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Abstract. The Situational Method Engineering (SME) discipline emerged two 
decades ago to face up to the challenge of the in-house definition of software 
production methods and the construction of the corresponding supporting tools. 
However, nowadays most of the existent proposals only focus on one of the 
phases of the SME lifecycle. In order to fill this gap, in this paper we present a 
methodological framework that equally encompasses two of these phases, 
which refer to the method design and implementation. In order to support them 
in an effective manner, we advocate for the use of the Model Driven 
Development (MDD) paradigm. Applying these ideas, the framework has been 
defined on top of a MDD infrastructure based on meta-modeling and model 
transformation techniques. In addition, we provide implementation details of 
the framework in an Eclipse-based modeling platform, namely MOSKitt. 

Keywords: Method Engineering, Model Driven Development, CAME 
Environment, Eclipse, MOSKitt 

1 Introduction 

Software Production Methods (hereafter simply methods) are organized and 
systematic approaches for software development, which can adequately govern the 
disciplined execution of real software development projects, and are composed, inter 
alia, of structured and integrated sets of activities, work products and roles. Since the 
definition of a universally applicable method has for long been considered 
unattainable, it is necessary to find solutions that enable the in-house specification of 
methods adapted to specific context needs and the construction of the corresponding 
supporting tools. Up to now, the SME discipline seems to be the most promising 
alternative to supply this need.  

The SME discipline constitutes a sub-area of a broader field called Method 
Engineering (ME). Specifically, within the ME (and SME) field, method and software 
engineers mainly deal with (1) the definition of methods (method design) and (2) the 
construction of the supporting software tools (method implementation)1. Therefore, 

                                                           
1 Other tasks such as the analysis of the method requirements and the validation of the method 

are also part of the Method Engineering discipline but are outside of the scope of this paper. 
These tasks will be considered in future work. 
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proposals aimed at supporting ME should cover these two phases of the ME process. 
However, most of the ME proposals existing in the literature (and their corresponding 
tools) only focus on one of them. As examples of this reality we find Computer Aided 
Method Engineering (CAME) and metaCASE environments. On the one hand, 
CAME environments generally focus on the method design phase, supporting the 
specification of project-specific methods for software development. In some cases, 
these specifications are used for building CASE tools, but with very limited 
capabilities. On the other hand, the so-called metaCASE environments generally 
focus on the method implementation, supporting the customization of CASE tools by 
means of high level specifications. These specifications normally define the modeling 
languages that are to be supported by the CASE tool and, sometimes, also the process 
that establishes the order in which these languages must be used. Thus, these 
specifications are oriented towards CASE tool definition and therefore they do not 
represent complete software production methods. 

In order to provide a more complete proposal, in this paper we propose a 
methodological framework that equally encompasses the method design and method 
implementation phases. Combining these two phases brings an important benefit. It 
increments the method specifications’ value in terms of how much functionality is 
derived from them. That is to say, these specifications are not only used for governing 
the execution of the software development projects, but also for the construction of 
CASE tools that support the methods and assist the software engineers in the 
development of the final systems. To achieve this goal in an effective manner, we find 
crucial to define an infrastructure that (1) allows the method engineer to define 
methods that can be applied in real software projects and also (2) (semi)automates the 
construction of tools that provide adequate support to the specified methods. To 
successfully face the definition of this infrastructure, we advocate for the use of the 
MDD paradigm. Thereby, we have defined a MDD infrastructure based on meta-
modeling and model transformation techniques that lays the foundations of the 
methodological framework. Specifically, the meta-modeling techniques are based on 
the Software & Systems Process Engineering Meta-model (SPEM) [30] and are the 
means that allow the method engineer to carry out the method design. On the other 
hand, model transformations (semi)automate the performance of the method 
implementation. By applying these ideas, we have defined a methodological approach 
that not only tackles the definition of methods following a widely accepted standard 
(SPEM), but also proposes to use these definitions for the (semi)automatic generation 
of tools that provide rich support to the methods (textual and graphical editors, code 
generators, model transformations, process enactment support, etc.). 

The work reported here is an extension of our previous works [7] and [8]. On the 
one hand, the theoretical part of the methodological framework is analyzed in depth, 
with a contextualization of the different parts of the framework. On the other hand, 
the software infrastructure of the framework has evolved by enhancing the way in 
which engineering tools assist method engineers during the method construction. 

Furthermore, as a proof of concept, we also provide details of the implemented 
framework, which has been developed on top of MOSKitt [21], an Eclipse-based 
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modeling platform whose plugin-based architecture and integrated modeling tools 
turn it into a suitable platform to support the proposal. 

The remainder of the paper is structured as follows. First, section 2 summarizes the 
state of the art. Then, section 3 provides an overview of the proposal. Section 4 and 5 
thoroughly detail the MDD infrastructure and the methodological framework 
respectively. Finally, section 6 draws some conclusions and outlines future work. 

2 State of the Art 

The term Method Engineering was first introduced in the mid-eighties by Bergstra et 
al in [4]. Since then, many works developed both at academia and industry have 
contributed to this field. In order to underpin its theory, a survey of the last strands in 
ME is gathered in [17]. In this work, the definition proposed by Brinkkemper et al. in 
[5] is used to define ME as the engineering discipline to design, construct and adapt 
methods, techniques and tools for the development of information systems (IS). 

Considering this definition, we have found that there are proposals in the ME 
literature that mainly focus on (1) the design, construction and adaptation of methods 
(i.e. the method design) while others concentrate on (2) the techniques and tools for 
supporting such methods (i.e. the method implementation). On the one hand, among 
the proposals mostly dedicated to method design, we find proposals such as 
Brinkkemper’s [5, 6], Ralyté’s [20, 24] or Henderson-Sellers’ [15], which tackle the 
method construction by means of the assembly of method fragments or chunks stored 
in a method base repository. Examples of tools that fall in this first category are 
MERET [18], Method Editor [29] and Decamerone [14]. Some of these proposals do 
support the generation of CASE environments but with limited capabilities. For 
instance, Method Editor enables the generation of tools that include a series of 
diagram editors that allow the software engineer to create/manipulate the products 
specified in the method. However, Method Editor does not support the specification 
of automated tasks that require the inclusion of a model transformation in the 
generated tool. Thus, these CASE tools lack code generation capabilities. 

On the other hand, there are proposals that mostly focus on the method 
implementation [10, 12, 28]. These are the so-called metaCASE environments that 
generally support the construction of CASE tools. Examples of tools that fall in this 
category are MetaMOOSE [10], KOGGE [28] and MetaEdit+ [19]. For instance, 
MetaEdit+ [19] provides a specification language (called GOPPRR) that is oriented 
towards the definition of the abstract syntax of the modeling languages (in [19] called 
“methods”) that need to be supported by the resulting CASE tool. In contrast, in our 
proposal we provide a full methodology that assist in the definition of complete 
software production methods by means of the SPEM standard, and also proposes the 
use of a meta-meta-model (such as GOPPRR) for the definition of the modeling 
languages that enable the creation of the method products (see sections 3 and 5). In 
particular, the meta-meta-model that is used in the CAME environment that supports 
our proposal is Ecore.  
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engineer is indicating that this editor must be included in the generated tool, so that 
it enables the manipulation of this particular product. The main benefit of 
separating method design and configuration is that we keep generic definitions of 
methods (which means that we can take this generic definition and perform 
different method configurations), stressing the importance of reusability. 

• Method implementation: in this phase, the method model is used as input of a 
model transformation that generates the tool support. This tool provides support to 
the product and process parts of the method2. The product support consists of the 
tools that enable the creation/manipulation of the method products (i.e. the 
resources associated to the method elements in the previous phase). The process 
support consists of a process engine that enables the method process execution. 

4 The MDD Infrastructure 

In this section we present the MDD infrastructure that lays the foundations of the 
methodological framework. As mentioned above, this infrastructure is based on meta-
modeling and model transformation techniques. 

4.1 Meta-modeling 

Meta-modeling has always played a key role in the ME field as it allows the definition 
at a high level of abstraction of the concepts, constraints and rules that are applicable 
in the construction of methods. In general, proposals focusing on the method design 
use meta-modeling as their underlying technique to define methods [6, 18, 20]. 
Moreover, proposals focusing on the method implementation use these techniques to 
specify the modeling languages supported by the generated tools [12, 19, 28]. 

In our proposal we use meta-modeling techniques for the creation of the method 
model, in particular following the SPEM standard. A study about the applicability of 
SPEM to ME is presented in [22]. In this work, the authors present some of the SPEM 
advantages and disadvantages for supporting the method design. Among the SPEM 
advantages we highlight: (1) wide acceptance in the field of process engineering, (2) 
good ME process coverage, (3) support to both product and process parts of methods 
and (4) good abstraction and modularization. Regarding its disadvantages, [22] points 
out the lack of executable semantics, but proposes to overcome this limitation by 
using a model transformation to transform the process models into executable 
representations that can be executed by workflow engines. 

In order to provide a more in-depth view on how the SPEM meta-model is used in 
our proposal, below the structure of the method fragments from which SPEM models 
can be assembled is presented in detail. In general, in the ME proposals that suggest 
the use of method fragments, these are obtained by instantiating some class of a meta-
model. For instance, in the OPEN Process Framework [11] method fragments are 

                                                           
2 The product part represents the artifacts that must be built during the method execution and 

the process part consists of the procedures that must be followed to build such products. 
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generated by instantiation from one of the top levels classes: Producer, Work Product 
and Work Unit [17]. Specifically, next subsection details the SPEM classes from 
which method fragments can be created and, furthermore, it presents a taxonomy that 
classifies the different types of fragments that are used in the proposal. 

We use the term method fragment to denote the atomic element from which 
methods can be assembled. Other terms to name these atomic elements, such as 
method chunk, have been proposed in the ME literature [16]. A method fragment can 
be either a product fragment (instances of meta-classes that represent products) or a 
process fragment (instances of meta-classes that represent processes). This 
differentiation allows us (1) to leverage the separation between product and process 
specification provided by SPEM3, (2) to relate one process fragment with many 
product fragments, and (3) to reuse one product fragment in the definition of many 
process fragments. 

Attending to the different phases identified in our framework (see section 3), we 
use a third type of fragment, namely technical fragment, term that was first proposed 
in [13]. In our proposal, these fragments contain the tools that are associated to the 
products and tasks of the method during the method configuration and that make up 
the infrastructure of the generated CASE tools. 

 
Fig. 2. Relationship between method fragments and SPEM classes 

In order to illustrate the hierarchical organization of the various types of fragments, 
the left side of Fig. 2 graphically presents our fragment taxonomy. In this taxonomy, 
the new abstract category conceptual fragment (also proposed in [13]) is introduced 
for grouping product and process fragments. Moreover, additional information has 
been included, e.g. the relationship Contains which represents that SPEM processes 

                                                           
3 In order to use the same terminology as the used in the ME field, in our proposal we consider 

analogous the product-process separation of methods and the SPEM separation between 
method content and method process. 
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can contain nested subprocesses, or the relationship labeled as Uses which represents 
that one process fragment can reference from one to many product fragments. 

On the other hand, the right side of Fig. 2 shows a simplified view of the SPEM 
meta-model. In SPEM, a method is represented by a MethodPlugin. Each 
MethodPlugin contains both ContentPackages and ProcessPackages. Tasks, Roles 
and WorkProducts are stored in ContentPackages. Similarly, within 
ProcessPackages, processes are stored as instances of the class ProcessComponent. 

Note that some of these SPEM concepts have been associated with fragments of 
our taxonomy. These associations illustrate a containment relationship. For instance, 
process fragments are associated with one ProcessComponent. Thus we are 
representing that, when process fragments are stored in the repository, they contain a 
SPEM model that includes one instance of the class ProcessComponent. Furthermore, 
product fragments are associated with ContentElements, which represents that these 
fragments can contain any instances of Task, Role, and WorkProduct. 

Finally, even though it has been omitted in Fig. 2, method fragments are defined by 
a series of properties that enable their later retrieval from the repository. The fragment 
properties are stored in the manifest file of the RAS asset that embodies the fragment. 
Specifically, we make use of some of the properties defined in [23]. According to 
these properties, our method fragments are characterized by: 

• Descriptor: it contains general knowledge about the fragment. For now, we 
consider the attributes origin, objective and type. Some examples of valid types in 
our proposal are task, role and work product for product fragments that contain 
atomic elements, or meta-model, editor, model transformation and guide for 
technical fragments (see section 5.2). 

• Interface: it describes the context in which the fragment can be reused. For now, 
we only consider the attribute situation. 

4.2 Model Transformations 

In the previous subsection we showed that the application of meta-modeling in the 
ME field is not new. However, we find that the ME approaches that make use of these 
techniques do not really take full advantage of the possibilities that MDD offers. As 
stated in [3], “MDD improves developers’ short-term productivity by increasing the 
value of primary software artifacts (i.e. the models) in terms of how much 
functionality they deliver”. Following this statement and contrary to what current ME 
approaches do, we want to leverage models going one step further. Defining the 
method as a model and considering this model as a software artifact allows us to face 
the implementation of the CASE tool generation process by means of model 
transformations. 

In particular, these transformations have been implemented in the CAME 
environment that supports our proposal as a single model-to-text (M2T) 
transformation using the XPand language [31], which is the language used within the 
context of the MOSKitt project [21] for that purpose. Further details about this M2T 
transformation are provided in section 5.3 and in [8]. 
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Fig. 6. EPF Composer editor in MOSKitt 

 

Fig. 7. Repository client connected to the Method Base 

Method Design Software Infrastructure. In order to provide software support 
within MOSKitt to the method design phase, the following tools have been integrated 
as Eclipse plugins: 

• A method editor: in order to enhance MOSKitt with the capability of building 
method models, the EPF Composer (a SPEM 2.0 editor provided in the EPF 
Project [9]) has been integrated. This editor enables the enactment of the process 
described in Fig. 3, i.e. it allows method engineers to build SPEM models. In 
addition, it has been extended so it enables the enactment of the process shown in 
Fig. 5, i.e. it supports the creation of fragments. In Fig. 65, a screenshot of the EPF 
Composer integrated in MOSKitt is shown. 

                                                           
5 Also available at http://users.dsic.upv.es/~vtorres/moskitt4me/ 
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model transformations (e.g. a M2T transformation can be linked to the task 
“Generate report”). 

• Guide: guides (i.e. text files, process models, etc.) can be optionally associated to 
manual tasks of the method. These files will be included in the final tool and will 
assist software engineers in the performance of the tasks. For instance, a map can 
be associated to the task “Build Business Process Model” to define as a process 
model the steps that must be followed to perform the task. 

Method Configuration Software Infrastructure. In order to provide software 
support within MOSKitt to the method configuration phase, the following tools have 
been integrated as Eclipse plugins: 

• A repository client: In order to associate technical fragments with elements of the 
method model, it is necessary to implement a repository client that enables the 
enactment of the process described in Fig. 8. To do so, the repository client must 
allow the method engineer to (1) connect to the repository, (2) search and select 
technical fragments and (3) associate them with the elements of the method. The 
repository client of Fig. 7 can be reused for this purpose. Fig. 9 shows this 
repository client connected to the Asset Base. 

• A guide to configure the method model: A guide is provided as an Eclipse 
cheatsheet to assist in the performance of the method configuration phase. 

 

Fig. 9. Repository client connected to the Asset Base 

5.3 Method Implementation 

During this phase a tool supporting the method is obtained by means of model 
transformations. This tool is mainly divided into two parts: the dynamic part and the 
static part (see Fig. 10). 
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• The graphical user interface (GUI): the GUI is composed of those elements that 
make up the visual representation of the tool and allow software engineers to 
execute method instances by means of the process engine. The GUI of the 
generated CASE tools does not directly depend on the method model (so, they 
always have the same look & feel) but it uses the method content part of the SPEM 
model to configure itself. For instance, depending on the role selected by the user, 
the GUI filters its content to show only the products and tasks that the user is in 
charge of. 

Method Implementation Software Infrastructure. In order to provide software 
support within MOSKitt to the method implementation phase, the following tool has 
been implemented and integrated as an Eclipse plugin: 

• A M2T transformation: this transformation obtains the tool that supports the 
method specified in the method model. This tool corresponds to a MOSKitt 
reconfiguration that only contains the required Eclipse plugins to support the 
method (i.e. the plugins contained in the technical fragments8, the process engine 
and the Eclipse views that compose the GUI). In order to build this MOSKitt 
reconfiguration we make use of the Eclipse Product Configuration files 
(.product files). This type of files gathers all the required information to 
automatically generate an Eclipse-based tool such as MOSKitt. So, considering 
that this tool is obtained from a .product file, the model transformation has 
been implemented as a M2T transformation. This transformation takes as input the 
model resulting from the method configuration phase and generates a .product 
file through which the final tool is automatically generated. 

6 Conclusions and Future Work 

In the ME field it is still unclear how to combine different subareas into a whole in 
order to define more complete proposals. As examples of this reality we find CAME 
and metaCASE environments, which either focus on the method design or the method 
implementation phases of the ME process. In this work, we have detailed the different 
steps of a methodological framework that adequately covers these two phases. For 
this purpose, the proposed framework applies an MDD approach, tackling the method 
design by means of meta-modeling techniques based on the SPEM standard and the 
method implementation by means of model transformations. 

The presented framework is being defined and implemented within the context of 
the MOSKitt project. This project constitutes a jointly work developed by the 
Conselleria de Infraestructuras y Transporte and the Centro de Investigación en 
Métodos de Producción de Software to develop a CASE tool to support the gvMétrica 
method. There is a big community involved in the project, ranging from analysts to 
end users, which are in charge of validating each new release of the tool. This setting 
                                                           
8 The dependencies of these plugins must also be included. We are planning to tackle 

dependencies management in the future. 
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constitutes an adequate environment to validate our proposal. In fact, in the near 
future we are planning to integrate our prototype into a MOSKitt version in order to 
use it for the definition of gvMétrica and the construction of the supporting tool. 

Regarding future work, we are working on the improvement of the CAME 
environment that supports our proposal. For instance, we are planning the integration 
of a process engine such as Activiti [1]. Furthermore, we are concerning with one of 
the big challenges of ME [2], which deals with the variability of methods at modeling 
level and runtime. Providing support to variability will allow stakeholders to 
dynamically adapt methods and their supporting tools to changes that occur during 
method execution. 
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