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Abstract. During the last two decades, DBSCAN (Density-Based Spatial Clus-

tering of Applications with Noise) has been one of the most common clustering 

algorithms, that is also highly cited in the scientific literature. However, despite 

its strengths, DBSCAN has a shortcoming in parameter detection, which is done 

in interaction with the user, presenting some graphical representation of the da-

ta. This paper introduces a simple and effective method for automatically de-

termining the input parameter of DBSCAN. The idea is based on a statistical 

technique for outlier detection, namely the empirical rule. This work also sug-

gests a more accurate method for detecting the clusters that lie close to each 

other. Experimental results in comparison with the old method, together with 

the time complexity of the algorithm, which is the same as for the old algo-

rithm, indicate that the proposed method is able to automatically determine the 

input parameter of DBSCAN quite reliably and efficiently. 

Keywords: Clustering. DBSCAN. Empirical rule. Machine learning. Outlier 

detection. Parameter determination. Unsupervised learning 

1 Introduction 

Machine Learning (ML) is one of the core fields of Artificial Intelligence (AI) and is 

concerned with the question of how to construct computer programs that automatical-

ly improve with experience [‎1]. Depending on the nature of the learning data availa-

ble to the learning system, machine learning methods are typically classified into 

three main categories [‎2,‎3]: supervised, unsupervised and reinforcement learning. In 

supervised learning example inputs and their desired outputs are given and the goal is 

to learn a general rule that maps these inputs to their desired outputs. In unsupervised 

learning, on the other hand, no labels are given to the learning algorithm, leaving it on 

its own to find the hidden structure of the data, e.g. to look for the similarities be-

tween the data instances (i.e. clustering [‎4]), or to discover the dependencies between 

the variables in large databases (i.e. association rule mining [‎5]). In reinforcement 

learning the desired input/output pairs are again not presented, however, the algorithm 

is able to estimate the optimal actions by interacting with a dynamic environment and 



based on the outcomes of the more recent actions, while ignoring experiences from 

the past, that were not reinforced recently. 

This research focuses on the most common unsupervised learning method (i.e. 

cluster analysis [‎4,‎6]), and more specifically on one of its successful algorithms the 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [‎7]. As 

mentioned above, in unsupervised learning, learner processes the input data with the 

goal of coming up with some summary or compressed version of the data [‎4]. Cluster-

ing a dataset is a typical example of this type of learning. Clustering is the task of 

grouping a set of objects such that similar objects end up in the same group and dis-

similar objects are diverted into different groups. Clearly, this description is quite 

imprecise and possibly ambiguous. However, quite surprisingly, it is not at all clear 

how to come up with a more rigorous definition [‎4], and since no definition of cluster 

is widely accepted many algorithms have been developed to suit specific domains [‎8], 

each of which using a different induction principle [‎9].  

Due to their diversity, clustering methods are classified into different categories in 

the scientific literature [‎9,‎10,‎11,‎12]. However, despite the slight differences between 

these classifications, they all mention the DBSCAN algorithm as one of the eminent 

methods available. DBSCAN owes its popularity to the group of capabilities it offers 

[‎7]: (1) it does not require the specification of the number of clusters in the dataset 

beforehand, (2) it requires little domain knowledge to determine its input parameter, 

(3) it can find arbitrarily shaped clusters, (4) it has good efficiency on large datasets, 

(5) it has a notion of noise, and is robust to outliers, (6) it is designed in a way that it 

can be supported efficiently by spatial access methods such as R*-trees [‎13], and so 

on. 

DBSCAN algorithm requires two input parameters, namely 𝐸𝑝𝑠  and 𝑀𝑖𝑛𝑃𝑡𝑠 , 

which are considered to be the density parameters of the thinnest cluster acceptable, 

specifying the lowest density which is not considered to be noise. These parameters 

are hence respectively the radius and the minimum number of data objects of the least 

dense cluster possible. The algorithm supports the user in determining the appropriate 

values for these parameters offering a heuristic method, which imposes the user inter-

action based on some graphical representation of the data (presented in section 2.2). 

However, since DBSCAN is sensitive to its input parameters and the parameters have 

significant influences on the clustering result, an automated and more precise method 

for the determination of the input parameters is needed.  

Some notable algorithms targeting this problem are: (1) GRPDBSCAN, which 

combines the grid partition technique and DBSCAN algorithm [‎14], (2) DBSCAN-

GM, that combines Gaussian-Means and DBSCAN algorithms [‎15], and (3) BDE-

DBSCAN, which combines Differential Evolution and DBSCAN algorithms [‎16]. 

Opposed to these methods, which all intend to solve the problem using some other 

techniques, this paper remains with the original idea of the DBSCAN algorithm and 

just tries to omit the user interaction needed, allowing the algorithm to detect the ap-

propriate value itself. This is done using some basic statistical techniques for outlier 

detection. Two different approaches are mentioned in this paper, which apply the 

concept of standard deviation to the problem of outlier detection, namely the empiri-

cal rule for normal distributions and the Chebyshev’s inequality for non-normal dis-



tributions [‎17,‎18]. This work, however, focuses mainly on the application of the em-

pirical rule to outlier detection in normal distributed data, and addresses the Cheby-

shev’s inequality only as a possible solution for non-normal distributions. 

The rest of the paper is organized as follows. Section 2 describes the DBSCAN al-

gorithm and its supporting technique for the determination of its input parameters. In 

Section 3, the above mentioned statistical techniques for outlier detection are present-

ed (i.e. the empirical rule and the Chebyshev’s inequality). Section 4 describes the 

automated technique for the determination of the parameter 𝐸𝑝𝑠. Experimental results 

and the time complexity of the automated technique are then discussed in Section 5. 

Section 6 concludes with a summary and some directions for the feature researches. 

2 DBSCAN: Density-Based Spatial Clustering of Applications 

with Noise 

According to [‎7], the key idea of DBSCAN algorithm is that for each point of the 

cluster the neighborhood of a given radius has to contain at least a minimum number 

of points, i.e. the density in the neighborhood has to exceed some threshold. The fol-

lowing definitions support the realization of this idea. 

Definition 1: (𝐸𝑝𝑠 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 of a point) The 𝐸𝑝𝑠 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 of a 

point 𝑝, denoted by 𝑁𝐸𝑝𝑠(𝑝), is defined by 𝑁𝐸𝑝𝑠(𝑝) =  {𝑞 ∈ 𝐷 | 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠 }. 

Definition 2: (directly density-reachable) A point 𝑝 is directly density-reachable 

from a point 𝑞, w.r.t. 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠, if  

1. 𝑝 ∈ 𝑁𝐸𝑝𝑠(𝑞) and 

2. |𝑁𝐸𝑝𝑠(𝑞) ≥ 𝑀𝑖𝑛𝑃𝑡𝑠| 

The second condition is called core point condition (There are two kinds of points 

in a cluster, points inside of the cluster, called core points, and points on the border of 

the cluster, called border points). 

Definition 3: (density-reachable) A point 𝑝 is density-reachable from a point 𝑞, 

w.r.t. 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠, if there is a chain of points 𝑝1, … , 𝑝𝑛, 𝑝1 = 𝑞, 𝑝𝑛 = 𝑝 such that 

𝑝𝑖+1 is directly density-reachable from 𝑝𝑖 . 

Definition 4: (density-connected) A point 𝑝  is density-connected to a point 𝑞 , 

w.r.t. 𝐸𝑝𝑠 and  𝑀𝑖𝑛𝑃𝑡𝑠 , if there is a point 𝑜  such that both, 𝑝  and 𝑞  are density-

reachable from 𝑜, w.r.t. 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠. 

Definition 5: (cluster) Let 𝐷  be a database of points. A cluster 𝐶 , w.r.t. 

𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠, is a non-empty subset of 𝐷 satisfying the following conditions:  

1.  𝑝, 𝑞: 𝑖𝑓 𝑝  𝐶  and 𝑞  is density-reachable from 𝑝 , w.r.t. 𝐸𝑝𝑠 and  𝑀𝑖𝑛𝑃𝑡𝑠 , then 

𝑞  𝐶. (Maximality) 

2.  𝑝, 𝑞  𝐶: 𝑝 is density-connected to 𝑞, w.r.t. 𝐸𝑃𝑆 and 𝑀𝑖𝑛𝑃𝑡𝑠. (Connectivity)  



Definition 6: (noise) Let 𝐶1, . . . , 𝐶𝑘 be the clusters of the database 𝐷, w.r.t. parame-

ters 𝐸𝑝𝑠𝑖  and 𝑀𝑖𝑛𝑃𝑡𝑠𝑖 ,  𝑖 =  1, … , 𝑘. Then the noise is defined as the set of points in 

the database 𝐷 not belonging to any cluster 𝐶𝑖, i.e. 𝑛𝑜𝑖𝑠𝑒 =  {𝑝 𝜖 𝐷 | 𝑖: 𝑝 𝐶𝑖). 

The following lemmata are important for validating the correctness of the algo-

rithm. Intuitively, they state that having the parameters 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠, a cluster can 

be discovered in a two-step approach. First, choose an arbitrary point from the data-

base satisfying the core point condition as a seed. Second, retrieve all points that are 

density-reachable from the seed, obtaining the cluster containing the seed.  

Lemma 1: Let 𝑝  be a point in 𝐷  and |𝑁𝐸𝑝𝑠(𝑝)|  ≥  𝑀𝑖𝑛𝑃𝑡𝑠 . Then the set 𝑂 =

{𝑜 |𝑜  𝐷 𝑎𝑛𝑑 𝑜 𝑖𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 − 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑝, 𝑤. 𝑟. 𝑡. 𝐸𝑝𝑠 𝑎𝑛𝑑 𝑀𝑖𝑛𝑃𝑡𝑠}  is a 

cluster, w.r.t. 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠.  

Lemma 2: Let 𝐶 be a cluster, w.r.t. 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠, and let 𝑝 be any point in 𝐶 

with |𝑁𝐸𝑝𝑠(𝑝)|  ≥  𝑀𝑖𝑛𝑃𝑡𝑠 . Then 𝐶  equals to the set 𝑂 =  {𝑜 |𝑜 𝑖𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 −

𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑝, 𝑤. 𝑟. 𝑡. 𝐸𝑝𝑠 𝑎𝑛𝑑 𝑀𝑖𝑛𝑃𝑡𝑠}. 

2.1 The Algorithm 

The DBSCAN algorithm can be described as follows: 

Table 1. Algorithm 1: Pseudo-code of the DBSCAN 

DBSCAN Algorithm (Input: 𝑫, 𝑬𝒑𝒔, 𝑴𝒊𝒏𝑷𝒕𝒔) 

1. While (𝐷 has an unclassified
1
 point) 

2. Select an arbitrary unclassified point 𝑝. 

3. If 𝑝 does not satisfy the core point condition, mark it as a noise. 

4. Else retrieve all the density-reachable points from 𝑁𝐸𝑝𝑠(𝑝) forming a cluster con-

taining 𝑁𝐸𝑝𝑠(𝑝) and mark all the member of this cluster as classified. 

5. End While 

2.2 Determining the Parameters 𝑬𝒑𝒔 and 𝑴𝒊𝒏𝑷𝒕𝒔 

DBSCAN offers a simple but effective heuristic method to determine the parameters 

𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠 of the thinnest cluster in the dataset. For a given 𝑘 function 𝑘 − 𝑑𝑖𝑠𝑡 

is defined from the Database 𝐷 to the real numbers, mapping each point to the dis-

tance from its 𝑘 − 𝑡ℎ nearest neighbor. When sorting the points of the dataset in de-

scending order of their 𝑘 − 𝑑𝑖𝑠𝑡 values, the graph of this function gives some hints 

concerning the density distribution in the dataset. This graph is called the sorted 

𝑘 − 𝑑𝑖𝑠𝑡 graph. It is clear that the first point in the first valley of the 𝑀𝑖𝑛𝑃𝑡𝑠 − 𝑑𝑖𝑠𝑡 

                                                           
1  Note that the term unclassified here indicates that it is not determined yet if the point is a 

noise or not. 



graph can be the threshold point with the maximal 𝑀𝑖𝑛𝑃𝑡𝑠 − 𝑑𝑖𝑠𝑡 value in the thin-

nest cluster. All points with a larger 𝑀𝑖𝑛𝑃𝑡𝑠 − 𝑑𝑖𝑠𝑡 value are considered to be noise, 

and all the other points are assigned to some clusters. 

DBSCAN states that according to experiments, the 𝑘 − 𝑑𝑖𝑠𝑡 graphs for 𝑘 > 4 do 

not significantly differ from the 4 − 𝑑𝑖𝑠𝑡 graph and, furthermore, they need consider-

ably more computation. Therefore, it eliminates the parameter 𝑀𝑖𝑛𝑃𝑡𝑠 by setting it to 

4 for all datasets (for 2-dimensional data). The parameter determination method also 

explains, that since in general, it is very difficult to detect the first valley of the 

𝑘 − 𝑑𝑖𝑠𝑡 graph automatically, but it is relatively simple for the user to see this valley 

in a graphical representation, it is suggested to follow an interactive approach for 

determining the threshold point. 

3 Statistical Techniques for Outlier Detection  

The term noise in DBSCAN algorithm is equivalent to an outlier in statistics, which is 

an observation that is far removed from the rest of the observations [‎19]. One of the 

basic statistical techniques for outlier detection is called the empirical rule. The em-

pirical rule is an important rule of thumb, that is used to state the approximate per-

centage of values that lie within a given number of standard deviation from the 𝑚𝑒𝑎𝑛 

of a set of data if the data are normally distributed. The empirical rule, also called the 

68-95-99.7 rule or the three-sigma rule of thumb states that 68.27%, 95.45% and 

99.73% of the values in a normal distribution lie within one, two and three standard 

deviations of the mean [‎17]. One of the practical usages of the empirical rule is as a 

definition of outliers as the data that fall more than three standard deviations from the 

norm in normal distributions [‎20]. 

 

Fig. 1. The Empirical Rule [‎21] 

If there are many points that fall more than three standard deviations from the 

norm, then the distribution is most likely non-normal. In this case, Chebyshev’s ine-

quality, which applies to non-normal distributions, is applicable. Chebyshev’s ine-

quality states that in any probability distribution, at least 1 −
1
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in  𝑘  standard deviations of the 𝑚𝑒𝑎𝑛 [‎17] (e.g. in non-normal distributions at least 

99% of the values lie within 10 standard deviations of the 𝑚𝑒𝑎𝑛). Hence, using the 

Chebyshev’s inequality, the outlier can also be defined as the data that fall outside an 

appropriate number of standard deviations from the mean [‎22]
2
. 

4 Automated Determination of the Parameter Eps 

Setting the 𝑀𝑖𝑛𝑃𝑡𝑠 to 4, determining the parameter 𝐸𝑝𝑠, the algorithm is aiming a 

radius that covers the majority of the 4 − 𝑑𝑖𝑠𝑡 values and stands well as a threshold 

for the specification of the noise values. As mentioned above, the term noise in 

DBSCAN algorithm is equivalent to an outlier in statistics, which is an observation 

that is far removed from the rest of the observations [‎19]. Thus, the idea here is to use 

statistical rules in order to find the threshold value between the accepted 4 − 𝑑𝑖𝑠𝑡 

values and the values considered for the noise points. 

As mentioned above, one of the practical usages of the empirical rule is as a defini-

tion of outliers as the data that fall more than three standard deviations from the norm 

in normal distributions [‎20]. Thus, considering the 4 − 𝑑𝑖𝑠𝑡 values, the value of pa-

rameter 𝐸𝑝𝑠 can be set to their 𝑚𝑒𝑎𝑛 plus three standard deviations. This would cov-

er even more than 99.73% of the calculated 4 − 𝑑𝑖𝑠𝑡 values, since the 4 − 𝑑𝑖𝑠𝑡 values 

smaller than 𝑚𝑒𝑎𝑛 − 3 × 𝑆𝐷 are also covered here. 

Border points and even in general, points closer to the border of the clusters usual-

ly have greater 𝑘 − 𝑑𝑖𝑠𝑡 values, which lead to larger 𝐸𝑝𝑠 values and thus might cause 

two close clusters to be detected as one cluster (Since the parameter 𝑀𝑖𝑛𝑃𝑡𝑠 or 𝑘 is 

set to 4, this problem may be caused mostly by the border points). These relatively 

greater 𝑘 − 𝑑𝑖𝑠𝑡 values, however, do not have any positive effect on the process of 

cluster detection, as the 𝑘 − 𝑑𝑖𝑠𝑡 values of the core points are actually the ones form-

ing the right clusters and at the same time covering the border points. Figure 2 shows 

a case in which the 4 − 𝑑𝑖𝑠𝑡 value of border point 𝑝 is much larger than the 4 − 𝑑𝑖𝑠𝑡 

value of the core point 𝑞,  which can actually cover 𝑝  in its 4 − 𝑑𝑖𝑠𝑡 −
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑. 

 

Fig. 2. 4 − 𝑑𝑖𝑠𝑡 values for example core (𝑞) and border point (𝑝) 

                                                           
2  This work focuses solely on the empirical rule and the normal distributions. However, the 

possibility‎of‎using‎the‎Chebyshev’s‎inequality‎is‎given‎here,‎ in order to show that the gen-

eral idea of using outlier detection techniques for the reason of parameter determination in 

DBSCAN is not limited to the distribution of the data. 

p 

q 



In order to eliminate the negative effect of the 𝑘 − 𝑑𝑖𝑠𝑡 values of the border points, 

the algorithm presented here considers any point with minimum 𝑘 − 𝑑𝑖𝑠𝑡 value which 

covers the border point in its 𝑘 − 𝑑𝑖𝑠𝑡 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑  and replaces the 𝑘 − 𝑑𝑖𝑠𝑡 

value of this border point with the 𝑘 − 𝑑𝑖𝑠𝑡 value of this core point. Thus for a given 

𝑘, function 𝑘 − 𝑑𝑖𝑠𝑡𝑠ˊ is defined from the Dataset 𝐷 to the real numbers, mapping 

each point to the 𝑘 − 𝑑𝑖𝑠𝑡  value of any core point, covering this point in its 𝑘 −
𝑑𝑖𝑠𝑡 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑, with minimum 𝑘 − 𝑑𝑖𝑠𝑡 value. Actually, following this tech-

nique, points are considered in ascending order of their 4 − 𝑑𝑖𝑠𝑡 values, then taking 

each point 𝑝, if the 4 − 𝑑𝑖𝑠𝑡ˊ value for any point in its four nearest neighbors is not 

set so far, this value will be set to the 4 − 𝑑𝑖𝑠𝑡 value of point 𝑝. Using this technique 

for each point, the 𝑘 − 𝑑𝑖𝑠𝑡 value of the smallest cluster, the point can join, would be 

considered. At the end the 𝑚𝑒𝑎𝑛 and the standard deviation of these 𝑘 − 𝑑𝑖𝑠𝑡ˊ values 

which are saved for all points are calculated and the 𝐸𝑝𝑠ˊ value is set to 𝑚𝑒𝑎𝑛 + 3 ×
𝑆𝐷. The following pseudo-code indicates this method. 

Table 2. Algorithm 2: Pseudo-code of the 𝐸𝑝𝑠𝐹𝑖𝑛𝑑𝑒𝑟 

𝑬𝒑𝒔𝑭𝒊𝒏𝒅𝒆𝒓 (Input: 𝐷) 

1. For each point 𝑝 find the four nearest neighbors. 

2. Sort the points in ascending order of theirs 4 − 𝑑𝑖𝑠𝑡 values. 

3. Following the ascending order, take each point 𝑝 and if the 4 − 𝑑𝑖𝑠𝑡ˊ value for 

any of its four nearest neighbors is not set so far, set this value to the 4 − 𝑑𝑖𝑠𝑡 

value of the point 𝑝. 

4. Calculate the 𝑚𝑒𝑎𝑛 of the 4 − 𝑑𝑖𝑠𝑡ˊ values: 𝑚𝑒𝑎𝑛 

5. Calculate the standard deviation of the 4 − 𝑑𝑖𝑠𝑡ˊ values: 𝑆𝐷  

6. Set the 𝐸𝑝𝑠ˊ value to 𝑚𝑒𝑎𝑛 + 3 × 𝑆𝐷. 

5 Experimental Results and Time Complexity 

In this section the experimental results and the time complexity of the automated 

technique proposed in Section 4 (𝐸𝑝𝑠𝐹𝑖𝑛𝑑𝑒𝑟) are discussed. 

5.1 Experimental Results and Discussions 

In this section, the algorithm presented in Section 4 is applied to some datasets. This 

makes the comparison between the old method and the new automated method possi-

ble. All the experiments were performed on Intel(R) Celeron(R) CPU 1.90GHz with 2 

GB RAM on the Microsoft Windows 8 platform. The algorithm and the datasets were 

implemented in Java on Eclipse IDE, MARS.1. Sample datasets are depicted in Fig-

ure 3. The noise percentage for datasets 1 and 2 is 0%, however, datasets 3 and 4 do 

have noise values. 



 

Dataset 1 

 

Dataset 2 

 

Dataset 3 

 

Dataset 4 

Fig. 3. Sample datasets 

In order to show the results of the clustering, each cluster is presented by a differ-

ent shade of gray in Figure 4. Noise points are marked using black color. 

 

Dataset 1 

 

Dataset 2 

 

Dataset 3 

 

Dataset 4 

Fig. 4. Detected clusters 



Figure 5 shows the sorted 4 − 𝑑𝑖𝑠𝑡ˊ graphs of the sample datasets. Here, 𝐸𝑝𝑠 indi-

cates the value determined by the user, according to the visual representation of the 

data, and 𝐸𝑝𝑠ˊ represents the value calculated automatically by the algorithm present-

ed in Section 4 (𝐸𝑝𝑠𝐹𝑖𝑛𝑑𝑒𝑟).  

 
Dataset 1 

𝐸𝑝𝑠 =  6.08  

𝐸𝑝𝑠ˊ =  6.61 

 
Dataset 2 

𝐸𝑝𝑠 =  4.47 

𝐸𝑝𝑠ˊ =  4.71 

 
Dataset 3 

𝐸𝑝𝑠 =  4.47 

𝐸𝑝𝑠ˊ =  6.63 

 
Dataset 4 

𝐸𝑝𝑠 =  4.24 

𝐸𝑝𝑠ˊ =  4.45 

Fig. 5. Sorted 4 − 𝑑𝑖𝑠𝑡ˊ graphs for sample datasets3 

In order to illustrate the problem that may occur with the 𝑘 − 𝑑𝑖𝑠𝑡 value of the 

border points (discussed in Section 4), dataset 5 is presented here (Figure 6). This 

dataset is defined in a way that nested and very close clusters are available in it. 

                                                           
3  Note that the larger difference between 𝐸𝑝𝑠 and 𝐸𝑝𝑠ˊ for Dataset 3 is caused by the larger 

difference between the 4 − 𝑑𝑖𝑠𝑡ˊ values of those data instances considered as noise and the 

rest of the data instances. This difference has no effect on the clustering result, since 𝐸𝑝𝑠 

and 𝐸𝑝𝑠ˊ are actually threshold values and since there are no data instances with 4 − 𝑑𝑖𝑠𝑡ˊ 
values between 𝐸𝑝𝑠 and 𝐸𝑝𝑠ˊ, the clustering result would remain the same. 
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Dataset 5 

Fig. 6. Dataset 5 

Result 1 in Figure 7, indicates the clustering result according to the normal 

4 − 𝑑𝑖𝑠𝑡 values, which were considered by the old method. It is clear that the algo-

rithm has failed to distinguish the nested clusters. Result 2 in Figure 7, on the other 

hand, shows the clustering result according to the normal 4 − 𝑑𝑖𝑠𝑡ˊ values. Here, the 

𝐸𝑝𝑠 value calculated is smaller and hence the algorithm is able to detect the nested 

clusters easily. Graph 1 and Graph 2 in Figure 7 show here the 4 − 𝑑𝑖𝑠𝑡  and 4 −
𝑑𝑖𝑠𝑡ˊ  values calculated using each of the techniques, together with the corresponding 

𝐸𝑝𝑠 and 𝐸𝑝𝑠ˊ values. 

 

Result 1 

 

Result 2 

 

Graph 1 

𝐸𝑝𝑠 =  5.10 

𝐸𝑝𝑠ˊ =  4.82 

 

Graph 2 

𝐸𝑝𝑠 =  3.61 

𝐸𝑝𝑠ˊ =  4.34 

Fig. 7. Different clustering results for dataset 5 
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It should be pointed out that even though the experiments presented here were all for 

2-dimensional datasets, the idea can be applied to high-dimensional datasets as well. 

This is clearly possible, since the calculation of the distance between the points and 

the application of standard deviation remains the same for high-dimensional datasets. 

The only point that must be considered is that, the DBSCAN has suggested 4 as the 

𝑀𝑖𝑛𝑃𝑡𝑠 value just for 2-dimensional datasets. However, as mentioned before,  𝐸𝑝𝑠 

and 𝑀𝑖𝑛𝑃𝑡𝑠 are the density parameters of the thinnest cluster; therefore it is always 

possible to determine the 𝐸𝑝𝑠  by keeping the 𝑀𝑖𝑛𝑃𝑡𝑠  parameter small enough (or 

even just by setting it to one). The diversity of the density may always be described 

with different radii containing a predefined number of points (𝑀𝑖𝑛𝑃𝑡𝑠). 

5.2 Time Complexity 

Since the algorithm needs to find the four nearest neighbors of each point in the da-

taset, the time complexity of the algorithm cannot be less than 𝑂(𝑛2). Of course, 

since these points should have been also retrieved in the user interaction technique, 

and the only difference here is the calculation of the 𝑚𝑒𝑎𝑛 and the standard deviation, 

which can be done in 𝑂(𝑛), it is clear that the time complexity of the automated tech-

nique presented here, is the same as for the old method. Thus concerning the automat-

ed abilities of this technique, it is obvious that the application of this approach in the 

determination of the 𝐸𝑝𝑠 parameter is quite reasonable. 

6 Conclusion 

This paper proposes a simple and effective method to automatically determine the 

input parameter 𝐸𝑝𝑠 of DBSCAN. The work remains with the original idea of the 

DBSCAN algorithm and just tries to omit the user interaction needed, and allow the 

algorithm to detect the appropriate value itself. This is done using some basic statisti-

cal techniques for outlier detection. Two different approaches are mentioned here, 

which apply the concept of standard deviation to the problem of outlier detection, 

namely the empirical rule for normal distributions and Chebyshev’s inequality for 

non-normal distributions. One of the practical usages of the empirical rule is as a def-

inition of outliers as the data that fall more than three standard deviations from the 

norm in normal distributions. Thus, the value of parameter 𝐸𝑝𝑠 can be set to 𝑚𝑒𝑎𝑛 

plus three standard deviations. This value would cover the majority of the 𝑘 − 𝑑𝑖𝑠𝑡ˊ 
values and stands well as a threshold for the specification of the noise values. This 

work also mentioned the problem which occurs with the 𝑘 − 𝑑𝑖𝑠𝑡 values of the border 

points, and suggests a more accurate method for the determination of the values, 

based on which 𝐸𝑝𝑠 is calculated (i.e. 𝑘 − 𝑑𝑖𝑠𝑡ˊ values). Experimental results and the 

time complexity of the proposed algorithm suggest that the application of this tech-

nique in the determination of the 𝐸𝑝𝑠 parameter is quite reasonable. The concentra-

tion of this research was mainly on the application of the empirical rule to outlier 

detection in normal distributed data. The future works will have to consider the Che-

byshev’s inequality for possible non-normal distributions of 𝑘 − 𝑑𝑖𝑠𝑡ˊ values. 
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