N

N

Design and Evaluation of Parametrizable Multi-genre
Game Mechanics
Daniel Apken, Hendrik Landwehr, Marc Herrlich, Markus Krause, Dennis
Paul, Rainer Malaka

» To cite this version:

Daniel Apken, Hendrik Landwehr, Marc Herrlich, Markus Krause, Dennis Paul, et al.. Design and
Evaluation of Parametrizable Multi-genre Game Mechanics. 11th International Confernece on Enter-
tainment Computing (ICEC), Sep 2012, Bremen, Germany. pp.45-52, 10.1007/978-3-642-33542-6_4 .
hal-01556140

HAL Id: hal-01556140
https://inria.hal.science/hal-01556140
Submitted on 4 Jul 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01556140
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Design and Evaluation of Parametrizable
Multi-Genre Game Mechanics

Daniel Apken', Hendrik Landwehr!, Marc Herrlich!,
Markus Krause!, Dennis Paul?, and Rainer Malaka'

! Research Group Digital Media, TZI, University of Bremen
2 Interaction and Space, University of the Arts Bremen

Abstract. Designing digital games is primarily interaction design. This
interaction manifests as a meaningful change in the game world. An as-
pect of a game can only change dynamically with a parametric model of
this aspect available. One aspect of digital games is yet missing such a
systematic description: the genre of a game is currently only determined
by its designer. This paper introduces a new approach that allows for
dynamic blending between genres. We describe a set of game mechanics
that express the characteristics of different game genres. We extract a
parametric model from these mechanics to allow dynamic blending. The
paper illustrates the possibilities of this approach with an implementa-
tion of a multi-genre-game. It also provides empiric evidence that the
described model successfully generates different game genres.

Keywords: multi-genre games, genre blending, parametrizable game
mechanics, game mashups

1 Introduction

The design of many computer games is based on common and very stereotypical
genre patterns. The mechanics of different first-person shooters, role-playing
games (RPG), or platform games are very similar in comparison. Exceptions
are so-called “genre mash-ups”, e.g., games combining puzzling with action or
strategy with RPG. Not only does combining well-known game patterns in new
ways give existing genres an interesting twist but this could also broaden the
target audience of a game by providing a more personalized game experience.
Imagine the player being able to tailor the specific mix of game mechanics to
her taste and mood or the game automatically adapting to the player’s preferred
playing style over time.

However, currently it is exclusively the designer that decides on the specific
mix, which is fixed after shipping the game. At the same time, it is important to
not take all creative control away from the designer because this would clearly
diminish the game experience as good game design is anything but random and
arbitrary. The goal is to strike a balance between creative control and influ-
ence of the designer and customizability and flexibility regarding mechanics and
user preferences. What is needed are fundamental building blocks that allow

designers to incorporate dynamic genre mixing and switching in their games in
a systematic, controlled, and understandable way. Such building blocks should
be easily customizable, ideally using only a floating point variable to switch
or blend between different game characteristics. They should facilitate clearly
distinguishable play styles at an equal level of quality for each style. From an
engineering perspective they should generalize to a wide variety of games.

In this paper we introduce our approach to customizable multi-genre game
mechanics. We present the design and evaluation of three specific multi-genre
game mechanics: movement metaphor, puzzle factor and Al factor. We show
how our multi-genre game mechanics fulfill the requirements discussed above.
We report on a conducted user study, providing empirical evidence that our
mechanics successfully support different play styles while maintaining a near
constant and high level of quality of the overall game experience. We discuss
how our approach is generalizable to other games and mechanics.

2 Related Work

Numerous computer games already use procedural game elements. Automated
map and asset creation are popular techniques. A very successful example of pro-
cedural world creation is Minecraft [3]. It uses an algorithm that imitates nature
by heavily relying on perlin-noise [6] to create structures such as fields, hills, or
lakes. Other games, e.g., the Diablo series?, create procedural worlds from pre-
created interchangeable pieces to convey unpredictability. “Rogue-like” games
in general often use similar techniques to create seemingly unique items by ran-
domly selecting from a predetermined attribute range, e.g., a sword with a special
attack type, damage value, or player class requirements [12]. Other systems rely
on behavioral models such as “rhythm groups” [9, 10]. Search-based content gen-
eration [11] or difficulty calculating algorithms [2] are examples of yet another
class of related methods. The appearance of assets can also be altered using the
mentioned methods, applying slight differences to otherwise similar objects [13].
Fagade is an interactive drama [5] employing different techniques, e.g., natural
language understanding, to alternate the progress of the story depending on the
player’s choices. Lopes et al. [4] describe adaptive games, in which parts of the
game are altered according to the user’s behavior. In some games, e.g., Mario
Kart* or Max Payne®, the difficulty is altered based on the player’s performance,
e.g., providing increased aiming assistance if the player dies too often.

The mentioned works cover procedural content for game worlds, levels, assets,
their graphics, and story. However, to our knowledge, there are no examples of
games that allow to vary fundamental game mechanics such as the movement
metaphor based on a continuous parametrization.

3 http://www.blizzard.com/games,
4 http://www.mariokart.com /wii/launch/
® http://www.rockstargames.com/maxpayne/

3 Multi-Genre Game Mechanics

A prototype has been developed that provides customizable fundamental game
mechanics based on easily changeable numerical parameters. The main goal is
to provide game mechanics that can be altered at any time, resulting in clearly
distinct game types or genres while at the same time maintaining a high quality
and comparable overall game experience. In effect that means that it should be
possible to generate games of different genres or blends of such games at the
same quality level, which would still work as self-contained games, including all
the usual elements of games [7, 8].

3.1 Prototype Genres

While our mechanics can in principle be varied “continuously” as they are rep-
resented by floating point parameters, for the prototype and the following user
tests we developed three distinct parameter sets, each corresponding to a specific
setup as listed below. We selected three popular and distinct genres we wanted
to emulate by customizing our mechanics. The goal was to potentially appeal to
a variety of player types [8].

Platformer setup. The primary aim of this game variant is to jump and collect
items. The player is automatically moved to the bottom. With increasing height
the items being collected are also increasing in value.

Shoot ’em up setup. The primary aim of this game variant is to shoot enemies
while dodging obstacles. The player is automatically moved to the right. Enemies
are getting stronger as the player progresses.

Puzzle setup. The primary aim of this game variant is to solve puzzles by
changing the color of at least three hexagons. The player is not automatically
moved. Puzzle difficulty increases with each one solved.

3.2 Static Mechanics

In addition to the customizable “dynamic” mechanics described below, all games
(or game variants) include basic “static” mechanics that work similarly inde-
pendent of any parametrization. This includes a collecting mechanic and a score
system. Collecting items, killing enemies, and solving puzzles yields the player
points, which provide a measurable outcome and goal to the player.

Additionally, we devised a simple interaction mechanic independent of the
game variant. The player can click on game objects to make the game avatar
launch box-shaped projectiles at these objects. This “shooting” mechanic is
static across variants, however, the result is based on the respective target object
type, which may vary. In effect this allows the player to remove obstacles, attack
enemies, or solve puzzles using the same basic interaction method.

3.3 Dynamic Mechanics

The principle of dynamic mechanics, being controlled by parameters, has been
applied to several core mechanics of the prototype. One of the most fundamen-
tal mechanics is movement. In principle, movement can be customized through
the following parameters: direction, acceleration, speed, automatic or manual
movement, linear or non-linear movement. Furthermore, movement possibilities
are heavily dependent on the surrounding game world and objects, e.g., types of
barriers, walls, or platforms. The specific type of movement and obstacles have
a great impact on the perceived game genre and are not independent. In order
to parametrize movement for different genres we investigated common move-
ment patterns [1]. We developed a special kind of barrier which is only passable
from one side and which is automatically rotated according to the movement
parametrization. Although other movement parameters (listed above) are also
slightly adjusted according to the specific setup, the movement metaphor is
mainly parametrized by a single floating point parameter — “gravity” — that de-
termines the direction of forced or non-forced (by setting gravity to zero) player
movement. The barriers as well as other movement parameters and player con-
trols are adapted according to this parameter.

o__ v|8 | >
-

B / \ ¥ Direction of “Gravity”
)
4—¢—>
~

(—» Movement

Fig. 1. Three different movement and obstacle combinations controlled by “gravity”
are used to model three different game genres.

I Semipermeable Platform
—_—

In the platformer setup (figure 1, box 1), the gravity is directed downwards.
As the desired direction in this setup is upwards, the player can use a jumping
motion to get there. The platforms align according to the gravity, allowing the
avatar to stand on top of them and jump through them from below. Additionally,
movement to the left and right is not impeded. The gravity in the shoot ’em up
setup (figure 1, box 2) draws the player rightwards. The goal is to shoot and
avoid enemies, which is the easiest when moving with the gravity. The avatar
can move up and down freely. The platforms serve as obstacles that impede the
players progress, instead of supporting it. In the puzzle setup (figure 1, box 3),
there is no gravity at all, which means the avatar can move freely in all directions.

In this case, it cannot be predicted where the player will navigate next, so the
platforms “align” in random directions.

Jump and Collect the Stars Gain points by shooting the

to gain points > Ninjagons with the mouse!
2 O\J 1 M You move atically
<
agai o

You
7 = Hold the left
shoot

I PRESS ENTER TO CONTINUE

ﬂ

Make chains of at least 3
Hexagons of the same colour
to gain points

/

4 0 Multi
AN e
= PRESS ENTERTO CONTINUE

Fig. 2. Instruction screenshots for the three different game variants modeled in the
prototype: Platformer (top left), Shoot ’em up (top right) and Puzzle (bottom).

Another fundamental mechanic is the type of non-player objects/agents the
player can interact with. To customize objects to a wide variety of uses they
should be of a simple shape, while still providing enough possibilities to give them
an interesting appearance and functionality. Furthermore, they should work as
individual objects but they should also be combinable into larger clusters. We
found that simple hexagons fulfill these requirements. They can represent ob-
stacles, enemies, or puzzle pieces (hexagons of different colors), depending on
the intention of the player and/or goal of the game (figure 2). This is realized
by providing a certain behavior when creating new hexagons in a level. Most
hexagons being spawned are neutral and act as obstacles or platforms to stand
or jump on. T'wo parameters called “puzzle” and “aggressiveness” factor, respec-
tively, are used to alter this spawn rate, providing more objects of either kind.
Additionally, the aggressiveness is used to determine the initial behavior of ene-

mies, making them more passive or active and the puzzle factor determines the
puzzle complexity as it influences the number of colors used.

Enemies that are being hit become more aggressive, approaching the player
faster and stealing points when reaching her. All other hexagons that are hit
(except for special puzzle hexagons) adopt the color of the projectile. When three
or more hexagons of the same color are connected to each other, they explode and
the player gains points but only a few. When a special puzzle hexagon (a hexagon
showing a number) is connected to them, the points gained are multiplied by its
number and the number itself increases, making it possible to gain even more
points when destroying other hexagons connected to it. Enemies that are not
aggressive at all will not approach the player and cost her no points when she
touches them. However, they still push her off, making them ideal to be used
as trampolines, supporting the jumping mechanic. Larger formations of neutral
hexagons can often impede the player’s way. The puzzle and shooting mechanics
can be used to connect three of them, make them explode and clear the way.

4 User Study

An online user study was conducted to empirically confirm the suitability of
the described approach. The main goals of the study were to confirm that the
multi-genre game elements actually work for each genre and that at the same
time each genre is still clearly distinguishable by the user.

The game was implemented in Java and could be downloaded from our web-
site. We invited users to participate by circulating the access link both over
internal and external mailing lists and social network sites of our university. In
the disclaimer, users were instructed that we wanted to test new game designs
but no specifics on multi-genre or generative game design were provided. We
used a within-subjects design with each user playing all three game variants
(platform, shoot ’em up and puzzle setups as described in section 3.1). The or-
der of game variants was randomized using a latin square across participants.
Participants were asked to select the three most important concepts specific to
each game variant from a list of 14 items (see below). They were asked to rank
all variants in comparison and additionally to rate each individually on a 5-point
Likert scale. We collected similar ratings on graphical quality, story, and game
play for each version.

Overall 64 people participated in the study. After removing invalid data, we
still retained 44 valid data sets for further analysis. Of these final 44 participants,
37 were male and 7 female with an average age of 25.66 (SD 4.2) years. Friedman
tests revealed no significant differences between the three game variants regard-
ing ranking, ratings (overall, graphical quality, story, gameplay), perceived fun,
learnability of the controls, and clarity of the game goal. Mean values for per-
ceived fun (5-point Likert scale; 1 = better; 5 = worse) were 2.52 (SD 1.0),
2.45 (SD 1.13), and 2.32 (SD 0.983). Overall rating mean values were 2.61 (SD
0.754), 2.55 (SD 0.761), and 2.45 (SD 0.820). Mean values for learnability of
controls (5-point Likert scale; 1 = worse; 5 = better) were 4.75 (SD 0.534), 4.73

(SD 0.694), and 4.70 (SD 0.701). Mean values for clarity of gaming goal (5-point
Likert; 1 = clear; 5 = unclear) were 1.52 (SD 0.628), 1.45 (SD 0.875), and 1.77
(SD 0.886). Application of Cochran’s Q revealed significant or highly significant
differences between the three game variants for the following concepts: logical
thinking (x?(2) = 33.583, p < 0.01), reaction speed (x?(2) = 11.760, p < 0.01),
collecting (x?(2) = 29.727, p < 0.01), shooting (x%(2) = 26.963, p < 0.01),
jumping (x2(2) = 70.205, p < 0.01), problem solving (x?(2) = 17.077, p < 0.01),
aiming (x2(2) = 14.519, p < 0.01), dodging (x%(2) = 8.667, p < 0.05), and at-
tacking (x2(2) = 24.4, p < 0.01). For maneuvering, tactical thinking, hand-eye
coordination, concentration, and exploration the differences were found to be
not significant, although the p-value for tactical thinking (p = 0.07) missed the
5% threshold very narrowly.

5 Discussion

As reported above, no significant differences have been found between the three
game variants in relation to perceived quality and fun. All variants were com-
parable in terms of ranking, ratings and sub-ratings (such as graphical quality
etc.). The absolute ratings reinforce the results of the relative rankings and they
additionally show that all variants were not just rated equally, but equally good.
This also pertains to the learnability of the controls. On the other hand nine of 14
concepts exhibited statistically significant differences. This shows that the par-
ticipants were indeed very aware of differences in game play and that they very
clearly attributed different concepts and core mechanics to each game instance.

In summary this shows that our approach successfully led to the creation of
three very distinct and different games while maintaining a good quality and
working game mechanics for each game individually. Switching between these
games — or genres — is now just a matter of adjusting the three main parame-
ters (gravity, puzzle, and aggressiveness), which are floating point variables and
thereby also enable simple blending between different variants.

Our participant base was biased towards young, male, hard-core gamers.
The results of the study are therefore limited to this audience at the moment.
However, one could also interpret this audience as being an audience of computer
game experts.

6 Conclusion and Future Work

With regard to our initial research question, the results of the reported user study
show that we were able to successfully create three distinct gaming experiences
the participants clearly related to three different game genres while maintaining
a comparable level of high quality across all game variants.

Our approach currently rests on three main pillars: a variable motion me-
chanic, the puzzle factor, and the AI (or aggressiveness) factor. All games that
feature the exploration of space could potentially benefit from dynamic motion
mechanics. What is needed to implement genre-blending is a “natural” mapping

of a floating point game attribute to a motion metaphor, such as gravity in our
case. Examples could be other physical properties related to motion like friction,
buoyancy, or permeability. Our puzzle factor can be generalized to dependen-
cies between other game elements. Thus increased puzzle factor means more
dependencies. Again a mapping function is needed that maps a floating point
variable to more complex dependencies. The Al factor influences if the player
perceives other objects as static object, neutral agents, or enemies. This maps
rather directly to some sort of “aggressiveness” factor in most simple game Al
systems.

So far we only tested three distinct game variants. In the future we plan to
add additional variants to investigate further the scalability of our approach.
The parametric approach in principle allows to blend game variants at run-
time. When and how to blend has to be determined and evaluated to ensure a
convincing gaming experience.

References

1. Bjork, S.: Patterns in Game Design. Charles River Media, Hingham Mass., 1st ed.
edn. (2005)

2. Compton, K., Mateas, M.: Procedural level design for platform games. In: Proc.
ATIDE’06. pp. 109-111 (2006)

3. Handy, A Markus ‘Notch’ Persson talks making Minecraft.
http://www.gamasutra.com/view/news/27719/Interview_Markus_Notch_Persson
_Talks_Making_Minecraft.php [Last accessed: 20.04.2012] (2010)

4. Lopes, R., Bidarra, R.: Adaptivity challenges in games and simulations: A survey.
IEEE Transactions on Computational Intelligence and Al in Games 3(2), 85 —99
(June 2011)

5. Mateas, M., Stern, A.: Facade: An experiment in building a fully-realized interac-
tive drama. In: Proc. GDC’03. San Jose, CA (2003)

6. Perlin, K.: Improving noise. In: Proc. SIGGRAPH’02. pp. 681-682. ACM, New
York, NY, USA (2002)

7. Salen, K., Zimmerman, E.: Rules of Play: Game Design Fundamentals. MIT Press,
Cambridge Mass. (2003)

8. Schell, J.: The Art of Game Design: A Book of Lenses. Elsevier/Morgan Kaufmann,
Amsterdam; Boston (2008)

9. Smith, G., Cha, M., Whitehead, J.: A framework for analysis of 2d platformer
levels. In: Proc. SIGGRAPH’08 Symposium on Video Games. pp. 75-80. ACM,
New York, NY, USA (2008)

10. Sorenson, N., Pasquier, P., DiPaola, S.: A generic approach to challenge modeling
for the procedural creation of video game levels. IEEE Transactions on Computa-
tional Intelligence and Al in Games 3(3), 229 —244 (Sept 2011)

11. Togelius, J., Yannakakis, G., Stanley, K., Browne, C.: Search-based procedural
content generation: A taxonomy and survey. IEEE Transactions on Computational
Intelligence and Al in Games 3(3), 172 —186 (Sept 2011)

12. Toy, M., Wichman, G., Arnold, K., Lane, J.: Rogue by artificial intelligence design

1983

13. %Vatsgn, B., Muller, P., Wonka, P., Sexton, C., Veryovka, O., Fuller, A.: Procedural
urban modeling in practice. IEEE Computer Graphics and Applications 28(3), 18
—26 (May-June 2008)

