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Abstract. Malicious intermediaries are able to detect the availability
of VoIP conversation flows in a network and observe the IP addresses
used by the conversation partners. However, it is insufficient to infer the
calling records of a particular user in this way since the linkability be-
tween a user and a IP address is uncertain: users may regularly change
or share IP addresses. Unfortunately, VoIP flows may contain human-
specific features. For example, users sometimes are required to provide
Personal identification numbers (PINs) to a voice server for authentica-
tion and thus the key-click patterns of entering a PIN can be extracted
from VoIP flows for user recognition. We invited 31 subjects to enter
4-digital PINs on a virtual keypad of a popular VoIP user-agent with
mouse clicking. Employing machine learning algorithms, we achieved av-
erage equal error rates of 10-29% for user verification and a hitting rate
up to 65% with a false positive rate around 1% for user classification.

1 Introduction

Current Internet users heavily rely on distributed networking intermediaries to
transmit packets. These networking intermediaries might be compromised and
thus cannot be simply trusted by users. Malicious intermediaries can wiretap
their relayed packets for man-in-the-middle attacks. This threat is also an issue
for Voice over IP (VoIP) services. Previous research [28] shows that it is easy
for an intermediary to detect the availability of VoIP conversation flows between
two hosts without reading the flow details. This actually reveals the VoIP call-
ing records which include the IP addresses used by the conversation partners,
the starting and ending time of the conversations. Other work [27,26] proposed
more advanced method using watermark to increase the robustness and accu-
racy of the calling records detection. Calling records could reveal daily life of
a user. For instance, spammers may infer the requirements and preference of
a particular user from the calling records (e.g, a recent calling record showing
that a user calls a dentist reveal that the user might have dental problems) so
that they can send advertisements more effectively. Recently news report that
third parties offer traditional telephone calling records for profit [1]. With the
increasingly deployment and usage of VoIP services, it can be predicted that the
confidentiality of calling records will be an important issue on VoIP as well.



Nevertheless, previous VoIP tracking methods [27,26] at most enable interme-
diaries to find out the calling records between two hosts identified with their IP
addresses (IP-level calling records). The linkability between a VoIP user and a IP
addresses is usually unstable: VoIP users may move from one network to another
network with their laptops, or switch between devices (e.g., the user switches
from the home computer to an office workstation). Therefore, a user may use
different IP addresses at different times. In addition, even one IP address might
be shared by several users due to current limited IP address space [18]. Thus, the
IP-level calling records are not accurate enough to attack a particular user. In
this case, attackers require user-level calling records. To solve this, attackers need
to extract human-specific characteristics from flows for user recognition. Previ-
ous papers [20] [8] verified that speech features can be extracted to re-identify
a user if the user employs a specific codec. This paper investigate another al-
ternative by taking advantage of user key-click patterns: Some automated voice
services require users to provide their Personal identification numbers (PINs) for
authentication (e.g., access a voice mailbox or a configuration setup). In this sit-
uation, users enter their PINs on their VoIP user-agents so that the user-agents
generate specific packets to indicate which keys have been clicked. Thus, the
key-click pattern for PIN input is a potential characteristic for user recognition.
We addresses the following research questions in this paper: (1) How can a ma-
licious intermediary recover the key-click patterns from intercepted VoIP flows?
(2) How to minimize the impact from networking conditions (e.g., jitter, packet
loss)? (3) Is the recovered key-click patterns accurate enough for user recogni-
tion? To answer these questions, we invited 31 subjects to participate in the
experiments. Each of them entered 4-digital PIN codes on a popular VoIP user-
agent by mouse clicking. Employing machine learning algorithms, we achieved
average equal error rates of 10-29% for user verification and a hitting rates up
to 65% with a false positive rate around 1% for classification. Finally, we also
discuss corresponding countermeasures to prevent user recognition.

The rest of this paper is organized as follows. Section 2 introduces some
background information about VoIP. Section 3 introduces the general idea of
the attack method. Section 4 presents the preparation, procedure and results
of the experiments that we conducted. Section 5 lists related work. Finally, we
summarize this paper in Section 6.

2 Background in VoIP flows

The Realtime Transport Protocol (RTP) [24] standardizes the packet format
for VoIP conversations. RTP provides end-to-end delivery schemes for data with
real-time characteristics over IP networks. It supports a variety of payload types,
two of which are especially related to this paper.

– Voice payload: In a conversation, a user-agent constantly encodes acoustic
signal into digital data as voice payloads using a codec. The user-agent on
the other side recovers the acoustic signal by decoding the payloads from



the received RTP packets. We name this kind of RTP payloads as RTP
voice packets. In many cases, a user-agent continuously generates RTP voice
packets at a constant time interval (e.g., 20 ms) in a conversation unless
other types of RTP packets with higher priority are triggered.

– Event payload [25]: When a user clicks a phone key in a conversation, the
user-agent generates RTP packets with event payloads to indicate which key
has been clicked. The RTP packets with event payloads are called RTP event
packets. RTP event packets have higher priority than RTP voice packets.

The Secure Realtime Transport Protocol (SRTP) scheme [10] has been widely
applied to protect RTP packet payloads by encrypting. However, it does not
protect RTP headers1. This means that RTP header fields are available to in-
termediaries despite of the protection. Several RTP header types are introduced
as follows:

– Marker bit: It indicates the beginning of a new event. For instance, a user
presses a key “4” may span a series of RTP event packets, but only the
first packet has the marker bit set. We define that a RTP event packet with
marker bit set is a key-down packet and the others are key-holding packets.

– Payload type: It identifies the type of the RTP payload.

– Sequence number: The RTP sequence number is incremented by one in each
successive RTP packet sent. The sequence numbers are assigned to RTP
packets to allow the receiver to restore the original sequence in case of un-
reliable transmission.

 0  0.5  1  1.5  2
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RTP event packet: key-holding

RTP event packet: key-down

Fig. 1. The packet inter arrival time of an example RTP flow

Figure 1 plots a typical RTP flow with both event and voice packets. The
packet inter-arrival time is around 20 ms. It can be predicted that 4 events are
represented in this flow. Each event contains 1 key-down packet and a set of
key-holding packets.

1 RTP headers are sent in the clear to allow for billing purposes and header compres-
sion.



3 Attacking method

Image the following scenario illustrated in Figure 2(b): There are several users
whose user-agents share the same IP address. An attacker is a malicious interme-
diary which intercepted a number of RTP flows originated from this IP address.
The packets arrival time in the flows are recorded. Some flows have been already
correctly labeled with their originator users (we call these flows as testing flows).
The rest without being labeled are called testing flows. The attacker aims to fur-
ther profile user-level calling records using the testing flows. Thus, the attacker
may want to (1) label the flows for a particular user; or (2) label the flows for all
users. We assume that the users occasionally access their voice mail by providing
their PINs on a virtual keypad of a user-agent using a mouse2 (see Figure 2(a)).
In addition, all RTP flows in the environment are encrypted by using SRTP [10].

(a) The virtual
keypad (b) The network topology

Fig. 2. The environment of experiments

If the attacker detects a VoIP flow for PIN input and recognizes its originator
user, it is highly possible that the calls at the time around are done by the same
user. In this way, we consider to recognize a user by key-click patterns. The
challenge is how to recover the key-click patterns from RTP flows? Given an
encrypted RTP flow, the attacker firstly needs to distinguish the RTP event
packets and RTP voice packets. Actually it is rather simple: Despite of the
protection by SRTP, the RTP headers are still in plain text. Thus, the attacker
can distinguish them directly by reading the “Payload-Type” header fields. After
picking RTP event packets from a flow, the next step is to restore the key-click
behavior. To input 4-digital PIN code, 4 key-click events are generated. The
attack can observe 4 key-down packets with following key-holding packets from
the marker bits in headers. Moreover, we define the last key-holding packet for
each event as the key-up packet. The attacker can restore a key-click pattern
by guessing 4 key-holding periods (The period between a key-down packet and
its following key-up packet) and 3 key-switching periods (the period between a
key-up packet and the next key-down packet). Let us take the example flow in

2 Some user-agents may also support keyboard input, but in this paper we only con-
sider virtual keypad input.



Figure 1, the 4 key-holding periods are: 0.17-0.28s, 0.45-0.58s, 0.85-0.92s and
1.3-1.5s. The 3 key-switching periods are 0.28-0.45s, 0.58-0.85s and 0.92-1.3s.

The 4 key-holding periods and 3 key-switching periods are taken as variables
for training and testing. Then, the attacker can employ a learning algorithm to
construct a classifier, which builds key-click pattern using the training data and
classifies the testing flows into correct classes. We did several experiments and
the detailed work will be introduced in the next section.

Nevertheless, current Internet does not guarantee the quality of packet trans-
mitting. Since this attack needs exact inter-packet arrival time of RTP event
packets, the varying network quality (namely jitter and packet loss) could lead
to an inaccurate observation. (1) Jitter indicates latency variations for different
packets in a flow. For instance, a packet sent earlier may arrive the destination
later. A large jitter on RTP event packets could make the key-click pattern recov-
ering unreliable. Nevertheless, the sequence number on packet header field can
help attackers to restore the original packet sequence. Moreover, attackers know
what the fixed time interval between two successive packets should be (e.g., 20
ms). In this way, attackers can restore the packet inter-arrival time and sequence.
Thus, the impact of jitter is not vital. (2) Packet loss indicates the amount of
packets which are accidentally dropped in the transmission. Although attackers
can detect packet loss rate by reading sequence number, they do not know the
type of the lost packet for key-click pattern recovery. However, the attacker can
heuristically guess it by the types of its neighbor packets. For example, if the
lost packet is a key-holding packet in the middle, it is also easy for attackers to
guess since the packets before and after are the same type.

4 Experiments

4.1 Data Collecting

To test the performance of this kind of attack, we did a series of experiments.
We invited 31 students as test subjects who are denoted by S = {s1, s2, · · · , s31}.
All of them have experience with using a computer, a mouse and a VoIP client.
Each subject was asked to input two kinds of PIN codes. First, we randomly
generated 31 different 4-digital PIN codes and thus assigned these PIN codes to
the subjects one by one. Each subject was asked to input his/her unique PIN
code using the mouse on the virtual-keypad of the X-Lite [7], a popular user-
agent for 50 repetitions. We call these repetitions as unique input repetitions and
let du(si)j to denote repetition j done by subject si. Furthermore, some users
may have the same PIN code since there is only a 104 space for a 4-digital PIN
code. Taking this into account, we arbitrarily selected a particular PIN code
(“9913”) and again asked each subject to input it for 50 repetitions. Similarly,
we call the repetitions as a shared input repetitions and use ds(si)j to denote
these repetitions.

We employed two computers: one ran X-Lite (version 3.0) as the user-agent.
It is equipped with a DELL 19-inch flat panel LCD screen with 1024x768 pixel



resolution. The mouse is a HP USB optical wheel mouse with the default speed
setup onWindows XP platform. Another ran TCPDump [5] to simulate attackers
to intercept RTP flows.

4.2 Data Processing

Following the method introduced in Section 3, we first extract RTP event packets
from each flow. Figure 3(a) and Figure 3(b) illustrate the arrival time of RTP
event packets of the unique input repetitions done by s12 and s17. (du(s12)j and
du(s17)j , 1 ≤ j ≤ 50). At a glance, readers can find the general key-click pat-
terns are different for the two users. Then, we restore the 4 key-holding periods
and 3 key-switching periods for each repetition using the method introduced in
Section 3.
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(a) du(s12)j , 1 ≤ j ≤ 50
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(b) du(s17)j , 1 ≤ j ≤ 50

Fig. 3. Generated RTP event packets of the unique input repetitions done by
s12 and s17: one dot indicates one RTP event packet and the x-axis indicates
packets inter-arrival time.

4.3 Learning algorithms

We employ three popular learning algorithms in this paper since these algorithms
have been widely tested and performed well in previous work on keystroke bio-
metrics [23,22]:

– Supporting Vector Machine (SVM) [11]: SVM works by constructing an N-
dimensional hyperplane that groups the data into two spaces. In principle, it
only solves the two-class problems. For multi-class problems, the algorithm
can repeatedly perform the operations over all the possible two-class pairs
and then find the suspect class by a voting mechanism.



– Random Forest (RF) [12]: Random forest is an ensemble learning method by
generating a large number of bootstrapped classification trees and aggregat-
ing them during the training. Different to SVM, random forest can perform
variable selection by itself and thus it is robust against noise. In a previous
comparison, random forest provides a better predictive accuracy than other
learning algorithms [14].

– Recursive partitioning (RPart) [13]: Recursive partitioning is a tree-based
method for classifying data. It creates a classification tree and further splits
the tree based on the condition of variables. The split process will be repeated
for each leaf node until a certain stop splitting condition is met. Recursive
partitioning is a fast classification algorithm.

We implemented the classifiers in the R platform (version 2.12.0) [6], which
provides a wide variety of statistical functions including classification based on
the S language. In this paper, we implemented our classifiers using e1071 (SVM)
[2], random forest [3] and recursive partitioning [4] packages. By using these
packages, we can focus on our classification problems rather than the detail
implementation of the algorithms.

4.4 Analysis and results

We recovered the 7 variables (4 key-holding periods and 3 key-switching peri-
ods) from each repetition. For each subject, we selected the first 30 repetitions
(du(si)j and ds(si)j , 1 ≤ i ≤ 31 ∧ 1 ≤ j ≤ 30) for training and took the rest 20
repetitions (du(si)j and ds(si)j , 1 ≤ i ≤ 31 ∧ 31 ≤ j ≤ 50) for testing. In this
paper, we focus on two problems, namely user verification and user classification.

– User verification: Given a testing repetition and a specific user sx, the at-
tacker asks the classifier whether the testing repetition was done by sx.
Thus, it is a binary classification problem (the real user sx and imposters
si ̸=x). In this way, we split the training repetitions into 2 classes. One con-
tains the repetitions done by user sx (du(si)j or ds(si)j , i = x ∧ 31 ≤ j ≤
50) and another contains all the remaining repetitions (du(si)j or ds(si)j ,
i ̸= x ∧ 31 ≤ j ≤ 50). Given the testing repetitions (du(si)j or ds(si)j ,
1 ≤ i ≤ 31 ∧ 31 ≤ j ≤ 50), the classifiers calculate the scores showing how
likely these repetitions were done by the user sx. Finally, attackers can set
a decision threshold to distinguish the real user and the imposters.

– User classification: In this case, there are 31 classes, each of which represents
one subject. The attacker trains the classifiers with the training repetitions
which have been correctly labeled their classes. Given the testing repetitions
(du(si)j or ds(si)j , 1 ≤ i ≤ 31 ∧ 31 ≤ j ≤ 50), the classifiers distinguish
them into the 31 classes using the default decision threshold. Finally, we
create a 31 by 31 dimensional confusion matrix in which the element in row
si, column sj is a count of the number of times the subject with true ID si
was classified into ID sj .
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Fig. 4. Statistical results of our experiments on verification and classification
using the 3 algorithms



Like most previous work on classification problems, we evaluate the perfor-
mance of the implementation by the classification errors, in more detail, false
positive, which mistakenly takes the imposter’s data as the real user’s; and false
negative, which mistakenly classifies the real user’s data into the imposter’s
class. For evaluating the user verification problem, we also concern the Equal
Error Rate (EER). In a binary classification problem, false positive rate and
false negative rate usually varies depending on the decision threshold. EER, as
the crossover point at which the false positive rate equals the false negative rate,
is an important value to judge the classifier. The lower the EER, the better per-
formance for the classifier. We run the implementation of our classifiers several
times for the experiments. Figure 4 shows the result.

Figure 4(a) and 4(b) illustrate the Receiver Operating Characteristic (ROC)
curves with subject s10 as the genuine user when we did user verification. The
repetitions are du(s10)j and ds(s10)j respectively. The True Positive Rate (TPR)
is the frequency with the repetitions of subject s10 has been correctly detected.
The False Positive Rate (FPR) is the frequency with which the imposters are
mistakenly detected as the genuine users. Both of them varies depending on the
decision threshold. We observe that the RF gives the best result and the RPart
gives the worst result for both unique and shared input repetitions. The EER in
unique input repetitions is from 0.08 to 0.18 and that in shared input repetitions
is from 0.3 to 0.4. Figure 4(c) and 4(d) show that the average EER with standard
deviation for all the subjects. The RF gives the average EERs around 0.1 and
0.14 for unique and shared input repetitions. The EERs given by SVM are 0.12
and 1.5 respectively. RPart gives the highest EER, around 0.25 and 0.29. As
said, the lower the EER, the better performance for the classifier. Therefore, RF
gives the best result. Figure 4(e) and 4(f) show the result of the classification
problem. The best performance is still given by RF, with the lowest average
TPR around 0.65 and FPR around 0.01 for unique input repetitions. The TPR
for unique and shared input repetitions are 0.52 with 0.02 FPR. SVM has the
similar results to RF. The worst case is still given by the RPart: its average
TPR is around 0.52 for unique input repetitions and only 0.32 for shared input
repetitions. The results show that VoIP user recognition by key-click patterns is
possible. RF algorithm gives better performance than the other two. It is easier
to recognize users if they have different PIN codes to input.

4.5 Discussion on countermeasure

One countermeasure is to insert random delay between key-click events. When a
user-agent receives a key-click event, it does not immediately process the event.
Instead, it puts all information of the event (e.g., the holding time) in a First
In First Out (FIFO) queue. The user-agent constantly checks the queue and
fetches a event from it after a random time delay for processing. It obscures
real key-click patterns. Yet another defending method is to encrypt the whole
RTP packet using IPSec. We know that the attacks take advantage of the factor
that SRTP does not encrypt RTP headers, which enable attackers to restore
key-click patterns. The attacks do not work if the RTP headers are encrypted.



RFC 3711 [10] suggests IPSec (ESP method) [19] if users would like both the
RTP headers and contents to be protected. Nevertheless, users may particularly
worry about the performance overhead and configuration complexity by using
IPSec. Although it is possible to effectively reduce the performance overhead by
using packet header compression [9], configuration complexity might be a barrier
to widely deploy IPSec in VoIP.

5 Related work

keystroke dynamics is a method to recognize individual users by using their
typing characteristics, with the time stamps of key-down and key-up. Many
previous work has been done in this domain and a broad overview can be found
in [23]. This section only summarizes the work most relevant in the context of
ours. Maxion et al. [22] asked 28 volunteers to type 200 repetitions of the same
10-digital code using only the index finger on the number pad of a standard
keyboard. They intercepted the keystroke information on key-down and key-
up time locally and analyze them using random forest classifier. Half of the
data were selected for training and the rest were used for testing. The classifier
achieved a hitting rate of 99.54% and false alarm rate of 12.50%. Kotani, et
al., [21] performed experiments using a special pressure sensitive keypad with
9 subjects. Each subject typed 20 repetitions of the same 4-digital PIN code.
Besides key-down and key-up times, stroking force was chosen as a third element.
Their classifier gives a equal error rate at 2.4%. Clarke et al., [17,15,16] performed
several tests in which they asked different number of subjects (from 16 to 32) to
type the same 4-digital PIN code for 30 repetitions on the keypad of a mobile
phone. 20 repetitions are used for training and the rest is used for testing. Their
neural network classifier gives an equal error rate from 5.5% to 8.5%. Our work
is on a different scenario. We recover key-click pattern from VoIP flows and the
subjects use a mouse and virtual keypad for input. Moreover, our method needs
to take the networking condition impact into account.

On VoIP user recognition, Khan et al. [20] proposed a scheme exploiting
patterns on the sizes distribution of RTP voice packets. Their classifier achieved
a hitting rate of 75% for 10 speakers and 51% for 20 speakers. Similarly, Backes et
al. [8] proposed an approach using the periods of speech and silence of a speaker
in a conversation. This speaker specific pattern is modeled using the speaker’s
talking speed and frequency. The identification rates obtained were 65% for 13
speakers and 48% for 20 speakers. Nevertheless, their method requires specific
codec being applied. Our work achieves the same goal but in another way: We
exploit the side channels in RTP event flows rather than RTP voice flows.

6 Conclusion

This paper proposed an attacking method to recognize VoIP users for user-level
calling records profiling. It takes advantage of user-specific key-click patterns.
Even if a VoIP flow are protected by SRTP, attackers can still recover key-click



patterns from the flow by reading packet header fields. The impact introduced by
varying network conditions (jitter, packet loss) can be minimized. In an empirical
setup with 31 users our analysis is able to correctly classify unknown RTP flows
in about 65%. For user verification, the average equal error rate is from 10%
to 29%. The result raises serious concerns about anonymity for VoIP users. To
prevent this attack, users can consider to either randomize the time interval
between key-clicks or use another security scheme (e.g., IPSec) which not only
encrypts the whole part of a RTP packet, but also pads all RTP packets to an
equal size.

There are still some limitations on our currant experiments. First, we only
asked subjects to enter PINs using the virtual keypad by mouse clicking so far.
Nevertheless, some user-agents also support standard keyboard input. Second,
we let all subjects to enter the same PIN “9913” for collecting shared input rep-
etitions. The results with only one PIN instance may difficult to be generalized.
In future work, we will investigate this problem further not only using virtual
keypad, but also standard keyboard. In addition, we will try several shared PIN
candidates for collecting shared input repetitions.
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