
HAL Id: hal-01562876
https://inria.hal.science/hal-01562876

Submitted on 17 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Turning Method Engineering Support into Reality
Mario Cervera, Manoli Albert, Victoria Torres, Vicente Pelechano

To cite this version:
Mario Cervera, Manoli Albert, Victoria Torres, Vicente Pelechano. Turning Method Engineering
Support into Reality. 4th Working Conference on Method Engineering (ME), Apr 2011, Lisbon,
Portugal. pp.138-152, �10.1007/978-3-642-19997-4_14�. �hal-01562876�

https://inria.hal.science/hal-01562876
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Turning Method Engineering Support into Reality

Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

Centro de Investigación en Métodos de Producción de Software,
Universidad Politécnica de Valencia, 46022 Valencia, Spain

{mcervera, malbert, vtorres, pele}@pros.upv.es

Abstract. The Situational Method Engineering (SME) discipline emerged two
decades ago to face up to the challenge of the in-house definition of software
production methods and the construction of the corresponding supporting tools.
However, nowadays most of the existent proposals only focus on one of the
phases of the SME lifecycle. In order to fill this gap, in this paper we present a
methodological framework that equally encompasses two of these phases,
which refer to the method design and implementation. In order to support them
in an effective manner, we advocate for the use of the Model Driven
Development (MDD) paradigm. Applying these ideas, the framework has been
defined on top of a MDD infrastructure based on meta-modeling and model
transformation techniques. In addition, we provide implementation details of
the framework in an Eclipse-based modeling platform, namely MOSKitt.

Keywords: Method Engineering, Model Driven Development, CAME
Environment, Eclipse, MOSKitt

1 Introduction

Software Production Methods (hereafter simply methods) are organized and
systematic approaches for software development, which can adequately govern the
disciplined execution of real software development projects, and are composed, inter
alia, of structured and integrated sets of activities, work products and roles. Since the
definition of a universally applicable method has for long been considered
unattainable, it is necessary to find solutions that enable the in-house specification of
methods adapted to specific context needs and the construction of the corresponding
supporting tools. Up to now, the SME discipline seems to be the most promising
alternative to supply this need.

The SME discipline constitutes a sub-area of a broader field called Method
Engineering (ME). Specifically, within the ME (and SME) field, method and software
engineers mainly deal with (1) the definition of methods (method design) and (2) the
construction of the supporting software tools (method implementation)1. Therefore,

1 Other tasks such as the analysis of the method requirements and the validation of the method

are also part of the Method Engineering discipline but are outside of the scope of this paper.
These tasks will be considered in future work.

2 Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

proposals aimed at supporting ME should cover these two phases of the ME process.
However, most of the ME proposals existing in the literature (and their corresponding
tools) only focus on one of them. As examples of this reality we find Computer Aided
Method Engineering (CAME) and metaCASE environments. On the one hand,
CAME environments generally focus on the method design phase, supporting the
specification of project-specific methods for software development. In some cases,
these specifications are used for building CASE tools, but with very limited
capabilities. On the other hand, the so-called metaCASE environments generally
focus on the method implementation, supporting the customization of CASE tools by
means of high level specifications. These specifications normally define the modeling
languages that are to be supported by the CASE tool and, sometimes, also the process
that establishes the order in which these languages must be used. Thus, these
specifications are oriented towards CASE tool definition and therefore they do not
represent complete software production methods.

In order to provide a more complete proposal, in this paper we propose a
methodological framework that equally encompasses the method design and method
implementation phases. Combining these two phases brings an important benefit. It
increments the method specifications’ value in terms of how much functionality is
derived from them. That is to say, these specifications are not only used for governing
the execution of the software development projects, but also for the construction of
CASE tools that support the methods and assist the software engineers in the
development of the final systems. To achieve this goal in an effective manner, we find
crucial to define an infrastructure that (1) allows the method engineer to define
methods that can be applied in real software projects and also (2) (semi)automates the
construction of tools that provide adequate support to the specified methods. To
successfully face the definition of this infrastructure, we advocate for the use of the
MDD paradigm. Thereby, we have defined a MDD infrastructure based on meta-
modeling and model transformation techniques that lays the foundations of the
methodological framework. Specifically, the meta-modeling techniques are based on
the Software & Systems Process Engineering Meta-model (SPEM) [30] and are the
means that allow the method engineer to carry out the method design. On the other
hand, model transformations (semi)automate the performance of the method
implementation. By applying these ideas, we have defined a methodological approach
that not only tackles the definition of methods following a widely accepted standard
(SPEM), but also proposes to use these definitions for the (semi)automatic generation
of tools that provide rich support to the methods (textual and graphical editors, code
generators, model transformations, process enactment support, etc.).

The work reported here is an extension of our previous works [7] and [8]. On the
one hand, the theoretical part of the methodological framework is analyzed in depth,
with a contextualization of the different parts of the framework. On the other hand,
the software infrastructure of the framework has evolved by enhancing the way in
which engineering tools assist method engineers during the method construction.

Furthermore, as a proof of concept, we also provide details of the implemented
framework, which has been developed on top of MOSKitt [21], an Eclipse-based

Turning Method Engineering Support into Reality 3

modeling platform whose plugin-based architecture and integrated modeling tools
turn it into a suitable platform to support the proposal.

The remainder of the paper is structured as follows. First, section 2 summarizes the
state of the art. Then, section 3 provides an overview of the proposal. Section 4 and 5
thoroughly detail the MDD infrastructure and the methodological framework
respectively. Finally, section 6 draws some conclusions and outlines future work.

2 State of the Art

The term Method Engineering was first introduced in the mid-eighties by Bergstra et
al in [4]. Since then, many works developed both at academia and industry have
contributed to this field. In order to underpin its theory, a survey of the last strands in
ME is gathered in [17]. In this work, the definition proposed by Brinkkemper et al. in
[5] is used to define ME as the engineering discipline to design, construct and adapt
methods, techniques and tools for the development of information systems (IS).

Considering this definition, we have found that there are proposals in the ME
literature that mainly focus on (1) the design, construction and adaptation of methods
(i.e. the method design) while others concentrate on (2) the techniques and tools for
supporting such methods (i.e. the method implementation). On the one hand, among
the proposals mostly dedicated to method design, we find proposals such as
Brinkkemper’s [5, 6], Ralyté’s [20, 24] or Henderson-Sellers’ [15], which tackle the
method construction by means of the assembly of method fragments or chunks stored
in a method base repository. Examples of tools that fall in this first category are
MERET [18], Method Editor [29] and Decamerone [14]. Some of these proposals do
support the generation of CASE environments but with limited capabilities. For
instance, Method Editor enables the generation of tools that include a series of
diagram editors that allow the software engineer to create/manipulate the products
specified in the method. However, Method Editor does not support the specification
of automated tasks that require the inclusion of a model transformation in the
generated tool. Thus, these CASE tools lack code generation capabilities.

On the other hand, there are proposals that mostly focus on the method
implementation [10, 12, 28]. These are the so-called metaCASE environments that
generally support the construction of CASE tools. Examples of tools that fall in this
category are MetaMOOSE [10], KOGGE [28] and MetaEdit+ [19]. For instance,
MetaEdit+ [19] provides a specification language (called GOPPRR) that is oriented
towards the definition of the abstract syntax of the modeling languages (in [19] called
“methods”) that need to be supported by the resulting CASE tool. In contrast, in our
proposal we provide a full methodology that assist in the definition of complete
software production methods by means of the SPEM standard, and also proposes the
use of a meta-meta-model (such as GOPPRR) for the definition of the modeling
languages that enable the creation of the method products (see sections 3 and 5). In
particular, the meta-meta-model that is used in the CAME environment that supports
our proposal is Ecore.

4 M

After s
of softwa
the use o
define a
MOSKitt
method d

3 Ov

In order
framewor
method d

• Metho
specifi
[30]. T
Metho
[26]. T
details
execut
“Busin
created

• Metho
specifi
This in
model
(imple
Proces

Mario Cervera, M

studying all th
are tools that p
of the MDD p
methodologic
t platform [2
design and the

verview of t

to provide an
rk is briefly i

design, method

od design: du
ication as a m
This model ca
od Base repos
The built mod
s about the te
tion. For insta
ness Process M
d when the me

od configurati
ic technologie
nstantiation is
s, transforma

emented follow
ss Model” ca

Manoli Albert, V

he aforementi
provide comp
paradigm as a
cal framework
1] and, by a
 method imple

the Proposa

n overview of
introduced. Th
d configuratio

Fig. 1. Method

uring this ph
model (hereaf
an be built from
sitory that has
el constitutes
chnologies an

ance, the meth
Model”, witho
ethod is execu
ion: in this p
es and notation
s achieved by
ations, etc. th
wing the RA
an be associa

Victoria Torres

ioned proposa
lete support to

a way to impr
k that is being
applying MDD
ementation ph

al

f the proposal
he three phas

on and method

dological frame

hase, the me
fter the metho
m scratch or r
s been implem
a first version

nd notations t
hod engineer
out stating in
uted.
hase, the me
ns that will be
associating ta

hat are stored
AS standard). F
ated with a “

s, and Vicente P

als, we have f
o ME. In this
rove this situ
g implemente
D techniques
hases.

l, in this secti
es that compo

d implementat

ework overview

ethod engine
od model) usi
reusing metho
mented follow
n of the metho
that will be u
can specify a
which notati

thod model i
e used during
asks and produ
d in a reposit
For instance,
“BPMN edito

Pelechano

found an impo
paper, we adv
ation. In part

ed in the cont
s, equally sup

ion the metho
ose the frame
tion (see Fig. 1

w

er builds the
ing the SPEM
od fragments s
wing the RAS
od that does n
used during th
a generic prod
on this produ

is instantiated
the method e

ucts with edit
tory called A
the product

or”. Thus, th

ortant lack
vocate for
icular, we
text of the
pports the

odological
ework are:
1).

e method
M standard
stored in a
S standard
not include
he method
duct called
uct will be

d with the
enactment.
tors, meta-
Asset Base

“Business
he method

Turning Method Engineering Support into Reality 5

engineer is indicating that this editor must be included in the generated tool, so that
it enables the manipulation of this particular product. The main benefit of
separating method design and configuration is that we keep generic definitions of
methods (which means that we can take this generic definition and perform
different method configurations), stressing the importance of reusability.

• Method implementation: in this phase, the method model is used as input of a
model transformation that generates the tool support. This tool provides support to
the product and process parts of the method2. The product support consists of the
tools that enable the creation/manipulation of the method products (i.e. the
resources associated to the method elements in the previous phase). The process
support consists of a process engine that enables the method process execution.

4 The MDD Infrastructure

In this section we present the MDD infrastructure that lays the foundations of the
methodological framework. As mentioned above, this infrastructure is based on meta-
modeling and model transformation techniques.

4.1 Meta-modeling

Meta-modeling has always played a key role in the ME field as it allows the definition
at a high level of abstraction of the concepts, constraints and rules that are applicable
in the construction of methods. In general, proposals focusing on the method design
use meta-modeling as their underlying technique to define methods [6, 18, 20].
Moreover, proposals focusing on the method implementation use these techniques to
specify the modeling languages supported by the generated tools [12, 19, 28].

In our proposal we use meta-modeling techniques for the creation of the method
model, in particular following the SPEM standard. A study about the applicability of
SPEM to ME is presented in [22]. In this work, the authors present some of the SPEM
advantages and disadvantages for supporting the method design. Among the SPEM
advantages we highlight: (1) wide acceptance in the field of process engineering, (2)
good ME process coverage, (3) support to both product and process parts of methods
and (4) good abstraction and modularization. Regarding its disadvantages, [22] points
out the lack of executable semantics, but proposes to overcome this limitation by
using a model transformation to transform the process models into executable
representations that can be executed by workflow engines.

In order to provide a more in-depth view on how the SPEM meta-model is used in
our proposal, below the structure of the method fragments from which SPEM models
can be assembled is presented in detail. In general, in the ME proposals that suggest
the use of method fragments, these are obtained by instantiating some class of a meta-
model. For instance, in the OPEN Process Framework [11] method fragments are

2 The product part represents the artifacts that must be built during the method execution and

the process part consists of the procedures that must be followed to build such products.

6 Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

generated by instantiation from one of the top levels classes: Producer, Work Product
and Work Unit [17]. Specifically, next subsection details the SPEM classes from
which method fragments can be created and, furthermore, it presents a taxonomy that
classifies the different types of fragments that are used in the proposal.

We use the term method fragment to denote the atomic element from which
methods can be assembled. Other terms to name these atomic elements, such as
method chunk, have been proposed in the ME literature [16]. A method fragment can
be either a product fragment (instances of meta-classes that represent products) or a
process fragment (instances of meta-classes that represent processes). This
differentiation allows us (1) to leverage the separation between product and process
specification provided by SPEM3, (2) to relate one process fragment with many
product fragments, and (3) to reuse one product fragment in the definition of many
process fragments.

Attending to the different phases identified in our framework (see section 3), we
use a third type of fragment, namely technical fragment, term that was first proposed
in [13]. In our proposal, these fragments contain the tools that are associated to the
products and tasks of the method during the method configuration and that make up
the infrastructure of the generated CASE tools.

Fig. 2. Relationship between method fragments and SPEM classes

In order to illustrate the hierarchical organization of the various types of fragments,
the left side of Fig. 2 graphically presents our fragment taxonomy. In this taxonomy,
the new abstract category conceptual fragment (also proposed in [13]) is introduced
for grouping product and process fragments. Moreover, additional information has
been included, e.g. the relationship Contains which represents that SPEM processes

3 In order to use the same terminology as the used in the ME field, in our proposal we consider

analogous the product-process separation of methods and the SPEM separation between
method content and method process.

Turning Method Engineering Support into Reality 7

can contain nested subprocesses, or the relationship labeled as Uses which represents
that one process fragment can reference from one to many product fragments.

On the other hand, the right side of Fig. 2 shows a simplified view of the SPEM
meta-model. In SPEM, a method is represented by a MethodPlugin. Each
MethodPlugin contains both ContentPackages and ProcessPackages. Tasks, Roles
and WorkProducts are stored in ContentPackages. Similarly, within
ProcessPackages, processes are stored as instances of the class ProcessComponent.

Note that some of these SPEM concepts have been associated with fragments of
our taxonomy. These associations illustrate a containment relationship. For instance,
process fragments are associated with one ProcessComponent. Thus we are
representing that, when process fragments are stored in the repository, they contain a
SPEM model that includes one instance of the class ProcessComponent. Furthermore,
product fragments are associated with ContentElements, which represents that these
fragments can contain any instances of Task, Role, and WorkProduct.

Finally, even though it has been omitted in Fig. 2, method fragments are defined by
a series of properties that enable their later retrieval from the repository. The fragment
properties are stored in the manifest file of the RAS asset that embodies the fragment.
Specifically, we make use of some of the properties defined in [23]. According to
these properties, our method fragments are characterized by:

• Descriptor: it contains general knowledge about the fragment. For now, we
consider the attributes origin, objective and type. Some examples of valid types in
our proposal are task, role and work product for product fragments that contain
atomic elements, or meta-model, editor, model transformation and guide for
technical fragments (see section 5.2).

• Interface: it describes the context in which the fragment can be reused. For now,
we only consider the attribute situation.

4.2 Model Transformations

In the previous subsection we showed that the application of meta-modeling in the
ME field is not new. However, we find that the ME approaches that make use of these
techniques do not really take full advantage of the possibilities that MDD offers. As
stated in [3], “MDD improves developers’ short-term productivity by increasing the
value of primary software artifacts (i.e. the models) in terms of how much
functionality they deliver”. Following this statement and contrary to what current ME
approaches do, we want to leverage models going one step further. Defining the
method as a model and considering this model as a software artifact allows us to face
the implementation of the CASE tool generation process by means of model
transformations.

In particular, these transformations have been implemented in the CAME
environment that supports our proposal as a single model-to-text (M2T)
transformation using the XPand language [31], which is the language used within the
context of the MOSKitt project [21] for that purpose. Further details about this M2T
transformation are provided in section 5.3 and in [8].

8 M

5 Th

In this se
designed.
detail the

5.1 M

During th
this mode
[24]: (1)
these app
proposed
directed g

The Para
in our p
approach
model or
model. Sp
the SPEM

As sho
steps: firs
that comp
process m
In additio
building t

The Asse
carried ou
to reuse p

As sho
of the fra
be formu

Mario Cervera, M

he Methodo

ection, we deta
. For each of t

e software infr

Method Design

he method des
el is performe
the paradigm

proaches are a
d in [27]. Foll
graphs with in

adigm-Based
proposal follo
h is that the n
r by instantiat
pecifically, w

M meta-model

Fig.

own in the fig
st, the method
pose the SPE
model (i.e. the
on, backtracki
the process m

embly-Based
ut in our prop
product or pro
own in the fig
agments to be
lated by givin

Manoli Albert, V

ological Fra

ail the phases
these phases,
rastructure tha

n

sign the metho
ed by means

m-based and (2
applied in our
lowing this m
ntentions as no

d Approach. I
owing the par
new method is
ting a meta-m

we build the m
l).

. 3. Paradigm-b

gure, the const
d engineer bui
EM method co
e process comp
ing to the con

model thanks to

Approach. F
posal. This pro
ocess fragment
gure, the meth
retrieved. The

ng values to th

Victoria Torres

amework

in which the
we provide fi

at has been im

od model is bu
of a combina
2) the assemb

r framework, w
meta-model, p
odes and strate

In Fig. 3 we s
radigm-based
s obtained eit

model. This st
method model

based approach

truction of the
ilds the produc
ontent). Secon
ponent that co
nstruction of
o the refineme

Fig. 4 shows h
ocess is follow
ts stored in th

hod engineer s
ese requireme

he method frag

s, and Vicente P

methodologic
irst a generic d

mplemented in

uilt using SPE
ation of two a
bly-based. In
we use the M

processes are
egies as edges

show how the
d approach. T
ther by abstra
arting model
s by instantia

(adapted from

e method mod
ct model (i.e.

ndly, the meth
omposes the S
the product m

ent strategy.

how the assem
wed when the
e Method Bas
starts by spec
ents are specif
gment propert

Pelechano

cal framework
description an
MOSKitt to s

EM. The const
approaches pr
order to illus

Map process m
represented a
s between inte

e method mod
The hypothes
acting from an
is called the

ating a meta-m

[24])

del is perform
the products,

hod engineer
SPEM method
model is poss

mbly-based ap
method engin

se.
ifying the req

fied as queries
ties (see sectio

k has been
nd then we
support it.

truction of
roposed in
strate how

meta-model
as labelled
entions.

del is built
is of this
n existing
paradigm

model (i.e.

med in two
roles, etc.
builds the

d process).
ible when

pproach is
neer wants

quirements
s that must
on 4.1).

As an
system sp

Once t
be achiev
integratio
process f
fragment
directly i
are includ

Finally
later reus
and proce

First, t
must be i
(for a pro
method e
Once this

4 Note th

automa
product

Fig.

example, a q
pecification m

Type =

the fragments
ved by mean
on of the sele
fragment of a

this integrat
included in a
ded as a subpr
y, note that du
se during the c
ess fragments

Fig 5

the method en
included in th
oduct fragmen
engineer defin
s process is co

hat if a proces
tically selected
t and process fr

Tur

. 4. Assembly-b

query for retr
may include par

= ‘Task’ AND

 have been ob
ns of the “int
ected fragmen
a higher leve
tion varies. F
ContentPacka

rocess in the m
uring the meth
construction o
are created, F

. Conceptual fr

ngineer explor
he conceptual
nt) or a proce
nes the fragm
ompleted, a RA

s fragment is
. This is due to
agments in figu

rning Method E

based approach

rieving a prod
rameters as fo

D Objective =

btained4, the in
tegration” stra
nts into the m
l of granular

For product f
age. For proc
method under
hod design ne

of other metho
Fig. 5 shows th

ragment creation

res the method
fragment. The
ss component

ment by giving
AS asset is cre

retrieved, then
the one-to-man

ure 2.

Engineering Sup

(adapted from

duct fragmen
ollows:

‘System Spec

ntention “Ass
ategy. This s

method model
rity). Dependi
fragments, th
cess fragments
construction.

ew fragments
ods. In order to
he process tha

n (adapted from

d model to ide
ese elements w
t (for a proces
g values to th
eated and stor

n the associate
ny cardinality o

pport into Reali

[24])

nt containing

cification’

semble fragme
trategy consi
l (considered
ing on the ty

he tasks, role
s, the process

can be created
o illustrate ho
at must be foll

m [25])

entify the elem
will be tasks,
ss fragment).
he fragment p
red in the Meth

ed product frag
of the relationsh

ity 9

a task for

ents” must
sts of the
here as a

ype of the
s etc. are
s elements

d for their
w product
lowed.

ments that
roles, etc.
Then, the

properties.
hod Base.

gments are
hip between

10 Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

Fig. 6. EPF Composer editor in MOSKitt

Fig. 7. Repository client connected to the Method Base

Method Design Software Infrastructure. In order to provide software support
within MOSKitt to the method design phase, the following tools have been integrated
as Eclipse plugins:

• A method editor: in order to enhance MOSKitt with the capability of building
method models, the EPF Composer (a SPEM 2.0 editor provided in the EPF
Project [9]) has been integrated. This editor enables the enactment of the process
described in Fig. 3, i.e. it allows method engineers to build SPEM models. In
addition, it has been extended so it enables the enactment of the process shown in
Fig. 5, i.e. it supports the creation of fragments. In Fig. 65, a screenshot of the EPF
Composer integrated in MOSKitt is shown.

5 Also available at http://users.dsic.upv.es/~vtorres/moskitt4me/

• A repo
during
reposit
do so,
reposit
metho
implem

• A guid
assist t

5.2 M

In this p
technolog
shows ho
requireme
this is don

Note t
repository
be create
required t
in the CA
Eclipse p
implemen
the fragm

We de
Asset Bas

• Meta-m
notatio
“BPM

• Editor
the res
“BPM

• Transf
Thus,

ository client
g the construc
tory client tha
the repositor

tory, (2) searc
d model unde
mented in MO
de to build the
the method en

Method Config

phase the m
gies and nota
ow this phase
ents that are u
ne, he/she ass

that it is pos
y. In case the
ed, a process
tool is implem

AME environm
plugins devel
nted, the meth

ment properties
etail below the
se, to which e

model: meta-m
on that will b

MN meta-mode
r: textual/grap
source that wi

MN editor” can
formation: mo
these tasks w

Turn

: In order to
ction of the
at enables the
ry client must
ch and select c
er construction
OSKitt as an E
e method mode
ngineer in the

guration

method model
ations that wi

is performed
used to retriev
sociates it with

Fig. 8. Proces

ssible that no
method engin
similar to th

mented ad-hoc
ment that supp
loped using t
hod engineer d
s. Then, a RA
e various type

elements they

models can b
be used in the
el” can be link
phical editors
ill be used in

n be linked to t
odel transform

will be automa

ning Method En

reuse the fra
method mod

e enactment of
t allow the m
conceptual fra
n. Fig. 7 show

Eclipse view.
el: A guide is
performance

l is complete
ill be used du
d. In particula
ve a technical
h a task or pro

ss model for ass

o suitable tec
neer considers
he one define
c for the meth
ports our prop
the CAME en
defines the tec

AS asset is crea
es of technica
can be associa

be associated
e generated to
ked to the prod

can be assoc
the generated

the product “B
mations can b
atically execut

ngineering Supp

agments store
del, it is nece
f the process
ethod enginee
agments and (
ws the reposito

provided as a
of the method

ed by includ
uring the me

ar, the method
fragment from

oduct of the m

set association

hnical fragme
s that a new te
ed in Fig. 5.
hod under con
posal these to
nvironment it
chnical fragm
ated and store
al fragments th
ated and for w

to method p
ools for their
duct “Busines
ciated to meth
d tools for the
Business Proc
e associated t
ted in the fina

port into Reality

ed in the Met
essary to imp
described in F
er to (1) conn
3) integrate th
ory client that

an Eclipse che
d design phase

ding details a
ethod executio
d engineer spe
m the Asset B

method model.

ent is availab
echnical fragm
is followed.

nstruction. For
ools are implem
tself. Once th

ment by giving
d in the Asset
hat can be sto

which purpose

products to sp
manipulation

s Process Mod
hod products
eir manipulati
ess Model”).
to tasks of th
al tool by me

y 11

thod Base
plement a
Fig. 4. To

nect to the
hem in the
t has been

eatsheet to
e.

about the
on. Fig. 8
ecifies the

Base. Once

ble in the
ment must
First, the

r instance,
mented as
he tool is

g values to
t Base.
ored in the
e:

pecify the
n (e.g. the
del”).
to specify
ion (e.g. a

e method.
ans of the

12 Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

model transformations (e.g. a M2T transformation can be linked to the task
“Generate report”).

• Guide: guides (i.e. text files, process models, etc.) can be optionally associated to
manual tasks of the method. These files will be included in the final tool and will
assist software engineers in the performance of the tasks. For instance, a map can
be associated to the task “Build Business Process Model” to define as a process
model the steps that must be followed to perform the task.

Method Configuration Software Infrastructure. In order to provide software
support within MOSKitt to the method configuration phase, the following tools have
been integrated as Eclipse plugins:

• A repository client: In order to associate technical fragments with elements of the
method model, it is necessary to implement a repository client that enables the
enactment of the process described in Fig. 8. To do so, the repository client must
allow the method engineer to (1) connect to the repository, (2) search and select
technical fragments and (3) associate them with the elements of the method. The
repository client of Fig. 7 can be reused for this purpose. Fig. 9 shows this
repository client connected to the Asset Base.

• A guide to configure the method model: A guide is provided as an Eclipse
cheatsheet to assist in the performance of the method configuration phase.

Fig. 9. Repository client connected to the Asset Base

5.3 Method Implementation

During this phase a tool supporting the method is obtained by means of model
transformations. This tool is mainly divided into two parts: the dynamic part and the
static part (see Fig. 10).

The Dyn
obtained
particular
software
the tool (
method m
implemen
editor). T
CASE en

The Stat
included
method. E
method m
make up

• The pr
metho
execut
the orc
metho

6 Runtime
7 SPEM d

executa

namic Part. T
from the meth
r, these elem
support to the
e.g. editors, m

model as techn
ntations of th
Therefore, the
nvironment.

tic Part. The
in the final

Even though t
model, they ne
this part:

rocess engine
d. It is alwa
tion of the me
chestration of
d products (i.e

in this context

does not have
able language is

Turn

Fig. 10. T

he dynamic p
hod model an
ents correspo
e product part

model transfor
nical fragmen
he tools (e.g.
e model trans

e static part
tool and, th

the implement
eed to use this

e: this compo
ays included
thod process p
f the different
e. the technica

refers to the m
executable sem

s needed here. W

ning Method En

Transformation

part is compos
nd are, thus, de
ond to the too
t of the metho

rmations, etc.)
ts, which are
the Eclipse

formation int

is composed
hus, their imp
tation of these
s model at run

onent provides
in the genera
part of the SP
t tools that all
al fragments).

ethod execution

mantics. Theref
We are planning

ngineering Supp

mappings

ed of those el
ependent on th
ols that are i
od and make
). These tools
stored as RAS
plugins that

tegrates these

of those ele
plementation
e components
ntime6. Specif

s support to t
ated tools an
EM model7. T
low the creati

n in the generat
fore, a mapping
g to tackle this

port into Reality

lements that ar
he specified m
in charge of
up the infrast
are specified
S assets that c
implement a
tools in the

ements that a
is independe
does not depe

fically, two co

the process p
nd is in char
This execution
ion/manipulat

ted CASE tool.
g between SPE
issue in the futu

y 13

re directly
method. In
providing

tructure of
within the

contain the
graphical
generated

re always
ent of the
end on the
omponents

part of the
rge of the
n conducts
tion of the

EM and an
ure.

14 Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

• The graphical user interface (GUI): the GUI is composed of those elements that
make up the visual representation of the tool and allow software engineers to
execute method instances by means of the process engine. The GUI of the
generated CASE tools does not directly depend on the method model (so, they
always have the same look & feel) but it uses the method content part of the SPEM
model to configure itself. For instance, depending on the role selected by the user,
the GUI filters its content to show only the products and tasks that the user is in
charge of.

Method Implementation Software Infrastructure. In order to provide software
support within MOSKitt to the method implementation phase, the following tool has
been implemented and integrated as an Eclipse plugin:

• A M2T transformation: this transformation obtains the tool that supports the
method specified in the method model. This tool corresponds to a MOSKitt
reconfiguration that only contains the required Eclipse plugins to support the
method (i.e. the plugins contained in the technical fragments8, the process engine
and the Eclipse views that compose the GUI). In order to build this MOSKitt
reconfiguration we make use of the Eclipse Product Configuration files
(.product files). This type of files gathers all the required information to
automatically generate an Eclipse-based tool such as MOSKitt. So, considering
that this tool is obtained from a .product file, the model transformation has
been implemented as a M2T transformation. This transformation takes as input the
model resulting from the method configuration phase and generates a .product
file through which the final tool is automatically generated.

6 Conclusions and Future Work

In the ME field it is still unclear how to combine different subareas into a whole in
order to define more complete proposals. As examples of this reality we find CAME
and metaCASE environments, which either focus on the method design or the method
implementation phases of the ME process. In this work, we have detailed the different
steps of a methodological framework that adequately covers these two phases. For
this purpose, the proposed framework applies an MDD approach, tackling the method
design by means of meta-modeling techniques based on the SPEM standard and the
method implementation by means of model transformations.

The presented framework is being defined and implemented within the context of
the MOSKitt project. This project constitutes a jointly work developed by the
Conselleria de Infraestructuras y Transporte and the Centro de Investigación en
Métodos de Producción de Software to develop a CASE tool to support the gvMétrica
method. There is a big community involved in the project, ranging from analysts to
end users, which are in charge of validating each new release of the tool. This setting

8 The dependencies of these plugins must also be included. We are planning to tackle

dependencies management in the future.

Turning Method Engineering Support into Reality 15

constitutes an adequate environment to validate our proposal. In fact, in the near
future we are planning to integrate our prototype into a MOSKitt version in order to
use it for the definition of gvMétrica and the construction of the supporting tool.

Regarding future work, we are working on the improvement of the CAME
environment that supports our proposal. For instance, we are planning the integration
of a process engine such as Activiti [1]. Furthermore, we are concerning with one of
the big challenges of ME [2], which deals with the variability of methods at modeling
level and runtime. Providing support to variability will allow stakeholders to
dynamically adapt methods and their supporting tools to changes that occur during
method execution.

References

1. Activiti, http://www.activiti.org/
2. Armbrust, O.; Katahira, M.; Miyamoto, Y.; Münch, J.; Nakao, H., Ocampo, A.: Scoping

Software Process Models - Initial Concepts and Experience from Defining Space
Standards. ICSP, 160-172 (2008)

3. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Foundation. IEEE
Software, IEEE Computer Society, 20, 36-41 (2003)

4. Bergstra, J., Jonkers, H., Obbink, J.: A Software Development Model for Method
Engineering. In: Roukens J., Renuart J. (eds.) Esprit 1984: Status Report of Ongoing Work.
Elsevier Science Publishers, Amsterdam, (1985)

5. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Information and Software Technology, 38, 275-280, (1996)

6. Brinkkemper, S.; Saeki, M., Harmsen, F.: Meta-Modelling Based Assembly Techniques for
Situational Method Engineering. Inf. Syst., 24, 209-228 (1999)

7. Cervera, M., Albert, M., Torres, V., Pelechano, V.: A Methodological Framework and
Software Infrastructure for the Construction of Software Production Methods. International
Conference on Software Processes, (2010)

8. Cervera, M., Albert, M., Torres, V., Pelechano, V., Cano, J., Bonet, B.: A Technological
Framework to support Model Driven Method Engineering. Taller sobre Desarrollo de
Software Dirigido por Modelos, JISBD, (2010)

9. Eclipse Process Framework Project (EPF), http://www.eclipse.org/epf/
10. Ferguson, R.I., Parrington, N.F., Dunne, P., Hardy, C., Archibald, J.M., Thompson, J.B.:

MetaMOOSE - an object-oriented framework for the construction of CASE tools.
Information and Software Technology, 42, 115-128 (2000)

11. Firesmith, D.G., Henderson-Sellers, B.: The OPEN Process Framework. An Introduction.
Addison-Wesley, London, UK, 330pp (2002)

12. Grundy, J. C., Venable, J. R.: Towards an Integrated Environment for Method Engineering.
In proceedings of the IFIP 8.1/8.2 Working Conference on Method Engineering, Hall, 45-
62 (1996)

13. Harmsen, A.F.: Situational Method Engineering. Moret Ernst & Young (1997)
14. Harmsen, F., Brinkkemper, S.: Design and Implementation of a Method Base Management

System for a Situational CASE Environment. Asia-Pacific Software Engineering
Conference, IEEE Computer Society, 0, 430, (1995)

15. Henderson-Sellers, B.: Method Engineering for OO Systems Development.
Communications of the ACM Vol. 46. Nº 10, pp. 73-78, (2003)

16 Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

16. Henderson-Sellers, B., Gonzalez-Perez, C., Ralyté, J.: Comparison of Method Chunks and
Method Fragments for Situational Method Engineering. Proceedings of the 19th Australian
Conference on Software Engineering, IEEE Computer Society, 479-488 (2008)

17. Henderson-Sellers, B., Ralyté, J.: Situational Method Engineering: State-of-the-Art
Review. Journal of Universal Computer Science, 16, 424-478 (2010)

18. Heym, M., Osterle, H.: A Semantic Data Model for Methodology Engineering. In
Proceedings of the Fifth International Workshop on Computer-Aided Software
Engineering, IEEE Computer Society Press, Washington, D.C., pp. 142-155 (1992)

19. Kelly, S., Lyytinene, K., Rossi, M.: MetaEdit+ A Fully Configurable Multi User and
MultiTool CASE and CAME Environment. CAiSE, 1-21 (1996)

20. Mirbel, I., Ralyté, J.: Situational method engineering: combining assembly-based and
roadmap-driven approaches. Requirements Engineering, 11, 58-78, (2006)

21. MOSKitt, http://www.moskitt.org/
22. Niknafs, A., Asadi, M.: Towards a Process Modeling Language for Method Engineering

Support. CSIE 2009: Proceedings of the 2009 WRI World Congress on Computer Science
and Information Engineering, IEEE Computer Society, 674-681 (2009)

23. Ralyté, J., Rolland, C.: An Approach for Method Reengineering. Proceedings of the 20th
International Conference on Conceptual Modeling, Springer-Verlag, 471-484 (2001)

24. Ralyté, J., Deneckère, R., Rolland, C.: Towards a generic model for situational method
engineering. CAiSE 2003: Proceedings of the 15th international conference on Advanced
information systems engineering, Springer-Verlag, 95-110 (2003)

25. Ralyté, J.: Towards Situational Methods for Information Systems Development:
Engineering Reusable Method Chunks. In Proceedings of the International Conference on
Information Systems Development, Vilnius Technika, 271-282 (2004)

26. Reusable Asset Specification (RAS) OMG Available Specification version 2.2. OMG
Document Number: formal/2005-11-02

27. Rolland, C., Prakash, N., Benjamen, A.: A Multi-Model View of Process Modelling.
Requirements Engineering Journal 4(4), 169-187 (1999)

28. Roger, J. E., Suttenbach, R., Ebert, J., Süttenbach, R., Uhe, I., Uhe, I.: Meta-CASE in
Practice: a Case for KOGGE. Springer , 203-216 (1997)

29. Saeki, M.: CAME : The first step to automated method engineering. In OOPSLA 2003:
Workshop on Process Engineering for Object-Oriented and Component-Based
Development, 7-18 (2003)

30. Software Process Engineering Meta-model (SPEM) OMG Available Specification version
2.0. OMG Document Number: formal/2008-04-01

31. Xpand, http://www.eclipse.org/modeling/m2t/?project=xpand

