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Abstract. The aim of this paper is to introduce a coalgebraic setting in
which it is possible to generalize and compare the two known approaches
to defining weak bisimulation for labelled transition systems. We intro-
duce two definitions of weak bisimulation for coalgebras over ordered
functors, show their properties and give sufficient conditions for them to
coincide. We formulate a weak coinduction principle.
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1 Introduction

The notion of a strong bisimulation for different transition systems plays an im-
portant role in theoretical computer science. A weak bisimulation is a relaxation
of this notion by allowing silent, unobservable transitions. It is a well estab-
lished notion for many deterministic and probabilistic transition systems (see
[1], [4], [7], [8]). For many state-based systems one can equivalently introduce
weak bisimulation in two different ways one of which has computational advan-
tages over the other. To be more precise we will demonstrate this phenomenon
on labelled transition systems. By a labelled transition system (or LTS in short)
we mean a tuple 〈A,Σ,→〉, where A is a set of states, Σ is a non-empty set
called an alphabet and→ is a subset of A×Σ×A and is called a transition. For
an LTS 〈A,Σ,→〉 and s ∈ Σ we define a relation on A by

s→:= {(a, a′) ∈ A2 | (a, s, a′) ∈→}.

For a fixed alphabet letter τ ∈ Σ, representing a silent, unobservable transition

label, and an LTS 〈A,Σ,→〉 let
τ∗→ be the reflexive and transitive closure of the

relation
τ→. The following definition of a weak bisimulation for LTS can be found

in [4].
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Definition 1. A relation R ⊆ A × A is a weak bisimulation if it satisfies the

following conditions. For (a, b) ∈ R and σ 6= τ if a
τ∗→ ◦ σ→ ◦ τ∗→ a′ then there

is b′ ∈ A such that b
τ∗→ ◦ σ→ ◦ τ∗→ b′ with (a′, b′) ∈ R and conversely, for

b
τ∗→ ◦ σ→ ◦ τ

∗

→ b′′ there is a′′ ∈ A such that a
τ∗→ ◦ σ→ ◦ τ

∗

→ a′′ and (a′′, b′′) ∈ R.

Moreover, for σ = τ if a
τ→
∗
a′ then b

τ→
∗
b′ for some b′ ∈ B with (a′, b′) ∈ R

and conversely, if b
τ→
∗
b′′ then a

τ→
∗
a′′ for some a′′ ∈ A and (a′′, b′′) ∈ R.

It is easily shown we can equivalently restate the definition of a weak bisim-
ulation as follows.

Definition 2. A relation R ⊆ A × A is a weak bisimulation if it satisfies the

following condition. If (a, b) ∈ R then for σ 6= τ if a
σ→ a′ then b

τ→
∗
◦ σ→ ◦ τ→

∗
b′

for some b′ ∈ A and (a′, b′) ∈ R, for σ = τ if a
τ→ a′ then b

τ→
∗
b′ for some

b′ ∈ A and (a′, b′) ∈ R, moreover for σ 6= τ if b
σ→ b′ then a

τ→
∗
◦ σ→ ◦ τ→

∗
a′ for

some a′ ∈ A and (a′, b′) ∈ R, for σ = τ if b
τ→ b′ then a

τ→
∗
a′ for some a′ ∈ A

and (a′, b′) ∈ R.

From the point of view of computation and automatic reasoning the latter ap-
proach to defining weak bisimulation is better since, unlike the former, it does
not require the knowledge of the full saturated transition. Indeed, in order to
show that two states a, b ∈ A of a labelled transition system 〈A,Σ,→〉 are
weakly bisimilar in the sense of Definition 1 one needs to consider all states

a′ ∈ A reachable from a via the saturated transitions
τ→
∗
◦ σ→ ◦ τ→

∗
or

τ→
∗

and
compare them with similar states reachable from b. Whereas, to prove that two
states a, b ∈ A are weakly bisimilar in the sense of Definition 2 one needs to
consider all states reachable from a via single step transitions

σ→ and compare
them with some states reachable from b via the saturated transitions.

The notion of a strong bisimulation, unlike the weak bisimulation, has been
well captured coalgebraically (see e.g. [2],[11]). Different approaches to defining
weak bisimulations for coalgebras have been presented. The earliest paper is
[10], where the author studies weak bisimulations for while programs. In [5] the
author introduces a definition of weak bisimulation for coalgebras by translating
a coalgebraic structure into an LTS. This construction works for coalgebras over
a large class of functors but does not cover the distribution functor, hence it is not
applicable to different types of probabilistic systems. In [6], weak bisimulations
are introduced via weak homomorphisms. As noted in [9] this construction does
not lead to intuitive results for probabilistic systems. Finally, in [9] the authors
present a definition of weak bisimulation for classes of coalgebras over functors
obtained from bifunctors. Here, weak bisimulation of a system is defined as a
strong bisimulation of a transformed system. First of all, it is worth noting
that, although very interesting, neither of the approaches cited above expresses
coalgebraically the computational advantages of Definition 2 over Definition 1.
Secondly, all of them require to explicitly work with observable and unobservable
part of the coalgebraic structure. The method of defining weak bisimulation
presented in this paper only requires that a saturator is given and no explicit
knowledge of silent and visible part of computation is neccessary.



The aim of this paper is to introduce a coalgebraic setting in which we can
define weak bisimulation in two ways generalizing Definition 1 and Definition
2 and compare them. Additionally, we formulate a weak coinduction principle.
The paper is organized as follows. In Section 2 we present basic definitions and
properties from known universal coalgebra. In Section 3 we present a definition
of a saturator and present some natural and well-known examples of saturators.
In Section 4 we give two approaches to defining weak bisimulation via saturators
and show their properties. Finally, Section 5 is devoted to formulation of a weak
coinduction rule.

2 Basic notions and properties

Let Set be the category of all sets and mappings between them. Let F : Set→ Set
be a functor. An F -coalgebra is a tuple 〈A,α〉, where A is a set and α is a mapping
α : A→ FA. The set A is called a carrier and the mapping α is called a structure
of the coalgebra 〈A,α〉.

A homomorphism from an F -coalgebra 〈A,α〉 to a F -coalgebra 〈B, β〉 is a
mapping f : A→ B such that T (f) ◦ α = β ◦ f .

An F -coalgebra 〈S, σ〉 is said to be a subcoalgebra of an F -coalgebra 〈A,α〉
whenever there is an injective homomorphism from 〈S, σ〉 into 〈A,α〉. This fact
is denoted by 〈S, σ〉 ≤ 〈A,α〉.

We denote the disjoint union of a family {Xj}j∈J of sets by Σj∈JXj . Let
{〈Ai, αi〉}i∈I be a family of F -coalgebras. The disjoint sum Σi∈I〈Ai, αi〉 of the
family {〈Ai, αi〉}i∈I of F -coalgebras is an F -coalgebra defined as follows. The
carrier set of the disjoint sum Σi∈I〈Ai, αi〉 is the disjoint union of the carriers
of 〈Ai, αi〉, i.e. A := Σi∈IAi. The structure α of the disjoint sum Σi∈I〈Ai, αi〉 is
defined as

α : A→ FA;Ai 3 a 7→ F (ei) ◦ αi(a),

where ei : Ai → A; a 7→ (a, i) for any i ∈ I.
A functor F : Set → Set preserves pullbacks if for any mappings f : A → B

and g : C → B and their pullback P (f, g) = {(a, c) ∈ A× C | f(a) = g(c)} with
π1 and π2 the following diagram is a pullback diagram.

FA
Ff // FB

F [P (f, g)]

Fπ1

OO

Fπ2 // FC

Fg

OO

We say that F weakly preserves pullbacks if the diagram above is a weak pullback.
A functor F (weakly) preserves kernel pairs if it (weakly) preserves pullbacks
P (f, f), π1, π2 for any mapping f : A → B. For a detailed analysis of pullback
and kernel pair preservations the reader is referred to [2].

Let Pos be the category of all posets and monotonic mappings. Note that
there is a forgetful functor U : Pos → Set assigning to each poset (X,≤) the
underlying set X and to each monotonic map f : (X,≤) → (Y,≤) the map
f : X → Y .



From now on we assume that a functor F we work with is F : Set→ Pos. We
may naturally assign to F its composition F̄ = U ◦ F with the forgetful functor
U : Pos → Set. For the sake of simplicity of notation most of the times we will
identify the functor F : Set → Pos with the Set-endofunctor F̄ = U ◦ F and
write F to denote both F and F̄ . Considering set-based coalgebras over functors
whose codomain category is a concrete category different from Set is not a new
approach. A similar one has been adopted by e.g. J. Hughes and B. Jacobs in
[3] when definining simulations for coalgebras.

Example 1. The powerset endofunctor P : Set→ Set can be considered a functor
P : Set→ Pos which assigns to any set X the poset (P(X),⊆) and to any map
f : X → Y the order preserving map P(f).

Example 2. For any functor H : Set→ Set the composition PH may be regarded
as a functor PH : Set→ Pos with a natural ordering given by inclusion. In this
paper we will focus our attention on coalgebras over the following functors:

– P(Σ × Id),
– P(Σ + Id),
– P(Σ ×D),

where D is the distribution functor, i.e. a functor which assigns to any set X the
set DX := {µ : X → [0, 1] |

∑
x∈X µ(x) = 1} of discrete measures and to any

mapping f : X → Y a mapping Df : DX → DY , which assigns to any measure
µ ∈ DX the measure Df(µ) : Y → [0, 1] such that

Df(µ)(y) =
∑

f(x)=y

µ(x) for any y ∈ Y.

The coalgebras over the first functor are exactly labelled transition systems.
The coalgebras for P(Σ+Id) expand a class of coalgebras studied by J. Rutten
in [10]. Finally, the P(Σ × D)-coalgebras generalize the class of simple Segala
systems introduced and thoroughly studied in [7],[8].

For a functor F : Set→ Pos and for any sets X,Y we introduce an order on
the set Hom(X,FY ) as follows. For f, g ∈ Hom(X,FY ) put

f ≤ g def⇐⇒ f(x) ≤FY g(x) for any x ∈ X.

Given f : X → Y , α : X → FZ, g : Z → U and β : Y → FU an inequality
Fg ◦α ≤ β ◦f will be denoted by a diagram on the left and an equality Fg ◦α =
β ◦ f will be denoted by a diagram on the right:

X
≤

f //

α ��

Y
β��

X
=

f //

α ��

Y
β��

FZ
Fg

// FU FZ
Fg

// FU



Lemma 1. Let α, β ∈ Hom(X,FY ) and let f : Z → X be an epimorphism in
Set. If α ◦ f ≤ β ◦ f in Hom(Z,FY ) then α ≤ β in Hom(X,FY ).

Proof. Since α ◦ f ≤ β ◦ f then for any z ∈ Z we have α(f(z)) ≤FY β(f(z)).
Because f(Z) = X we have α(x) ≤FY β(x) for any x ∈ X. Hence, α ≤ β in
Hom(X,FY ). ut

3 Coalgebraic operators and saturators

Definition 3. Let U : SetF → Set be the forgetful functor and let C be full
subcategory of the category of F -coalgebras and homomorphisms between them
which is closed under taking inverse images of homomorphisms, i.e. if 〈B, β〉 ∈
C and there is a homomorphism f : 〈A,α〉 → 〈B, β〉 for 〈A,α〉 ∈ SetF then
〈A,α〉 ∈ C. A coalgebraic operator o with respect to a class C is a functor
o : C→ SetF such that the following diagram commutes:

C
o //

U !!CC
CC

CC
CC

SetF

U

��
Set

In other words, if f : A → B is a homomorphism between two F -coalgebras
〈A,α〉 and 〈B, β〉 belonging to C then f is a homomorphism between 〈A, oα〉 and
〈B, oβ〉, i.e.

A
=α ��

f // B
β =⇒��

A
=oα ��

f // B
oβ��

FB
Ff

// FB FA
Ff

// FB

We say that a coalgebraic operator s with respect to a class C is a saturator if
for any two F -coalgebras 〈A,α〉, 〈B, β〉 from C and any mapping f : A→ B the
inequality Ff ◦α ≤ sβ ◦ f is equivalent to Ff ◦ sα ≤ sβ ◦ f . We may express the
property in diagrams as follows:

A
≤α ��

f // B
sβ ⇐⇒��

A
≤sα ��

f // B
sβ��

FA
Ff

// FB FA
Ff

// FB

Lemma 2. Let s : C → SetF be an operator w.r.t. a full subcategory C of SetF
and additionally let s(C) ⊆ C. Then s is a saturator if and only if it satisfies the
following three properties:

– α ≤ sα for any coalgebra 〈A,α〉 ∈ C (extensivity),

– s ◦ s = s (idempotency),



– if Ff ◦ α ≤ β ◦ f then Ff ◦ sα ≤ sβ ◦ f for any f : X → Y (monotonicity):

A
≤α ��

f // B
β =⇒��

A
≤sα ��

f // B
sβ��

FA
Ff

// FB FA
Ff

// FB

The intuition behind the notion of a saturator is the following. Given a coal-
gebraic structure α : A → FA it contains some information about observable
and unobservable single step transitions. The process of saturating a structure
intuitively boils down to adding additional information to α about multiple com-
positions of unobservable steps and a single composition of observable transitions
(see examples below). Since for any set A the set FA is intuitively considered
as the set of all possible outcomes of a computation, the partial order ≤ on FA
compares those outcomes. In particular, the property of extensivity of a satu-
rator means the saturated structure sα contains at least the same information
about single-step transitions as α (in the sense of the partial order ≤). Idempo-
tency means that the process of adding new information to α by saturating it
ends after one iteration. Finally, monotonicity is self-explanatory.

Example 3. Let Σ be a non-empty set. Any LTS 〈A,Σ,→〉 may be represented
as a P(Σ × Id)-coalgebra 〈A,α〉 as follows. We define α : A→ P(Σ ×A) by:

(σ, a′) ∈ α(a) ⇐⇒ a
σ→ a′.

Let τ ∈ Σ be a silent transition label. For a coalgebra structure α : A→ P(Σ×A)
we define its saturation sα : A → P(Σ × A) as follows. For any element a ∈ A
put

sα(a) := α(a) ∪ {(τ, a′) | a τ∗→ a′} ∪ {(σ, a′) | a τ∗→ ◦ σ→ ◦ τ
∗

→ a′ for σ 6= τ}.

Verifying that s : SetP(Σ×Id) → SetP(Σ×Id); 〈A,α〉 7→ 〈A, sα〉 is a coalgebraic
saturator with respect to the class of all P(Σ × Id)-coalgebras is left to the
reader.

Example 4. Consider the functor F = P(Σ + Id). Let α : A → P(Σ + A) be a
structure of an F -coalgebra 〈A,α〉. For the sake of simplicity of notation for any
a ∈ A let η(a) := α(a)∩A and θ(a) := α(a)∩Σ. Put η∗(a) := {a}∪

⋃
n∈N η

n(a),
where ηn(a) := η(ηn−1(a)) for n > 1 and θ∗(a) := θ(η∗(a)). Define the saturation
sα : A→ FA as follows:

sα(a) := η∗(a) ∪ θ∗(a) for any a ∈ A.

The assignment s is a coalgebraic saturator with respect to the class of all F -
coalgebras.

Example 5. For the functor F = P(Σ×D), an F -coalgebra 〈A,α〉, a state a ∈ A
and σ ∈ Σ we write a

σ→ µ if (σ, µ) ∈ α(a). For a state a ∈ A and a measure



ν ∈ D(Σ × A) a pair (a, ν) is called a step in 〈A,α〉 only if there is σ ∈ A

and µ ∈ DA such that a
σ→ µ and ν(σ, a′) = µ(a′) for any a′ ∈ A. A combined

step in 〈A,α〉 is a pair (a, ν), where a ∈ A and ν ∈ D(Σ × A) for which there
is a countable family of non-negative numbers {pi}i∈I such that

∑
i∈I pi = 1

and a countable family of steps {(a, νi)}i∈I in 〈A,α〉 such that ν =
∑
i∈I pi · νi.

The definition of a combined step is a slight modification of a similar definition
presented in [7]. The notion of weak arrows

σ
=⇒ P remains the same regardless

of the small difference between the two definitions. Let τ ∈ Σ be the invisible
transition. As in [7] for any σ ∈ Σ we write a

σ
=⇒ P µ whenever σ = τ and

µ ∈ DA for which µ(a) = 1 or there is a combined step (a, ν) in 〈A,α〉 such that if
(σ′, a′) /∈ {σ, τ}×A then ν(σ′, a′) = 0 and µ =

∑
(σ′,a′)∈{σ,τ}×A ν(σ′, a′) ·µ(σ′,a′)

and if σ′ = σ then a′
τ

=⇒ P µ(σ′,a′) otherwise σ′ = τ and a′
σ

=⇒ P µ(σ′,a′). Now,

define sα : A → FA by putting sα(a) := {(σ, µ) | a σ
=⇒ P µ} for any a ∈ A. A

proof that s is a coalgebraic saturator is left to the reader.

4 Two approaches to defining weak bisimulation

In this section we assume that 〈A,α〉 and 〈B, β〉 are members of the class C.

Definition 4. A relation R ⊆ A×B is called a weak bisimulation provided that
there is a structure γ1 : R→ FR and a structure γ2 : R→ FR for which:

– α ◦ π1 = Fπ1 ◦ γ1 and Fπ2 ◦ γ1 ≤ sβ ◦ π2,

– β ◦ π2 = Fπ2 ◦ γ2 and Fπ1 ◦ γ2 ≤ sα ◦ π1.

A
=α

��

R
γ1

��

π1oo π2 //

≤

B

sβ
��

A

≥sα
��

R
γ2

��

π1oo π2 //

=

B

β
��

FA FR
Fπ1

oo
Fπ2

// FB FA FR
Fπ1

oo
Fπ2

// FB

Example 6. Consider the LTS functor F = P(Σ × Id) and the saturator s
introduced in Example 3. Let 〈A,α〉 be an F -coalgebra. Consider a relation
R ⊆ A × A which satisfies the assumptions of Definition 4. This means that if
(a, b) ∈ R then there is γ1 : R → P(Σ × R) such that α(a) = F (π1)(γ1(a, b))
and F (π2)(γ1(a, b)) ⊆ sα(b). In other words, there is a subset S ⊆ Σ × R such
that γ1(a, b) = S and F (π1)(S) = α(a) and F (π2)(S) ⊆ sα(b). This means that
for any (σ, a′) ∈ α(a) there is b′ ∈ A such that (σ, b′) ∈ sα(b) and (a′, b′) ∈ R.

Hence, if σ = τ then a
τ→ a′ implies b

τ∗→ b′ and (a′, b′) ∈ R otherwise a
σ→ a′

implies b
τ∗στ∗→ b′ and (a′, b′) ∈ R. The second condition from Definition 4 gives

us the following assertion. If (a, b) ∈ R and b
τ→ b′ then there is a′ ∈ A such

that a
τ∗→ a′ and (a′, b′) ∈ R. Moreover, if for σ 6= τ we have b

σ→ b′ then there

is a′ ∈ A such that a
τ∗στ∗→ a′ and (a′, b′) ∈ R. We see that this is exactly the

condition presented in Definition 2.



Example 7. Consider the functor F = P(Σ + Id) and the saturator s from
Example 4. Since the functor Σ + Id is a subfunctor of F take an F -coalgebra
〈A,α〉 which is a Σ + Id-coalgebra, i.e. the structure α is a mapping α : A →
Σ+A. Now take a relation R ∈ A×A which satisfies the assumptions presented
in Definition 4 and let (a, b) ∈ R. This means that there is a structure γ1 :
R → P(Σ + R) such that F (π1)(γ1(a, b)) = α(a) and F (π2)(γ1(a, b)) ⊆ sα(a).
In other words there is a pair X,S of subsets, where X ⊆ R and S ⊆ Σ, and
F (π1)(X ∪ S) = (π1(X) ∪ S) = α(a) and F (π2)(X ∪ S) = (π2(X) ∪ S) ⊆ sα(a).
If α(a) = a′ ∈ A then this means that π1(X) = {a′} and S = ∅. Hence,
there is b′ ∈ A such that (a′, b′) ⊆ X ⊆ R and b′ ∈ η∗(b) = {b′′ | b →∗ b′′}.
If α(a) = σ ∈ Σ then π1(X) = ∅, and hence X = ∅, S = {σ}. Therefore,
σ ∈ θ∗(b). It follows that there is b′ ∈ B such that b →∗ b′ and b′ ↓ σ. By the
second condition of Definition 4 we infer that if b → b′ then there is a′ ∈ A
such that a →∗ a′ and (a′, b′) ∈ R. Otherwise if b ↓ σ ∈ Σ then there is a′ ∈ A
such that a→∗ a′ and a′ ↓ σ. This definition coincides with a definition of weak
bisimulation between Σ + Id-coalgebras presented in [10].

Example 8. Let F = P(Σ × D) and consider the saturator s : SetF → SetF
defined in Example 5. It is easy to see that for two simple Segala systems
〈A,α〉, 〈B, β〉 a relation R ⊆ A × B is a weak bisimulation provided that

the following condition holds. If (a, b) ∈ R and a
σ→ µ then b

σ
=⇒ P µ′ and

(µ, µ′) ∈ (Fπ1, Fπ2)(DR). Moreover, if (a, b) ∈ R and b
σ→ µ′ then a

σ
=⇒ P µ

and (µ, µ′) ∈ (Fπ1, Fπ2)(DR). This definition coincides with the one presented
in [7],[8].

Proposition 1. Let R ⊆ A×B be a standard bisimulation between 〈A,α〉 and
〈B, β〉. Then R is also a weak bisimulation between 〈A,α〉 and 〈B, β〉.

Theorem 1. If a relation R ⊆ A×B is a weak bisimulation between 〈A,α〉 and
〈B, β〉 then R−1 = {(b, a) | (a, b) ∈ R} is a weak bisimulation between 〈B, β〉
and 〈A,α〉.

Theorem 2. If all members of a family {Ri}i∈I of relations Ri ⊆ A × B are
weak bisimulations between 〈A,α〉 and 〈B, β〉 then

⋃
i∈I Ri is also a weak bisim-

ulation between 〈A,α〉 and 〈B, β〉.

Proof. Let {Ri}i∈I together with γi1 : Ri → FRi and γi2 : Ri → FRi be a family
of weak bisimulations between 〈A,α〉 and 〈B, β〉.

A
=α

��

Ri
γi
1 ��

π1oo π2 //

≤

B

sβ
��

A

≥sα
��

Ri
γi
2 ��

π1oo π2 //

=

B

β
��

FA FRi
Fπ1

oo
Fπ2

// FB FA FRi
Fπ1

oo
Fπ2

// FB

First consider the disjoint sum
∑
i∈I
〈
Ri, γ

i
1

〉
=
〈∑

i∈I Ri, γ1
〉
. We will prove

that given τ :
∑
i∈I Ri → A × B; (r, i) → r the mappings p1 = π1 ◦ τ and



p2 = π2 ◦ τ satisfy:

α ◦ p1 = F (p1) ◦ γ1,
sβ ◦ p2 ≥ F (p2) ◦ γ1.

Note that for any i ∈ I we have

α ◦ p1 ◦ ei = α ◦ π1 = F (π1) ◦ γi1 = F (p1) ◦ F (ei) ◦ γi1 = F (p1) ◦ γ1 ◦ ei.

Hence, α ◦ p1 = F (p1) ◦ γ1. Moreover, for any i ∈ I we have

sβ ◦ p2 ◦ ei = sβ ◦ π2 ≥ F (π2) ◦ γi1 = F (p2) ◦ F (ei) ◦ γi1 = F (p2) ◦ γ1 ◦ ei.

By Lemma 1 it follows that sβ ◦ p2 ≥ F (p2) ◦ γ1.

Σi∈IRi

=

p1
++

γ1
��

Ri

γi
1 ��

ei
oo

π1

//

=

A

α
��

Σi∈IRi

=

p2
++

γ1
��

Ri

γi
1 ��

ei
oo

π2

//

≤

B

sβ
��

FΣi∈IRi
Fp1

22FRi
Feioo Fπ1 // FA FΣi∈IRi

Fp2

22FRi
Feioo Fπ2 // FB

Note that the image of
∑
i∈I Ri under the map τ :

∑
i∈I Ri → A×B is equal to⋃

i∈I Ri ⊆ A × B. Put γ′1 :
⋃
i∈I Ri → F (

⋃
i∈I Ri) so that, for any r ∈

⋃
i∈I Ri

there is (r, i) ∈
∑
i∈I Ri such that γ′1(r) = F (τ)(γ1(r, i)). Observe that

α(π1(r)) = α(π1(τ(r, i))) = α(p1(r, i)) = F (p1)(γ1(r, i)) =

= F (π1)(F (τ)(γ1(r, i))) = F (π1) ◦ γ′1(r),

sβ(π2(r)) = sβ(π2(τ(r, i))) = sβ ◦ p2(r, i) ≥ F (p2) ◦ γ1(r, i) =

= F (π2) ◦ F (τ) ◦ γ1(r, i) = F (π2) ◦ γ′1(r).

Hence, α ◦ π1 = F (π1) ◦ γ′1 and sβ ◦ π2 ≥ F (π2) ◦ γ′1. Similarily we prove
existence of γ′2 :

⋃
i∈I Ri → F (

⋃
i∈I Ri) possessing the desired properties and

making
⋃
i∈I Ri a weak bisimulation. ut

The following lemma is an analogue of a similar result for standard bisim-
ulations presented in e.g. [11] (Lemma 5.3). Moreover, the proof of Lemma 3
is a direct translation of the proof of the analogous result. Hence, we leave the
following result without a proof.

Lemma 3. Let X be a set and let ξ1 : X → FX and ξ2 : X → FX be two
coalgebraic structures. Finally, let f : X → A, g : X → B be mappings such that
f is a homomorphism from 〈X, ξ1〉 to 〈A,α〉, g is a homomorphism from 〈X, ξ2〉
to 〈B, β〉 and the mappings f , g satisfy:

X
≤ξ1 ��

g // B
sβ��

X
≤ξ2 ��

f // A
sα��

FX
Fg

// FB FX
Ff

// FA

then the set 〈f, g〉 (X) = {(f(x), g(x)) ∈ A× B | x ∈ X} is a weak bisimulation
between 〈A,α〉 and 〈B, β〉.



Theorem 3. Let F : Set→ Set weakly preserve pullbacks and let 〈A,α〉, 〈B, β〉
and 〈C, δ〉 be F -coalgebras from the class C. Let R1 be a weak bisimulation be-
tween 〈A,α〉 and 〈B, β〉 and R2 be a weak bisimulation between 〈B, β〉 and 〈C, δ〉.
Then

R1 ◦R2 = {(a, c) | ∃b ∈ B s.t. (a, b) ∈ R1 and (b, c) ∈ R2}

is a weak bisimulation between 〈A,α〉 and 〈C, δ〉.

Corollary 1. If F : Set→ Set weakly preserves pullbacks then the greatest weak
bisimulation on a coalgebra 〈A,α〉 is an equivalence relation.

Definition 5. A relation R ⊆ A×B is said to be a saturated weak bisimulation
between 〈A,α〉 and 〈B, β〉 provided that there is a structure γ : R→ FR for which
the following diagram commutes:

A
=sα ��

R
=γ ��

π1oo π2 // B
sβ��

FA FR
Fπ1

oo
Fπ2

// FB

Remark 1. We see that a saturated weak bisimulation between 〈A,α〉 and 〈B, β〉
is defined as a standard bisimulation between saturated models 〈A, sα〉 and
〈B, sβ〉. Hence, any property true for standard bisimulation is also true for a
saturated weak bisimulation.

Proposition 2. Let R ⊆ A×B be a standard bisimulation between 〈A,α〉 and
〈B, β〉. Then R is also a saturated weak bisimulation between 〈A,α〉 and 〈B, β〉.

Theorem 4. Let F : Set→ Set weakly preserve kernel pairs and let R ⊆ A×A
be an equivalence relation which is a weak bisimulation on 〈A,α〉. Then R is a
saturated weak bisimulation on 〈A,α〉.

Proof. Let γ1 : R→ FR be a structure for which α◦π1 = Fπ1◦γ1 and Fπ2◦γ1 ≤
sα ◦ π2. By properties of the saturator s it follows that sα ◦ π1 = Fπ1 ◦ sγ1 and
Fπ2 ◦ sγ1 ≤ sα ◦ π2. In other words,

A
=sα

��

R
sγ1��

π1oo π2 //

≤
A
sα

��
FA FR

Fπ1

oo
Fπ2

// FA

Let p : A → A/R; a 7→ a/R. Since F : Set → Set preserves kernel pairs the
following diagram is a weak pullback diagram:

FRFπ1
vvnnnn

Fπ2
((PPPP

FA

Fp
''OO FA

Fp
wwoo

F (A/R)



Since Fp◦Fπ1 = Fp◦Fπ2 we have Fp◦sα◦π1 = Fp◦Fπ1◦sγ1 = Fp◦Fπ2◦sγ1 ≤
Fp ◦ sα ◦ π2. Let k : R → R; (a, b) 7→ (b, a). We see that Fp ◦ sα ◦ π1 ◦ k ≤
Fp ◦ sα ◦ π2 ◦ k. Since π1 ◦ k = π2 and π2 ◦ k = π1 it follows that

Fp ◦ sα ◦ π2 ≤ Fp ◦ sα ◦ π1.

Hence, Fp◦sα◦π1 = Fp◦sα◦π2. In other words, the set R together with sα◦π1
and sα ◦ π2 is a cone over the diagram FA

Fp→ F (A/R)
Fp← FA. Recall that FR

with Fπ1 and Fπ2 is a weak pullback of FA
Fp→ F (A/R)

Fp← FA. The fact that F
preserves weak pullbacks provides us with a mediating morphism γ : R → FR
satisfying

sα ◦ π1 = Fπ1 ◦ γ and sα ◦ π2 = Fπ2 ◦ γ.

ut

We say that two elements a, b ∈ A are weakly bisimilar, and write a ≈w b
if there is a weak bisimulation R ⊆ A × A on 〈A,α〉 for which (a, b) ∈ R. We
say that a and b are saturated weakly bisimilar, and write a ≈sw b, if there is a
saturated weak bisimulation R on 〈A,α〉 containing (a, b).

Corollary 2. Let F : Set→ Set be a functor weakly preserving pullbacks. Then
the relations ≈w and ≈sw are equivalence relations and

≈w ⊆ ≈sw .

Definition 6. We say that a functor F : Set→ Pos preserves downsets provided
that for any f : X → Y and any x ∈ FX the following equality holds:

Ff(x ↓) = Ff({x′ ∈ FX | x′ ≤ x}) = Ff(x) ↓= {y ∈ FY | y ≤ Ff(x)}.

It is easy to see that all functors from Example 2 preserve downsets. In the
following example we will present a functor weakly preserving pullbacks and not
preserving downsets for which the greatest weak bisimulation and the greatest
saturated weak bisimulation do not always coincide.

Example 9. Define a functor F : Set→ Set by F = Id2+Id. Clearly, the functor
F weakly preserves pullbacks. For any set X let us introduce a partial order ≤
on FX as the smallest partial order satisfying

x ≤ (x, x) for any x ∈ X.

The order ≤ is well defined and turns the functor F into F : Set → Pos. Now
consider sets X = {x1, x2}, Y = {y} and the unique mapping f : X → Y .
Take (y, y) ∈ FY and note that y ≤ (y, y) = (f(x1), f(x2)) = Ff((x1, x2)). In
other words, y ∈ Ff(x1, x2) ↓ and (x1, x2) ↓= {(x1, x2)}. Hence, the functor
F does not preserve downsets. For any F -coalgebra 〈A,α〉 define an operator
sα : A→ FA by

sα(a) := if α(a) = b then (b, b) else α(a).



The operator s : SetF → SetF is a coalgebraic saturator with respect to the
class of all F -coalgebras. Now consider a set A = {x, y} and define a structure
α : A→ FA by α(x) = x and α(y) = (x, y). Clearly, x ≈sw y since sα(x) = (x, x)
and sα(y) = (x, y) and if we put R = {(x, y), (x, x)} then for γ : R→ FR defined
by γ(x, y) = ((x, x), (x, y)), γ(x, x) = ((x, x), (x, x)) we have sα◦π1 = Fπ1◦γ and
sα ◦π2 = Fπ2 ◦ γ. At the same time the states x and y are not weakly bisimilar.
Indeed, if there was a weak bisimulation R containing (x, y) then it would imply
existence of γ1 : R → FR satisfying α ◦ π1 = Fπ1 ◦ γ1 and Fπ2 ◦ γ1 ≤ sα ◦ π2.
Since (x, y) ↓= {(x, y)} we would then have

x = α(x) = α(π1(x, y)) = Fπ1(γ(x, y)),

(x, y) = sα(y) = sα(π2(x, y)) = Fπ2(γ(x, y))

which is impossible.

Theorem 5. Let F : Set → Set weakly preserve kernel pairs and preserve
downsets. Let R ⊆ A × A be an equivalence relation which is a saturated weak
bisimulation on 〈A,α〉. Then R is a weak bisimulation on 〈A,α〉.
Proof. Let γ : R → FR be the structure for which sα ◦ π1 = Fπ1 ◦ γ and
Fπ2 ◦ γ = sα ◦ π2. Let p : A → A/R; a 7→ a/R. Since F : Set → Set preserves
kernel pairs the following diagram is a weak pullback diagram:

FRFπ1

xxppp
pp Fπ2

''NNN
NN

FA

Fp
&&MMM

M FA

Fp
xxqqq

q

F (A/R)

Consider the mappings Fp ◦ α ◦ π1 and Fp ◦ sα ◦ π2 and observe that

Fp ◦ α ◦ π1 ≤ Fp ◦ sα ◦ π1 =

Fp ◦ Fπ1 ◦ γ = Fp ◦ Fπ2 ◦ γ = Fp ◦ sα ◦ π2.

This means that for any pair (a, b) ∈ R we have Fp(α(a)) ≤ Fp(sα(b)). In other
words,

Fp(α(a)) ∈ Fp(sα(b)) ↓
Since F preserves downsets, there exists an element x ∈ FA such that x ≤ sα(b)
for which

Fp(α(a)) = Fp(x).

Because FR together with Fπ1 and Fπ2 is a weak pullback of the diagram

FA
Fp→ F (A/R)

Fp← FA, there is an element r(a,b) ∈ FR such that Fπ1(r(a,b)) =
α(a) and Fπ2(r(a,b)) = x. Define γ1 : R→ FR; (a, b) 7→ r(a,b). The structure γ1
satisfies α ◦ π1 = Fπ1 ◦ γ1 and Fπ2 ◦ γ1 ≤ sα ◦ π2. Similarily, we prove existence
of γ2 : R→ FR satisfying sα ◦ π1 ≥ Fπ1 ◦ γ2 and Fπ2 ◦ γ2 = α ◦ π2. ut
Corollary 3. Let S : Set→ Set weakly preserve pullbacks and preserve downsets.
Then for any S-coalgebra 〈A,α〉 the relations ≈w and ≈sw are equivalence rela-
tions and

≈w = ≈sw .



5 Weak coinduction principle

In this section we assume that the saturator s we work with is an operator defined
on the whole category of F -coalgebras. In the category SetF for any mapping
f : A → B we have f : 〈A,α〉 → 〈B, β〉 is a homomorphism if and only if the
relation gr(f) = {(a, f(a)) ∈ A × B | a ∈ A} is a standard bisimulation (see
[2],[11]). This motivates considering the following category (F. Bonchi, personal
communication). Let SetwF denote the category in which objects are standard
F -coalgebras and in which a map f : A→ B is a morphism between two objects
〈A,α〉 and 〈B, β〉 provided that the relation gr(f) = {(a, f(a)) | a ∈ A} is a
weak bisimulation.

Lemma 4. Let 〈A,α〉 be an F -coalgebra and let a family 〈Si, σi〉, where Si ⊆ A,
be a family of subcoalgebras of 〈A,α〉 in SetF such that sσi = σi. Then there is
a structure σ :

⋃
Si → F (

⋃
Si) making 〈

⋃
Si, σ〉 a subcoalgebra of 〈A,α〉 and

sσ = σ.

Corollary 4. Let 〈A,α〉 be an F -coalgebra. There is the greatest subcoalgebra
〈S, σ〉 of 〈A,α〉 such that sσ = σ.

Lemma 5. Let 〈T, t〉 be a terminal coalgebra in the category SetF . Then 〈T, st〉
is a weakly terminal object in SetwF .

Let 〈Ts, t′〉 be the greatest subcoalgebra of the terminal coalgebra 〈T, t〉 in
SetF such that st′ = t′.

Lemma 6. If F admits a terminal coalgebra 〈T, t〉 in SetF and weakly preserves
pullbacks then the greatest weak bisimulation on 〈Ts, t′〉 is the equality relation.

Proof. Assume that for x, y ∈ Ts we have x ≈w y. This implies x ≈sw y. Since,
st′ = t′ this means that the saturated weak bisimulation ≈sw is a standard
bisimulation on 〈Ts, t′〉. Since, the coalgebra 〈Ts, t′〉 is a subcoalgebra of the
terminal coalgebra 〈T, t〉 the bisimulation ≈sw is an equality relation (see [2, 11]
for details). Hence x = y. ut

The above lemma allows us to formulate a weak coinduction principle for
〈Ts, t′〉. For two states x, y ∈ Ts we have x ≈w y ⇐⇒ x = y.

Theorem 6. If F admits a terminal coalgebra 〈T, t〉 in SetF and weakly pre-
serves pullbacks then the coalgebra 〈Ts, t′〉 is a terminal object in SetwF .

Proof. To prove that 〈Ts, t′〉 is weakly terminal it is enough to construct a ho-
momorphism in SetwF from 〈T, st〉 to 〈Ts, t′〉 and apply Lemma 5. Since 〈T, t〉 is
terminal in SetF there exists a unique homomorphism J−Kst : 〈T, st〉 → 〈T, t〉.
Any homomorphic image is a subcoalgebra of the codomain (see [2], [11] for
details). Therefore, we can consider J−Kst as an onto homomorphism between
〈T, st〉 and

〈
JT Kst, t|JT Kst

〉
, where the object

〈
JT Kst, t|JT Kst

〉
is a subcoalgebra of

〈T, t〉 in SetF . In other words, we have



T
=st

��

J−Kst// JT Kst
t|JTKst��

FT
F J−Kst

// F JT Kst

Hence,

T
=st

��

J−Kst// JT Kst
st|JTKst��

FT
F J−Kst

// F JT Kst

Therefore, st|JT Kst = t|JT Kst and
〈
JT Kst, t|JT Kst

〉
is a subcoalgebra of 〈Ts, t′〉. For

uniqueness consider two homomorphisms f1, f2 from an F -coalgebra 〈A,α〉 to
〈Ts, t′〉 in SetwF . This means that the relations gr(f1) and gr(f2) are weak bisim-
ulations between 〈A,α〉 and 〈Ts, t′〉. By the properties of weak bisimulations the
relation gr(f1)−1 ◦ gr(f2) = {(f1(a), f2(a)) | a ∈ A} is a weak bisimulation on
〈Ts, t′〉. By Lemma 6 we get that f1(a) = f2(a) for any a ∈ A. ut

For an F -coalgebra 〈A,α〉 let J−Kwα denote the unique homomorphism from
〈A,α〉 to 〈Ts, t′〉 in SetwF . We see in the proof of Theorem 6 that J−Kwα = J−Kst ◦
J−Kα.

Theorem 7. Let F weakly preserve pullbacks. For two elements a, b ∈ A we
have

a ≈w b ⇐⇒ JaKwα = JbKwα

Proof. Assume a ≈w b. Since J−Kwα is a homomorphism in SetwF the relation
gr(J−Kwα ) is a weak bisimulation between 〈A,α〉 and 〈Ts, t′〉. Since F weakly pre-
serves pullbacks the relation gr(J−Kwα )−1◦ ≈w ◦gr(J−Kwα ) is a weak bisimulation
on 〈Ts, t′〉 such that

(JaKwα , JbK
w
α ) ∈ gr(J−Kwα )−1◦ ≈w ◦gr(J−Kwα ).

By Lemma 6 we get that JaKwα = JbKwα . Conversely, let JaKwα = JbKwα . This means
that the weak bisimulation gr(J−Kwα ) ◦ gr(J−Kwα )−1 on 〈A,α〉 contains a pair
(a, b). Hence, a ≈w b. ut

6 Summary and future work

In this paper we introduced a coalgebraic setting in which we can define weak
bisimulation in two ways generalizing Definition 1 and Definition 2 and compared
them. We showed that the definitions coincide with the standard definitions of
weak bisimulation for labelled transition systems and simple Segala systems.
The approach towards defining weak bisimulation presented in this paper has
two main advantages. First of all, it is a very general and simple approach. In



particular it does not require an explicit specification of the observable and un-
observable part of the functor. Second of all, it easily captures the computational
aspects of weak bisimilarity. It is worth noting that it has some limitations. Part
of the author’s ongoing research is to establish the reason why it does not work
for e.g. fully probabilistic processes introduced in [1] and studied from the per-
spective of coalgebra in [9]. Moreover, it may seem that the setting presented in
the paper is too general. To justify the statement note that for instance for an
LTS coalgebra 〈A,α〉 we may define a saturator as follows:

sα(a) := {(τ, a)} ∪ {(σ, a′) | a τ∗→ ◦ σ→ a′}.

The above definition of a saturator would lead to a different definition of weak
bisimulation for LTS. Therefore, it is necessary to establish more concrete ways
for definining standard saturators of coalgebras that lead to standard definitions
of weak bisimulations.
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Appendix

Proof (Lemma 2). Let s be a saturator and let 〈A,α〉 ∈ C. We see that for the
identity mapping idA : A→ A we have

F (idA) ◦ sα = sα ≤ sα = sα ◦ idA.

This implies that F (idA)◦α ≤ sα◦idA. Hence, α ≤ sα. We see that by extensivity
rule and the assumption s(C) ⊆ C we get sα ≤ s(sα). Therefore, to prove
idempotency it is enough to show that s(sα) ≤ sα. To do this consider the
following inequality F (idA) ◦ sα = sα ≤ sα = sα ◦ idA. By order preservation
it implies that F (idA) ◦ s(sα) ≤ sα ◦ idA. Thus, s(sα) ≤ sα. Finally, consider
two coalgebras 〈A,α〉 and 〈B, β〉 from C and a mapping f : A → B such that
Ff ◦ α ≤ β ◦ f . Note that Ff ◦ α ≤ β ◦ f ≤ sβ ◦ f . Since Ff ◦ α ≤ sβ ◦ f then
by the fact that s is a saturator it follows that Ff ◦ sα ≤ sβ ◦ f .

Now in order to prove the converse consider a coalgebraic operator s : C→ C
which is a closure operator (i.e. is extensive, idempotent and monotonic). Let
〈A,α〉 and 〈B, β〉 be coalgebras from C and let f : A→ B be a mapping. Assume
that Ff ◦α ≤ sβ ◦f . By idempotency and monotonicity we get Ff ◦sα ≤ sβ ◦f .
By extensivity we conclude that Ff ◦ α ≤ sβ ◦ f . ut

Proof (Lemma 4). Let σ :
⋃
Si → F (

⋃
Si) be the unique structure making

〈
⋃
Si, σ〉 a subcoalgebra of 〈A,α〉 (such a structure always exists [2],[10]). Let

ei : Si →
⋃
Si denote the inclusions. Then σ ◦ ei = F (ei) ◦ σi. Since s is a

saturator this means that sσ ◦ ei = F (ei) ◦ sσi = F (ei) ◦ σi. Therefore, for any i
we have sσ ◦ ei = σ ◦ ei. Hence, sσ = σ. ut

Proof (Lemma 5). Let 〈A,α〉 be any F -coalgebra. Let J−Kα : 〈A,α〉 → 〈T, t〉 be
the unique homomorphism in SetF with 〈T, t〉 as codomain. Then J−Kα is also
a homomorphism between 〈A, sα〉 and 〈T, st〉. Since J−Kα is a standard homo-
morphim the relation gr(J−Kα) = {(a, JaKα) | a ∈ A} is a standard bisimulation
between 〈A,α〉 and 〈T, t〉. I.e. there is γ : gr(J−Kα)→ F (gr(J−Kα)) such that

A

=α
��

gr(J−Kα)

γ
��

π1oo π2 //

=

T

t
��

FA Fgr(J−Kα)
Fπ1

oo
Fπ2

// FT

Since t ≤ st and sst = st this implies that

A

α
��

=

gr(J−Kα)

γ
��

π1oo π2 //

≤

T

sst=st
��

FA Fgr(J−Kα)
Fπ1

oo
Fπ2

// FT



Moreover, by saturating the same diagram we get

A

=sα
��

gr(J−Kα)

sγ
��

π1oo π2 //

=

T

st
��

FA Fgr(J−Kα)
Fπ1

oo
Fπ2

// FT

This means that gr(J−Kα) together with γ and sγ is a weak bisimulation between
〈A,α〉 and 〈T, st〉 which concludes the proof. ut


