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Cinderella versus the wicked Stepmother

Marijke H.L. Bodlaender1, Cor A.J. Hurkens2, Vincent J.J. Kusters2,
Frank Staals2, Gerhard J. Woeginger2, and Hans Zantema2

1 Dept. of Information and Computing Sciences, Universiteit Utrecht, Netherlands
2 Dept. of Mathematics and Computer Science, TU Eindhoven, Netherlands

Abstract. We investigate a combinatorial two-player game, in which
one player wants to keep the behavior of an underlying water-bucket
system stable whereas the other player wants to cause overflows. This
game is motivated by data management applications in wireless sen-
sor networks. We construct optimal strategies and characterize optimal
bucket sizes for many instances of this game.

1 Introduction

Motivated by a data management application in wireless sensor networks, Ben-
der & al [1] study the minimum-backlog problem which is a two-player game on
an undirected graph. The vertices of the graph contain buckets (which model
bu↵ers) that can store water (which models data). In every time step the ad-
versary distributes exactly one liter of water over the buckets. The player then
moves from his current vertex to an adjacent one and empties the corresponding
bucket. The player’s objective is to minimize the maximum amount of water in
any bucket at any time, or in other words, to prevent the buckets from over-
flowing while using the smallest possible bucket size. Bodlaender & al [2] discuss
another variant where in every time step the player can empty a subset of buckets
standing in an arbitrary independent set in the graph. Polishchuk & Suomela [7]
investigate the variant of the minimum-backlog problem where the underlying
metric space is not a graph but the Euclidean plane. Chrobak & al [3] discuss
related scenarios in undirected graphs where data/water arrives continuously
over time and where the player can (continuously) empty an entire independent
set of buckets/bu↵ers; if the player spends t time units on a bucket set, then the
contents of each such bucket is decreased by t. Note that in [1] the graph struc-
ture constrains the route taken by the player, whereas in [3] the graph structure
constrains the sets of buckets that the player can empty simultaneously.

In the current paper we will concentrate on discrete scenarios where
data/water arrives in rounds and where in every round the player can empty
certain subsets of the buckets. One of the simplest cases of our game is as fol-
lows [8, 6].

“Five empty buckets of capacity b stand in the corners of a regular pentagon.
Cinderella and her wicked Stepmother play a game that goes through a sequence
of rounds: at the beginning of every round, the Stepmother takes one liter of
water from the nearby river, and distributes it arbitrarily over the five buckets.



Then Cinderella chooses a pair of neighboring buckets, empties them into the
river, and puts them back into the pentagon. Then the next round begins. The
Stepmother’s goal is to make one of these buckets overflow. Cinderella’s goal is
to prevent this. For which bucket sizes b can the Stepmother eventually enforce
a bucket overflow? And for which bucket sizes can Cinderella keep the game
running forever?”

We study a general bucket game BG(n, c) for integers n and c with 1 
c  n � 1, where there are n � 2 buckets standing in a circle. Throughout we
will use the term Cinderella to denote the player and the wicked Stepmother
to denote the adversary. In every round the Stepmother first distributes one
liter over the n buckets, and then Cinderella empties an arbitrary group of c
consecutive buckets. The Stepmother wants to reach a bucket overflow, and
Cinderella wants to avoid this. Clearly the above Cinderella puzzle coincides
with BG(5, 2). We define F 0(n, c) as the infimum of all bucket sizes for which
Cinderella can keep the game running forever, and we furthermore introduce
the quantity F (n, c) = F 0(n, c) � 1. If Cinderella consistently avoids overflows
for buckets of size F 0(n, c), then at the end of every round she will only leave
buckets with contents F (n, c) or less.

Summary of results. Table 1 lists the values F (n, c) for all games with n  12
buckets. For every single entry in this table with n  10 we have proofs that
were constructed by humans (and that are presented in this paper) as well as
computerized proofs (that have been done with the SMT solver YICES [5]). For
some of the entries in the lines n = 11 and n = 12, we only have computer
proofs.

The entries in the table might seem somewhat chaotic at first sight. But
taking a second look, the reader perhaps notices that the topmost numbers 1,
1/2, 1/3, . . ., 1/11 in the columns are the reciprocals of the positive integers.
This indeed is a (fairly shallow) mathematical fact which we present in Section 3,
and which says that F (c+1, c) = 1/c for all c � 1. Next let us discuss the values
F (c+ 2, c) immediately below the topmost numbers, which are

3/2, 1, 5/9, 1/2, 7/20, 1/3, 9/35, 1/4, 11/54, 1/5.

We note that the values in the even positions again are the reciprocals of integers.
Indeed Section 2 shows that the function values F (n, c) only depend on the ratio
n/c, which for even c = 2s implies F (2s + 2, 2s) = F (s + 1, s) = 1/s. Section 3
shows that the remaining values in the odd positions satisfy F (c+ 2, c) = (2c+
4)/(c2 + 3c). By stepping further down in the columns, we meet the values
F (c+ 3, c) which read

11/6, 1, 1, 17/30, 1/2, 1/2, 69/196, 1/3, 1/3.

The values F (3s + 3, 3s) = F (s + 1, s) = 1/s are of course once again the
reciprocals of the integers. Section 3 shows that also the values F (3s+2, 3s�1) =
1/s are such reciprocals, and it fully explains the (more complicated) structure
of the remaining values F (3s+ 1, 3s� 2).
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n\c 1 2 3 4 5 6 7 8 9 10

2 1 – – – – – – – – –

3 3/2 1/2 – – – – – – – –

4 11/6 1 1/3 – – – – – – –

5 25/12 1 5/9 1/4 – – – – – –

6 137/60 3/2 1 1/2 1/5 – – – – –

7 49/20 3/2 1 17/30 7/20 1/6 – – – –

8 363/140 11/6 1 1 1/2 1/3 1/7 – – –

9 761/280 11/6 3/2 1 299/525 1/2 9/35 1/8 – –

10 7129/2520 25/12 3/2 1 1 5/9 69/196 1/4 1/9 –

11 7381/2520 25/12 3/2 1 1 77/135 1/2 1/3 11/54 1/10

12 83711/27720 137/60 11/6 3/2 1 1 5/9 1/2 1/3 1/5

Table 1. Summary of the values F (n, c) for n  12 buckets. For the entries with
n  10, we even have proofs constructed by humans.

Moving further down in Table 1, we eventually hit an area that entirely con-
sists of 1-entries. The uppermost 1-entry in every column is F (2c, c) = F (2, 1) =
1, and these entries form the so-called half-diagonal of the table (the diagonal
where c is half of n). This half-diagonal is a natural separation line, and it turns
out that the combinatorics of the games below the half-diagonal behaves quite
di↵erently from the combinatorics of the games above the half-diagonal. Go-
ing even further down, we see that the lowermost 1-entry in every column is
F (3c�1, c) = 1. In other words F (n, c) = 1 holds whenever 2c  n  3c�1, and
this is a mathematical theorem which we establish in Section 5. This theorem
actually is our main result, and its proof is long and involved and uses quite
delicate invariants.

What else is going on below the half-diagonal? The first column lists the
harmonic numbers Hk = 1+ 1

2 +
1
3 + . . .+ 1

k . The second column (below the half-
diagonal) seems to list again the harmonic numbers, but this time with every
term occurring twice. And also the third column (below the half-diagonal) seems
to list the harmonic numbers, with every term occurring thrice. And so on. We
settle the behavior of the first column in Section 5, and we furthermore derive
some partial results on the other columns. Many questions remain open.

Also the global structure of Table 1 shows many interesting properties. Of
course, the values in every row form a non-increasing sequence (since c increases
and Cinderella becomes more powerful), and for similar reasons the values in
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every column form a non-decreasing sequence. In fact an even stronger property
holds true (see Section 2): the function F (n, c) is non-decreasing in the ratio
n/c. Here is one application of this fact: from F (3, 2) = F (8, 5) = 1/2 and from
3/2 < 11/7 < 8/5 we immediately deduce F (11, 7) = 1/2.

Organization of the paper. Section 2 states simple observations, summarizes the
notation, and explains the general setup of our proofs. Section 3 deals with the
games above the half-diagonal, and Section 5 deals with the games below the
half-diagonal. Section 6 gives some conclusions.

2 Preliminaries, notations, and conventions

The n buckets in any fixed game BG(n, c) are ordered along the circle and
denoted 1, 2, . . . , n. The numbering of buckets is always taken modulo n, so that
k and n+ k denote the same bucket. We use d(i, j) = min{|i� j|, n� |i� j|} to
denote the distance between buckets i and j along the circle. If d(i, j) � c, then
Cinderella can not simultaneously empty i and j within a single round. A subset
S of buckets is called independent, if it does not contain two adjacent buckets.
The family I consists of all independent bucket subsets.

The contents of the buckets at a particular moment in time are often summa-
rized in a vector x = (x1, . . . , xn) where xi denotes the current contents of bucket
i. For a subset S of the buckets, we use x(S) =

P
i2S xi. To keep the notation

simple, we write x(i, j) short for x({i, j}) and x(i, j, k) short for x({i, j, k}), and
we use xi and x(i) interchangeably.

The following two lemmas imply that function F (n, c) only depends on the
ratio n/c, and that it is non-decreasing in this ratio.

Lemma 1. F (�n,�c) = F (n, c) for all integers � � 1.

Proof. Consider an arbitrary strategy for the Stepmother for BG(n, c). The
Stepmother can emulate this strategy in BG(�n,�c) by using the buckets
�, 2�, . . . , n�. This yields F (�n,�c) � F (n, c). Vice versa, Cinderella can carry
over strategies from BG(n, c) to BG(�n,�c). She cuts the circle into n intervals
with � buckets, treats every interval as a super-bucket, and uses her strategy for
BG(n, c) on the super-buckets. This yields F (�n,�c)  F (n, c). ⇤
Lemma 2. (Monotonicity lemma) F (n1, c1)  F (n2, c2) whenever n1/c1 
n2/c2.

Proof. This follows from F (n1, c1) = F (n1n2, c1n2)  F (n1n2, c2n1) =
F (n2, c2). ⇤

By the definition of F 0(n, c), Cinderella wins the game BG(n, c) if the bucket
size is strictly larger than F 0(n, c), and the Stepmother wins the game if the
bucket size is strictly smaller than F 0(n, c). What happens at the threshold
F 0(n, c)?

Lemma 3. If BG(n, c) is played with buckets of size F 0(n, c), then Cinderella
can keep the game running forever.
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Proof. Let G(n, c,R) denote the maximum amount of water that the Stepmother
can accumulate in some bucket within the first R rounds of game BG(n, c); it
can be proved by an inductive argument that this maximum indeed exists.

Now suppose that the Stepmother could enforce an overflow for buckets of
size F 0(n, c). Then she can enforce this overflow after a finite number R of
rounds, which means G(n, c,R) > F 0(n, c). But then within R rounds the Step-
mother could as well enforce overflows for any bucket size between F 0(n, c) and
G(n, c,R), which conflicts with the definition of F 0(n, c). ⇤

Lower bounds from balancing Stepmothers. Our lower bound arguments for
F (n, c) use a special adversary which we call balancing Stepmother. A balanc-
ing Stepmother balances the water levels in certain buckets, and works in two
phases. During the first phase, the Stepmother always distributes her liter in
such a way that all n buckets are filled to the same level. This common filling
level is 1/n in the first round, and in later rounds increases and converges to
1/c. The first phase ends, when the common filling level exceeds 1/c� " (where
" is a tiny positive real number that can be made arbitrarily close to 0). The set
of n� c buckets that are filled to level L1 ⇡ 1/c at the end of the last round of
the first phase is denoted by S1.

In the second phase, we will usually ignore the dependence of our bounds
on ", so that the presentation remains simple and our formulas stay clean. The
second phase goes through n� c�1 further rounds. At the beginning of the r-th
one of these rounds (r = 1, . . . , n�c�1), there are (n�c)�r+1 buckets filled to
the same level Lr that Cinderella could not empty in the preceding round; these
buckets form the set Sr. The balancing Stepmother then picks an appropriate
set Tr ◆ Sr of buckets, such that in the current round Cinderella must leave at
least (n� c)� r buckets in Tr untouched. All buckets in Tr are then filled to the
same level Lr+1 = (|Sr|Lr+1)/|Tr|. At the end of the last round n�c�1, there
remains a single non-empty bucket whose contents Ln�c�1 forms the resulting
lower bound.

Upper bounds from invariants. Our upper bound arguments for F (n, c) are based
on appropriate systems of invariants that (i) can be maintained by Cinderella,
and that (ii) imply that every bucket contents remains below F (n, c). A typi-
cal invariant system bounds the contents of every bucket by xi < F (n, c), and
furthermore bounds the overall contents of certain groups of buckets. All invari-
ants are trivially satisfied at the beginning of the first round when all buckets
are empty. In our proofs we usually assume inductively that these invariants
are satisfied at the beginning of some fixed round (just before the Stepmother
moves), and then show that Cinderella can re-establish them at the end of the
round. In doing this, we always let xi denote the contents of bucket i at the
beginning of the round, and we always let yi denote the contents of bucket i
after the Stepmother has moved.
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3 Above the half-diagonal

By definition the games BG(n, c) above the half-diagonal satisfy n < 2c. It is not
hard to see that all these games satisfy F (n, c) < 1 (as at the end of her move,
Cinderella can keep the total amount of water in the system below n/c� 1). We
fully understand the games BG(c+ 1, c), BG(c+ 2, c), and BG(c+ 3, c).

Theorem 1. F (c+ 1, c) = 1/c holds for all c � 1.

Proof. (Upper bound) As invariant, Cinderella always leaves a single bucket
untouched whose contents is below 1/c. The Stepmother adds one liter to the
system and increases the total amount of water to less than (c + 1)/c. By av-
eraging, one of the c+ 1 buckets has contents below 1/c, and that’s the bucket
that Cinderella does not touch in her move.

(Lower bound) In her first phase, the balancing Stepmother brings the con-
tents of all buckets arbitrarily close to 1/c. ⇤

Theorem 2. F (c + 2, c) = (2c + 4)/(c2 + 3c) holds for all odd c � 1, and
F (c+ 2, c) = 2/c holds for all even c � 2.

Theorem 3. The values F (c+ 3, c) behave as follows for c � 1.

(i) F (3s+ 2, 3s� 1) = 1/s
(ii) F (3s+ 3, 3s) = 1/s

(iii) F (3s+ 4, 3s+ 1) =
(s+ 1)(6s+ 11)

(s+ 2)(2s+ 3)(3s+ 1)

Theorem 4. F (9, 5) = 299/525.

The proofs of Theorems 2, 3 and 4 are to be found in the subsections below.
It is easily verified that these theorems (together with monotonicity) imply all
entries for n  10 above the half-diagonal of Table 1.

We think that also all values F (c+ 4, c) are within reach and could be fully
characterized, if one invests su�cient time and energy. We actually determined
many values F (n, c) above the half-diagonal with the help of computer programs.
For instance we know that F (13, 9) = 37/105 and F (17, 13) = 1961/7605, and
it took us hours of computation time to establish F (16, 11) = 252/715. We
see many patterns and regularities in the data, but we can not find a unifying
conjecture that would systematically cover all possible cases; certain divisibility
properties seem to kick in and totally mess up the structure. Our data suggests
the following conjecture (which is fairly weak and only covers a small part of the
unknown area).

Conjecture 1. F (n, c) = 1/2 holds for all n and c with 3/2  n/c < 5/3.
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3.1 The proof of Theorem 2

Since monotonicity settles the cases with even c, we only discuss the games where
c is odd (and n = c+ 2).

(Upper bound) At the end of every round, Cinderella leaves two non-empty
buckets (say buckets 1 and 2) whose loads x1 and x2 satisfy the following two
invariants:

x(1, 2) < 2/c (1a)

x1, x2 < L2 := (2c+ 4)/(c2 + 3c) (1b)

Then the Stepmother moves and yields bucket contents y1, . . . , yc+2. Cinderella
maintains the invariants by leaving a pair j, j + 1 of neighboring buckets with
smallest total contents. Since the Stepmother only adds a single liter, invariant
(1a) implies

c+2X

i=1

yi < (c+ 2)/c. (2)

By averaging we get y(j, j+1)  (2
P

yi)/(c+2) < 2/c, which ensures invariant
(1a). Next, suppose for the sake of contradiction that yj � L2. Partition the
remaining c + 1 buckets (except bucket j) into (c + 1)/2 pairs of neighboring
buckets. The total contents of every such pair is at least y(j, j + 1) � L2, which
implies

Pc+2
i=1 yi � 1

2 (c + 3)L2 = (c + 2)/c, and thus contradicts (2). Hence
yj < L2, and an analogous argument yields yj+1 < L2.

(Lower bound) The first phase of the balancing Stepmother ends with two
buckets (say 1 and 2) of contents very close to 1/c. In the second phase, the
Stepmother chooses set T1 to contain buckets 1 and 2 together with all buckets
with even numbers; note that |T1| = (c+3)/2. Then all buckets in T1 are brought
to level at least (2/c + 1)/|T1| = L2. Since Cinderella cannot simultaneously
empty all buckets in T1, we get F (c+ 2, c) � L2.

3.2 The proof of Theorem 3.(i) and (ii)

Monotonicity and Theorem 1 yield the lower bound F (3s+ 2, 3s� 1) � F (3s+
3, 3s) = F (s + 1, s) = 1/s. Hence we will concentrate on the upper bound for
the game with n = 3s+ 2 buckets and c = 3s� 1.

At the end of some fixed round Cinderella leaves three adjacent buckets, say
the buckets 3, 4, 5. She always maintains the following two invariants.

x4 < 1/s (3a)

x(3, 5) < 1/s (3b)

The Stepmother adds one liter to the system and brings the contents to
y1, y2, . . . , y3s+2. A triple is a group of three consecutive buckets i, i + 1, i + 2
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in the circle. A triple is called good, if y(i, i + 1, i + 2) < 1/s. By emptying all
buckets outside a good triple, Cinderella can maintain the invariants. Hence we
assume from now on that there is no good triple.

We denote by W the total amount of water in all buckets except bucket 4.
Invariant (3b) implies W < 1 + 1/s. Since there are no good triples, we have
y(1, 2, 3) � 1/s and y(5, 6, 7) � 1/s. By subtracting these two inequalities from
W < 1 + 1/s, we get

3s+2X

i=8

yi < 1� 1/s. (4)

Next suppose for the sake of contradiction that y3i+2 � 1/s holds for some i
with 2  i  s. Then the 3i� 6 buckets 8, 9, . . . , 3i+ 1 and the 3s� 3i buckets
3i + 3, 3i + 4, . . . , 3s + 2 can be divided into s � 2 non-good triples. Therefore
the overall amount of water in these s� 2 triples together with y3i+2 would be
at least (s� 1)/s, which contradicts (4). This contradiction implies y3i+2 < 1/s
for 2  i  s. Furthermore we assume y(3i + 1, 3i + 3) � 1/s, since otherwise
Cinderella could easily maintain the invariants by emptying all buckets except
the triple 3i + 1, 3i + 2, 3i + 3. Summing these s � 1 inequalities for 2  i  s
yields

sX

i=2

y3i+1 +
sX

i=2

y3i+3 � 1� 1/s. (5)

If y(6, 8) � 1/s, then (5) yields that the Stepmother has added her entire liter to
the buckets outside the triple 3, 4, 5, and Cinderella can maintain all invariants
by reverting the system to the preceding state. Hence we assume from now on
y(6, 8) < 1/s, and a symmetric argument yields y(3s + 2, 2) < 1/s. If y7 < 1/s
or y1 < 1/s, then Cinderella maintains the invariants by emptying everything
except the triple 6, 7, 8, respectively by emptying everything except the triple
3s+ 2, 1, 2. Hence we assume from now y7 � 1/s and y1 � 1/s.

Finally note that the 3s� 5 buckets 8, 9, 10, . . . , 3s+2 contain s� 2 pairwise
disjoint triples, each of which is non-good and has total contents at least 1/s.
Together with y1 � 1/s and y7 � 1/s this shows that the Stepmother must have
added her entire liter to the buckets 7, 8, 9, 10, . . . , 3s + 2, and 1. By emptying
these buckets, Cinderella reverts the system to the preceding state and maintains
all invariants.
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3.3 The proof of Theorem 3.(iii)

We discuss the game with n = 3s + 4 and c = 3s + 1. For s � 1, we introduce
three parameters L1, L2, L3 by

L1 =
1

3s+ 1

L2 =
3s+ 4

(2s+ 3)(3s+ 1)

L3 =
(s+ 1)(6s+ 11)

(s+ 2)(2s+ 3)(3s+ 1)

Note that these three parameters satisfy

L2 =
3L1 + 1

2s+ 3
and L3 =

2L2 + 1

s+ 2
. (6)

Furthermore, we have

L1  L2  L3  2L2  3L1, (7)

and finally there is the useful inequality

3L1 + 1  (s+ 1)L3 + 2L2. (8)

(Upper bound) At the end of some fixed round Cinderella leaves three non-
empty buckets, say buckets 1, 2, 3. She maintains the following three invariants.

xi < L3 for 1  i  3 (9a)

x(i, j) < 2L2 for 1  i < j  3 (9b)

x(1, 2, 3) < 3L1 (9c)

Then the Stepmother moves, and raises the bucket contents to y1, y2, . . . , y3s+4.
By invariant (9c) the overall amount of water in the system is bounded by

3s+4X

j=1

yj < 3L1 + 1. (10)

A bucket i with yi � L3 is called large. A triple is a group of three consecutive
buckets i, i+1, i+2 in the circle. A triple is called good, if (i) none of its buckets
is large and (ii) y(i, i+1, i+2) < 2L2. If Cinderella empties all buckets outside a
good triple, she automatically maintains the invariants. Hence we assume from
now on that there is no good triple.

Lemma 4. If there is no good triple, then there also are no large buckets.
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Proof. We distinguish several cases on the number ` of large buckets. The overall
amount of water in the system is at least `L3, and below 3L1 + 1 by (10). By
using (8) and (7) this yields

`L3 < 3L1 + 1  (s+ 1)L3 + 2L2  (s+ 3)L3.

Therefore `  s + 2. If ` = s + 2 and at most two of the buckets 1, 2, 3 are
large, then (9b) implies that the overall amount W of water in the large buckets
satisfies

(s+ 2)L3  W < 2L2 + 1,

which contradicts (6). If ` = s + 2 and all three buckets 1, 2, 3 are large, then
these s+2 large buckets divide the 2s+2 non-large buckets into at most s non-
empty intervals along the circle. One of these intervals contains at least three
non-large buckets, and hence a non-good triple whose total contents is at least
2L2. Then the overall amount W of water in the large buckets plus the water in
this non-good triple satisfies

(s+ 2)L3 + 2L2  W < 3L1 + 1,

which contradicts (8). In the remaining cases we have `  s+ 1.
If ` � 1, the large buckets divide the 3s + 4 � ` non-large buckets into `

intervals along the circle. If an interval consists of k non-large buckets, we can
find bk/3c pairwise disjoint triples in this interval. It can be seen that altogether
we find at least s+2� ` pairwise disjoint triples in all ` intervals. Each of these
triples is non-good and has total contents at least 2L2. By applying (10) the
total contents W of all buckets satisfies

`L3 + 2L2(s+ 2� `)  W < 3L1 + 1.

Since L3 � 2L2  0, the expression in the left hand side is decreasing in `.
Together with `  s+1 this yields (s+1)L3+2L2 < 3L1+1, which contradicts
(8). This leaves ` = 0 as the only possible case. ut

By the lemma there is no large bucket, and we see that all buckets a priori
satisfy invariant (9a). Consider a fixed bucket i, and divide the remaining 3s+3
buckets into s+ 1 non-good triples. Then

yi + (s+ 1) · 2L2 
3s+4X

j=1

yj < 3L1 + 1 = (2s+ 3)L2,

which implies yi < L2. Hence any pair of buckets satisfies invariant (9b). By
averaging, there exists a triple of buckets whose total contents is

yj + yj+1 + yj+2 < 3 · 3L1 + 1

3s+ 4
= 3L1.

Cinderella empties all buckets except this triple, and thereby also fulfills invariant
(9c).
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(Lower bound) The first phase of the balancing Stepmother ends with three
buckets (say buckets 1, 2, 3) having contents very close to L1. The second phase
goes through two further rounds.

In the first of these rounds, the Stepmother selects the set T1 to contain all
buckets except the buckets 3i+ 1 with i = 1, . . . , s+ 1. Then T1 contains 2s+ 3
buckets which the Stepmother all brings to contents L2. Cinderella leaves a set
S2 of two buckets with contents L2; these two buckets are either adjacent (say
1 and 2) or separated by a single other bucket (say buckets 3s+ 4 and 2).

In the second round, the Stepmother selects the set T2 to contain the two
buckets in set S2 together with the buckets 3i + 2 with i = 1, . . . , s. Then
T2 consists of s + 2 buckets which the Stepmother all brings to contents L3.
Cinderella must leave one bucket with contents L3 at the end of the round.

4 The proof of Theorem 4

(Upper bound) Assume that in the game BG(9, 5), Cinderella leaves a bucket
configuration that satisfies the following four invariants.

xi < 299/525 ⇡ 0.569 for 1  i  9 (11a)

x(S) < 124/175 ⇡ 0.708 for all S with |S| = 2 (11b)

x(S) < 27/35 ⇡ 0.771 for all S with |S| = 3 (11c)

x(S) < 4/5 = 0.800 for all S with |S| = 4 (11d)

The Stepmother moves and raises the bucket contents from x1, . . . , x9 to
y1, . . . , y9. Note that

P9
i=1 yi < 9/5 by (11d). A quadruple is a set of four

consecutive buckets in the circle. A quadruple is called good, if its four buckets
satisfy (11a)–(11d). If there is a good quadruple, then Cinderella can maintain
the invariants by emptying all buckets outside the quadruple.

Lemma 5. If yj � 299/525 for some j, then Cinderella can maintain the in-
variants.

Proof. A bucket j with yj � 299/525 =: L is called large. If the Stepmother
leaves three large buckets i, j, k, then x(i, j, k) � y(i, j, k) � 1 � 3L � 1 =
124/175. This implies that xi, xj , xk all are non-zero, since otherwise two of
these buckets would have violated (11b). Hence i, j, k all belong to the quadruple
that Cinderella did not touch in the preceding round. If Cinderella empties this
quadruple (together with some fifth bucket), the remaining volume of water
decreases to 9/5� 3L < 124/175, and all invariants are maintained.

If the Stepmother leaves two large buckets i and j, then Cinderella empties
these large buckets (together with three other buckets). The remaining volume
of water decreases to 9/5� 2L < 124/175, and all invariants are maintained.

Finally assume that the Stepmother leaves a single large bucket, which with-
out loss of generality is bucket 1. Then y(2, 3, 4, 5) + y(6, 7, 8, 9)  9/5 � L <
2 · 124/175, which implies that one of the quadruples 2, 3, 4, 5 and 6, 7, 8, 9 must
be good. ut
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Lemma 6. If yj � 62/175 for some j, then Cinderella can maintain the invari-
ants.

Proof. By the preceding lemma we assume yi < 299/525 for all i. We assume
furthermore that bucket 1 with y1 � 62/175 is the fullest bucket, and that the
quadruples 2, 3, 4, 5 and 6, 7, 8, 9 both are non-good (so that the total contents
of either quadruple is at least 124/175). If the quadruple 2, 3, 4, 5 violates (11c)
or (11d), then we would get the contradiction

y1 + y(2, 3, 4, 5) + y(6, 7, 8, 9) � 62/175 + 27/35 + 124/175 > 9/5.

Hence the quadruple 2, 3, 4, 5 contains two buckets b1, b2 that violate (11b) with
y(b1, b2) � 124/175. Symmetric arguments show that the quadruple 6, 7, 8, 9
contains two buckets b3, b4 with y(b3, b4) � 124/175.

Let T = {1, b1, b2, b3, b4} and note x(T ) � y(T ) � 1 � 27/35. Now (11c)
implies that T contains all the four buckets that Cinderella did not touch in the
preceding round. By emptying this quadruple (together with some fifth bucket),
the remaining volume of water goes below 124/175 and all invariants are main-
tained. ut

By the above lemmas we assume from now on yi < 62/175 for all i, so that
invariants (11a) and (11b) become harmless. Consider an arbitrary bucket k,
and consider the partition of the remaining eight buckets into two quadruples
T1 and T2, so that

yk < 9/5� y(T1)� y(T2). (12)

We may assume that both quadruples T1 and T2 are non-good. Then the lower
bounds y(T1), y(T2) � 27/35 and (12) together yield yk < 9/35. Since k was an
arbitrary bucket, this means that every bucket triple satisfies (11c), which also
makes invariant (11c) harmless. Since T1 and T2 are non-good, we now conclude
y(T1), y(T2) � 4/5. But then (12) yields yk < 1/5 for all k, and any move of
Cinderella will maintain all invariants. This completes the proof.

(Lower bound) The first phase of the balancing Stepmother ends with four
consecutive buckets (say buckets 1, 2, 3, 4) having contents very close to 1/5. The
second phase goes through three further rounds.

In the first of these rounds, the Stepmother uses set T1 = {1, 2, 3, 4, 6, 7, 8}
with all buckets except 5 and 9. The Stepmother brings every bucket in T1 to
contents 9/35. Cinderella leaves a set of four buckets, at least three of which are
in T1. These three buckets are either adjacent (say 2, 3, 4 in this first case) or
separated by a single empty bucket (say 3, 4, 6 in the second case).

In the second round the Stepmother selects the set T2 to contain five
buckets; in the first case she uses T2 = {2, 3, 4, 7, 8} and in the second case
T2 = {3, 4, 6, 7, 8}. The Stepmother brings every bucket in T2 to contents 62/175.
Cinderella leaves a set of four buckets, at least two of which are in T2. We rename
the buckets so that 1 and b 2 {2, 3, 4} keep their contents 62/175.

In the third round the Stepmother uses T3 = {1, b, 6}, and fills these three
buckets up to level 299/525. Cinderella must leave at least one such bucket with
contents 299/525 at the end of the round.
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5 Below the half-diagonal

By definition the games BG(n, c) below the half-diagonal satisfy n � 2c. For
these games the harmonic sums Hk = 1 + 1

2 + 1
3 + 1

4 + . . . + 1
k seem to play a

major role. The following theorem has been observed before by Dietz & Sleator
[4] and Chrobak & al. [3].

Theorem 5. F (n, 1) = Hn�1 holds for all n � 2.

Proof. (Upper bound) Let xi denote the contents of bucket i at the beginning
of some round. We argue that Cinderella can maintain the following invariants.

x(T ) < (1 +Hn�1 �H|T |) |T | for all bucket sets T (13)

The Stepmother raises the bucket contents to y1, . . . , yn, and we assume that
yn � yi for all i. Then for any bucket set T ✓ {1, . . . , n� 1} we have

1

|T | y(T )  1

|T |+ 1
(y(T ) + yn)  1

|T |+ 1
(x(T ) + xn + 1)

< 1 +Hn�1 �H|T |+1 +
1

|T |+ 1
= 1 +Hn�1 �H|T |.

Therefore Cinderella can maintain the invariants by emptying the fullest
bucket n. By applying (13) to a single bucket set T = {i}, we get that all
buckets satisfy xi < Hn�1.

(Lower bound) In the first phase, the balancing Stepmother brings the filling
level of all buckets very close to 1. The first phase terminates with a set S1

of n � 1 buckets with contents L1 ⇡ 1. In the second phase, the Stepmother
always chooses Tr := Sr as the set of the n� r currently fullest buckets (which
Cinderella could not empty in the preceding round), and fills all of them to level
Lr+1 = 1+Hn�1 �Hn�r�1. Then at the end of round n� 2 Cinderella has left
a bucket of contents Hn�1. ⇤

Theorem 6. (i) F (7, 2) = 3/2 and (ii) F (9, 2) = 11/6.

Theorem 7. F (n, c) = 1 holds for all n and c with 2  n/c < 3.

The proof of Theorem 6 and the (long and technical) proof of Theorem 7 can
be found in the full version of this paper. Note that the theorems in this section
together with the monotonicity property imply all entries for n  10 below the
half-diagonal of Table 1. Furthermore Theorem 7 covers the cases with bn/cc = 2
for the following clean and natural conjecture.

Conjecture 2. F (n, c) = F (bn/cc , 1) holds for all n and c with 2  n/c.

If true, then this conjecture (in combination with Theorem 5) would deter-
mine all values of F (n, c) below the half-diagonal. Note that the monotonicity
Lemma 2 yields F (n, c) � F (bn/cc , 1), and that therefore the hard part of the
conjecture is to come up with the right systems of invariants. Unfortunately, we
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have no idea how to settle Conjecture 2. In fact, we cannot even settle the special
case F (13, 2) = 137/60. The games BG(n, 2) with odd n  11 can be handled
by certain types of invariant systems that we understand very well; all these
systems are built around subsets of pairwise non-adjacent buckets that follow a
certain pattern. With the help of YICES we can prove that the most natural
generalization of this pattern to BG(13, 2) will not work out, since there exist
situations where Cinderella cannot maintain the corresponding invariants.

6 Final remarks

We have settled all bucket games BG(n, c) with n  12. Some of our smaller
results started to grow together, and eventually resulted in general theorems
that cover large families of games (as for instance the families in Theorem 3 and
Theorem 7). There remain many open questions, and in particular there remains
our tantalizing Conjecture 2.

All our lower bounds have been derived by a suitable balancing Stepmother
strategy (sometimes in combination with monotonicity). For many games, we
performed extensive computer experiments and used backtracking algorithms
(written in Haskell) to detect the strongest balancing Stepmothers; this boils
down to checking a huge but finite number of cases.

Question 1. Does every value F (n, c) result from an adversary argument with a
balancing Stepmother (in combination with monotonicity)?

A positive answer to Question 1 would also imply the truth of the following
conjecture.

Conjecture 3. The function F (n, c) only takes rational values, and is Turing-
computable.

For some of the considered games it was far from clear how to choose the
right system of invariants, and several attempts were required before finding the
right choice. For experimenting with such invariants it was convenient to use
an SMT solver (Satisfiability Modulo Theories) which checks the satisfiability of
any Boolean formula on linear inequalities. Note that this goes far beyond linear
programming, as in linear programming the set of constraints is the conjunction
of a set of linear inequalities, whereas in SMT any combination of disjunctions
and conjunctions is allowed. Now I is an invariant system for Cinderella if the
formula

I ^
 
X

i

yi = 1 +
X

i

xi

!
^
 
^

i

yi � xi

!
^
_

j

¬Ij

is unsatisfiable. Here the formula Ij (1  j  n) is obtained from I as follows. For
i = j+1, . . . , j+ c every occurrence of xi is replaced by 0, and for the remaining
indices i every occurrence of xi is replaced by yi. Our approach was to check
this by the SMT solver YICES for several candidates for I. If this formula is
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unsatisfiable, we have proved the invariance and thereby derived an upper bound
on F (n, c); if it is satisfiable then YICES provides the corresponding values of xi

and yi that can be interpreted as a counterexample for the invariance. Internally,
YICES works with rational numbers in unbounded precision, and typically the
proof trees consist of thousands of indigestible case distinctions, but are found
within at most a few seconds.
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