not exist since the best value of h 

does not enable P1.2 to satisfy constraint requirement n°1 on max . 
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Fig. 7. Results of optimization obtained when relaxing constraints one constraint. P1 is 

obtained by relaxing max and P2 is obtained by maxh relaxation. 

 

 

Fig. 8. Configurations P0 and P0.2 involved in CS[0;0.2]. Configuration P0.2 is obtained by 

optimizing h in order to improve P0 on EP[0;1] while keeping other components of P0 fixed.  
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Since EP[0]=Beam.cost = h*Trunk.cost_concrete + Trunk.cost_steel + 

2*Wing.cost,  cost = Trunk.cost_concrete* h and  cost(P0->P0.2) * 

Trunk.cost_concrete(P0) <0, h has an harmful impact on the trunk. The height 

increases indeed the cost of concrete in trunk, hence the harmful impact on the trunk 

in Fig.15. Moreover, CR[1]=sigma = (1/h^2)* Trunk.contrib_sigma + 2 * 

Wing.contrib_sigma,  sigma = - (1/h^3) * Trunk.contrib_sigma * h and 
sigma(P0.2->P0) * (- 1/h^3) * Trunk.contrib_sigma >0. The lever length effect on the 

trunk has indeed a too weak effect on trunk to decrease , hence the Su-Field 

proposed in Fig.9. A new contradiction node can be added in the contradiction 

genealogic tree (Fig.10). Since CS[0;0.2] is a leave of the tree, the evaluation 

parameters and constraint requirements functions at sub-level are not evaluated.   

 

Fig. 9. CS[0;0.2] and associated Su-Field models. 

 

 

Fig. 10. CS[0;0.2] is a child of CS[0;1] in contradiction genealogic tree. 

Let us now vary the parameters of the trunk, the component n°3 in the object-

oriented decomposition (Fig.8). Fig.11 shows contradiction systems CS[0;0.3] and 

CS[1.3;1] obtained by using trunk as a varying component.  

Since EP[0] = h*Trunk.cost_concrete + Trunk.cost_steel + 2*Wing.cost, 


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 cost(P0->P0.3)*h(P0)<0, so the trunk has an harmful relationship with h which 

leads to increase the cost of the beam, hence the harmful impact on height in Fig.12. 

This relationship is in fact a geometrical relationship.  cost(P0->P0.3)*1<0, so the 

trunk has also an harmful impact on itself (Fig.12). It is due to its own cost (due to 

steel bar inside). Since CR[1]=sigma = (1/h^2) * Trunk.contrib_sigma + 2 * 

Wing.contrib_sigma,  sigma = (1/h^2) * Trunk.contrib_sigma and  sigma(P0.3-

>P0)* (1/h^2) <0. The trunk has a harmful relationship with the height, which leads to 
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increase the stress that the material constituting the beam has to endure, hence the Su-

Field proposed in Fig.12. The operations for CS[1.3;1] are the same, only the 

numerical values change. The two new contradiction nodes can be added in the 

contradiction genealogic tree. 

 

 

Fig. 11. Configurations P0 and P0.3 involved in CS[0;0.3] and configurations P1.3 and P1 

involved in CS[1;3;1]. Configuration P0.3 is obtained by optimizing the trunk while keeping 

other components of P0 fixed in order to improve P0 on EP[0]. Configuration P1.3 is obtained 

by optimizing the trunk while keeping other components of P1 fixed in order to satisfy CR[1].    

We may now evaluate the evaluation parameter and the constraints requirements of 

CS[0;0.3] and CS[1.3;1] children. Since EP[0] = Beam.cost= h*Trunk.cost_concrete 

+ Trunk.cost_steel + 2*Wing.cost = h* b * Concrete.cost + Bar.cost + 2* bw* hw* 

R* 100,  EP[0;0.3] = b * Concrete.cost + Bar.cost + 400. and EP[1.3;1] = b * 

Concrete.cost + Bar.cost + 160. 

Symmetrically, CR[1] = (1/h^2)* Trunk.contrib _sigma + 2* Wing.contrib _sigma 

= (1/h^2)* (Bar.contrib_sigma – Bar.contrib_sigma^2/(b*Concrete.contrib_sigma))+ 

2* 1/R * hw * sqrt(bw). So CR[0;0.3]= Bar.contrib_sigma + Bar.contrib_sigma^2/ 

(b* Concrete.contrib_sigma) + 0.010 and CR[1.3;1]= Bar.contrib_sigma + 

Bar.contrib_sigma^2/(b*Concrete.contrib_sigma) + 0.025. 
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Fig. 12. CS[0;0.3] and CS[1.3;1] and associated Su-Field models. The bold parameters are the 

parameters varying during optimization. R is assumed to vary but cannot because it is also a 

parameter of the wing which is fixed. 

 

Fig. 13. Configurations P0 and P0.5 involved in CS[0;0.5]. Configuration P0.5 is obtained by 

optimizing b in order to improve P0 on EP[0;0.3] while keeping other components components 

of P0 fixed. 
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object oriented decomposition (Fig.6). Fig.13 shows contradiction system CS[0;0.5] 

obtained by using b as a varying component. CS[0.3.5;0.3] does not exist since there 

is no b value that enables P0.3.5 to satisfy constraint requirement n°5 on Asmin.  

Since EP[0;0.3] = b * Concrete.cost + Bar.cost + 400. we have  EP[0;0.3] =  b 

* Concrete.cost  and  EP[0;0.3] (P0->P0.5)* Concrete.cost(P0) <0. b has an harmful 

impact on the concrete due to a geometrical effect that increases the volume of 

concrete, hence the harmful impact on the concrete modeled in Fig.21. Since 

CR[0;0.3] = Bar.contrib_sigma + Bar.contrib_sigma^2/ (b*Concrete.contrib_sigma) + 

0.010, we have CR[0;0.3](P0.5->P0)* (-Bar.contrib_sigma^2/ (b^2* 

Concrete.contrib_sigma)>0. b has an insufficient action on the relation between bar 

and concrete. It is indeed not high enough for elevating the position of neutral axis 

separating the part of the beam that endures a tensile stress (bottom) and the part that 

endures a compressive stress (top of the beam), hence the Su-Field proposed in 

Fig.21. A new contradiction node can be added in the contradiction genealogic tree 

(Fig.22). Since CS[0;0.5] is a leave of the tree, the evaluation parameters and 

constraint requirements functions at sub-level are not evaluated. 

 

 

Fig. 14. CS[0;0.5] and associated Su-Field models. 

 

 

Fig. 15. CS[0;0.5] is a child of CS[0;0.3] in contradiction genealogic tree. 
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Fig. 16. Configurations P1.3 and P1.3.7 involved in CS[1.3;1.3.7]. Configuration P1.3.7 is 

obtained by optimizing the bar in order to improve P1.3 on EP[1.3;1] while keeping other 

components of P1.3 fixed. 

 

Fig. 17. CS[1.3;1.3.7] and associated Su-Field models. 

 

Fig. 18. CS[1.3;1.3.7] is a child of CS[1.3;1] in contradiction genealogic tree. 
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Since EP[1.3;1] = b * Concrete.cost + Bar.cost + 160., we have  EP[1;1.3] =  b 

*Concrete.cost  and  EP[0;0.3] (P1.3->P1.3.7)* 1 < 0. The bar has a harmful impact 

on itself, hence the Su-Field in Fig.17. The steel that constitutes the bar has indeed a 

high cost. Since CR[1.3;1] = Bar.contrib_sigma + Bar.contrib_sigma^2 / (b* 

Concrete.contrib_sigma) + 0.025., we have  



 


)_.*/(_.*2

_cos.
]1;3.1[

sigmacontribConcretebsigmacontribBar

concretetTrunk
CR .  

CR[1.3;1](P1.3.7->P1.3)*1 < 0 means that the bar has a harmful action on itself in 

configuration P1.3.7 since it increases the contribution it has to provide to the beam in 

order to help resist to the stress.   CR[1.3;1](P1.3.7->P1.3)* 2 Bar.contrib_sigma / 

(b* Concrete.contrib_sigma)< 0. The bar has a harmful action on the relation between 

concrete and b, hence the Su-Field proposed in Fig.17. It means the configuration of 

the bar in P1.3.7 tends to oblige b and concrete to increase their contribution to 

resistance. A new contradiction node can be added in the contradiction genealogic 

tree (Fig.18).  

The algorithm may be continued until all leaves are reached. 

5 Discussion and conclusion 

The approach of formalization proposed in this article provides insight about the 

crucial role of components organization when indentifying contradictions consistent 

with Su-Field modelling and reformulating them. A particular extraction algorithm of 

those contradictions has been detailed. However, many other TRIZ elements still 

require to be better formalized in order to obtain a complete framework to define and 

study convergence of ARIZ and other IPSP. 

5.1 What are the possible extensions of the genealogic contradiction tree 

extraction algorithm presented here-above? 

Table 3. Summary of limitations and opportunities of improvement of the algorithm 

Limitations of current algorithm Work to be performed in the future 

Contradiction systems 

studied are only the ones that 

involve an evaluation 

parameter and a constraint 

requirement of the simulator. 

We plan to develop a similar algorithm that starts from 

technical contradictions generated by decomposing the 

starting evaluation parameter into two evaluation 

parameters. 

The proposed algorithm is 

restricted to object-oriented 

simulator in which the 

program text of each 

function of simulator can be 

formally derived. 

The formal derivation has been used for Su-Field 

analysis. How to extract the Su-Field without formal 

derivation? The nature of knowledge that is mandatory to 

extract appropriate information requires to be further 

studied and we plan to develop alternative solutions for 

―black-box‖ simulators. 

The contradiction systems 

disclosed have all the same 

This may be viewed as an additional contribution of the 

article, since reformulating a contradiction system into 
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structure which enable a 

straightforward extraction of 

Su-Field models. 

Su-Field models has not been yet formalized in part 1 of 

ARIZ. This lack of consistency in TRIZ models often 

leads to difficulties of practice for TRIZ beginners. 

However, it should be studied if the particular structure 

we propose (in which action parameter concerns a 

component of the system on which evaluation parameters 

are defined), enables to disclose all the Su-Field models 

that may have resulted from a less structured approach. 

This topic is difficult because such model reformulation 

may lead to add knowledge previously hidden in mind of 

ARIZ user. 

The algorithm deals and relaxes 

constraints that were purposely 

defined as such. It does not 

enable to define new evaluation 

parameters.  

An extension of this algorithm may also consider the 

fixed parameters p1…pj as constraints to be relaxed. 

Other source of embedded information may be also 

explored. Understanding why a source of information is 

more relevant than another is also a potential issue?  

The algorithm considers only 

contradiction systems involving 

two EP (indeed one EP and one 

CR) 

Another extension of the algorithm could consist in 

relaxing combination of constraints. The management of 

such ―poly-contradictions‖ cannot be handled with TRIZ-

classic tools and may eventually be studied with the 

purpose of reformulating them into TRIZ-classic 

contradictions.  

In the Su-Field extraction 

algorithm proposed, it is 

assumed that, as soon as a 

mathematical relation exists 

between evaluation functions of 

sub-systems, a direct interaction 

involving a physical field also 

exists. 

The proposed algorithm is based on the paradigm that an 

object-oriented simulator has been developed in a way 

that fits to designer representation of a real object 

(current paradigm in computer science). However, we 

plan to examine more in detail the similarities and 

differences in analysis when analyzing systems in TRIZ 

way and when defining objects to compute quantitative 

functions in computer science. 

If the object-oriented 

decomposition of the simulator 

changes, the contradiction 

systems and Su-Field change.  

Are there better system decompositions than others? The 

proposed algorithm may help us to understand what types 

of decompositions are leading to the most interesting 

contradiction systems. It should also be examined in 

which manner the best decomposition found fits with the 

4 elements decomposition model proposed in TRIZ to 

analyze key elements of any system.  

The object-oriented simulator 

considered from up to now has a 

simple structure: evaluation 

parameters and constraint 

requirements are computed 

thanks to the same object 

decomposition, functions 

involve expression that can be 

explicitly computed, etc… 

NB: the problem generated by complexification of 

simulators only concerns Su-Fields extraction.  

Each complexification way could be studied step by step 

in order to check weather they can be transformed into a 

canonical way.  

This problem may also disappear if a Su-Field extraction 

algorithm is provided, which does not require access to 

the program text. 

If several components are 

involved in the Su-Field 

description, it has been 

considered that O[m] has an 

action on the relationship 

between these objects.  

There is no rationale so far for such an interpretation. 

This point should be examined more in particular in order 

to understand why this situation occurs (since, based on 

our knowledge, it seems not to occur when humans 

perform ARIZ). 
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The algorithm does not solve the 

Su-Field model problem! 

Merge this contradiction extraction selection approach 

with an algorithm that automatically provides model 

change proposals as proposed in [21] may enable to build 

an algorithm that invents 

A new evolutionary computation paradigm could then 

consist in starting the design process with very simplistic 

models and then enhance the modeling approach step by 

step in a controlled and efficient way. When optimization 

reaches its limit (either because of the computational 

complexity of reaching global optimum or because of the 

unsatisfying value of global optimum), model changes 

suggested by Inventive Standards may enable to bypass 

the limits. However, the entire automation of model 

changes proposed in [21] to support quantitative 

computation remains an open issue. 

 

5.2 What does the proposed model contribute to? What does it fail to 

provide? 

Table 4.  Summary of contributions and partial results brought in the article 

Targets of the research work Partial answer proposed in the article 

Provide means of complex 

systems analysis, in order to 

study interaction between 

elements when expert’s 

knowledge is lacking. 

By use of an object oriented simulator, a vast range of 

contradictions can be stated and organized. Such a 

systematic extraction may lead to consider configurations 

not taken into account by experts.  

Disclose rapidly multi-system 

level problem statement 

The step by step formalization of contradiction statement 

process and reformulation at sub-system levels proposed 

herein may enable a straightforward implementation of 

the algorithm in computer and so increase the rapidity of 

problem formulation, providing a simulation program is 

available. Computer validation will be proposed in a 

further paper. This result may be improved by developing 

an algorithm that deals with more complex simulators. 

Provide quantitative means of 

contradiction choice. 

Thanks to automation and the capacity to evaluate 

performances of the sequence of configurations obtained, 

we expect to build quantitative indicators in order to ease 

the selection of contradiction. Other criteria of 

contradiction choice may also be implemented in the 

algorithm. 

However, we also expect various aspects linked with the 

reformulation process in ARIZ to be responsible of 

difficulty in defining such an impact measure a priori.   

Help formulating Substance-

Field models at the basis of 

TRIZ Inventive Standard 

application 

Su-Field modeling is a direct consequence of 

mathematical relations at each decomposition level, given 

an object oriented simulator. Hence Su-Field models of 

problem are fully determined by the process presented 

above. 

Reduce modelling complexity Automation enables to obtain problem models in a 
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and modelling work leading to 

low marginal payoff during 

inventive problem solving. 

straightforward manner. However, this relative rapidity 

has to be put in balance with the invisible work of 

developing mathematical models and programming the 

simulator used for extraction. 

Control of knowledge handled 

during IPSP and its source. 

Since knowledge is embeded since the beginning in the 

object oriented code or consists of some elementary 

mathematical transformations (derivation), no additional 

knowledge is required for the restricted part or IPSP 

depicted in this article. This point may be useful for 

research purpose in inventive problem solving, because it 

enables to study separately phenomena that are currently 

always linked (analysis and reformulation process for 

instance).  

Moreover, the algorithm may provide unexpected result 

that will raise questions about ―human implicit control‖ 

while performing ARIZ. Those control functions may 

then be eventually implemented in the algorithm, 

depending on knowledge they are based on. 
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