
HAL Id: hal-01556132
https://inria.hal.science/hal-01556132

Submitted on 4 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Information-Gathering Events in Story Plots
Fabio Silva, Antonio L. Furtado, Angelo Ciarlini, Cesar Tadeu Pozzer, Bruno

Feijó, Edirlei Lima

To cite this version:
Fabio Silva, Antonio L. Furtado, Angelo Ciarlini, Cesar Tadeu Pozzer, Bruno Feijó, et al.. Information-
Gathering Events in Story Plots. 11th International Confernece on Entertainment Computing (ICEC),
Sep 2012, Bremen, Germany. pp.30-44, �10.1007/978-3-642-33542-6_3�. �hal-01556132�

https://inria.hal.science/hal-01556132
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Information-gathering Events in Story Plots 

Fabio A. Guilherme da Silva
1
, Antonio L. Furtado

1
, Angelo E. M. Ciarlini

2
,          

Cesar Tadeu Pozzer
3
, Bruno Feijó

1
, and Edirlei Soares de Lima

1
 

1PUC-Rio, Depto. de Informática, Brasil 
{faraujo,furtado,bfeijo,elima}@inf.puc-rio.br 

2UNIRIO, Depto. de Informática Aplicada, Brasil 
angelo.ciarlini@uniriotec.br 

3UFSM – Departamento de Eletrônica e Computação, Santa Maria 
pozzer3@gmail.com 

Abstract. Story plots must contain, besides physical action events, a minimal set 

of information-gathering events, whereby the various characters can form their 

beliefs on the facts of the mini-world in which the narrative takes place. In this 

paper, we present an approach to model such events within a plan-based storytel-

ling context. Three kinds of such events are considered here, involving, respec-

tively, inter-character communication, perception and reasoning. Multiple dis-

cordant beliefs about the same fact are allowed, making necessary the introduc-

tion of higher-level facilities to rank them and to exclude those that violate cer-

tain constraints. Other higher-level facilities are also available for pattern-

matching against typical-plan libraries or previously composed plots. A prototype 

logic programming implementation is fully operational. A simple example is 

used throughout the presentation.  

Keywords: Plot Composition, Communicative Acts, Perception, Deduction, Ab-

duction, Plan Recognition, Plan Generation, Logic Programming. 

1  Introduction 

Story plots typically include action events, but another class of events is also needed 

for the sake of realism: the information-gathering events, which enable the various 

characters to mentally apprehend the state of the world. Without such events, one 

would have to assume that the characters are omniscient, being aware of all facts that 

currently hold and of how they change as a consequence of the action events. In order 

to create and analyze more plausible story plots, we propose an approach to model 

information-gathering events. 

Here we shall recognize a sharp distinction between the facts themselves and the 

sets of beliefs of each character about the facts that hold at the current state of the 

world, which constitute, so to speak, their respective internal states. Beliefs can be 

right or wrong, depending on their corresponding or not to the actual facts. Moreover, 

we have taken the option that acquiring a belief does not cancel a previous belief. As 

a consequence, we allow a character to simultaneously entertain more than one belief 

with respect to the same fact, possibly with a different degree of confidence which 

depends on the provenance of the beliefs. We consider three types of information-

gathering events, each type associated with a set of operations: communication events, 



   

supported by the operations tell, ask and agree; perception events, supported by 

the operations sense and watch; and reasoning events, supported by the operations 

infer and suppose. 

All operations refer to beliefs on facts, except watch, whose object is some action 

event witnessed by a character. The operations are defined in terms of their pre-

conditions and post-conditions, in the same way operations corresponding to action 

events are defined, i.e. using the STRIPS formalism [1]. The pre-conditions are logi-

cal expressions commonly involving affirmed or negated facts and beliefs, whereas 

post-conditions denote the effect of the operation in terms of beliefs that are added or 

deleted to/from the current internal states of the characters involved. The specification 

of the operations is deliberately kept at a minimum to be independent from the con-

text. It is however, complemented, both with respect to pre-conditions and post-

conditions, by separate conditioners that express the peculiarities of the different 

characters participating in the stories. 

The approach described here is going to be integrated with the Logtell interactive 

storytelling system [2, 3]. Logtell uses a plan-generation algorithm that deals with 

nondeterministic and partially-ordered events to compose plots. Since the present 

work focuses on the construction of an information-gathering package, to be later 

integrated to the design of full-fledged narrative genres, we decided to initially use a 

simpler planner that deals only with deterministic events. In addition, a single action 

event will be mentioned in our example. This event, associated with the go operation, 

consists of the displacement of a character from a place to another, which is needed 

because presential verbal interaction is the only form of communication that we cur-

rently cover. 

All features discussed were implemented in a logic-programming prototype, and a 

simple running example is used as illustration. Section 2 explains how the example 

was formulated so as to run in a plan-based context. Section 3 describes the informa-

tion-gathering events. Section 4 adds some higher-level facilities, which help to ana-

lyze the resulting beliefs and to make comparisons by means of plan-recognition. 

Section 5 reviews related work, and section 6 contains concluding remarks.  

2  Example in a plan-based context 

2.1 Conceptual specification 

Our conceptual design method involves three schemas: static, dynamic and behav-

ioural. The static schema specifies, in terms of the Entity-Relationship model [4], the 

entity classes, attributes and binary-relationships. The information-gathering package 

requires the Prolog clauses below to describe entities, attributes and relationships: 

entity(person,name).  

attribute(person,gender). 

relationship(current_place,[person,Place]) :-  taken_as_place(Place).   

attribute(person,believes). 

relationship(trusts,[person,person]). 

Similarly to what happens to believes, we have defined sensed, watched, inferred, 

supposed and asked as attributes of the entity person. Also, notice that the specifica-

tion of the current_place relationship associates the entity person with a still unde-



termined entity, represented by the variable Place. Putting the package together with 

a story context, other clauses can be added. In our example, we use the following:  

entity(country,country_name). 

entity(city,city_name). 

attribute(person,hair_colour). 

attribute(person,daltonic). 

relationship(born,[person,country]). 

relationship(home,[person,country]). 

relationship(citizen,[person,country]). 

taken_as_place(city). 

The dynamic schema defines a fixed repertoire of operations for consistently perform-

ing the state changes corresponding to the events that can happen in the mini-world of 

the application. The STRIPS [1] model is used. Each operation is defined in terms of 

pre-conditions, which consist of conjunctions of positive and/or negative literals, and 

any number of post-conditions, consisting of facts to be asserted or retracted as the 

effect of executing the operation. The operations that constitute the core of the infor-

mation-gathering package will be described in section 3. 

Currently our behavioural schema specifications mainly consist of goal-inference 

(a.k.a. situation-objective) rules. Since our present running example does not employ 

such rules, we shall not discuss them here (cf. [2]). 

2.2 States of the stories 

States of the story are sets of ground clauses denoting valid instances of the specified 

static schema. These clauses are facts (positive literals) specifying the entity in-

stances, their attributes and relationships. Whenever a fact is not part of a state, it is 

assumed to be false. Beliefs and facts that describe what is told, asked, sensed, 

watched, inferred and supposed by characters are attributes of the characters and can 

also be part of a state and mentioned in pre- and post-conditions of the events.  These 

facts about facts can speak about both positive and negative literals (e.g. a character 

can believe that a certain fact is not true). 

To generate a plot, it is necessary to populate the initial database state. Informally 

speaking, the mini-world of our example comprises four characters, John, Peter, Mary 

and Laura, three countries, UK, USA and Canada, and two cities, both in the UK, 

London and Manchester. The recorded information does not provide a uniform cover-

age. It registers where Mary, Peter and Laura were born but does not indicate John's 

birth-place. About Mary it adds that her domicile (home) is also in the UK and that 

she has red hair, whereas Laura ─ who, in spite of having been born in the USA, is a 

Canadian citizen ─ is blond. Peter is said to be daltonic. John, Peter and Mary are 

currently in London, and Laura in Manchester. Contrary to the other characters, 

whose beliefs are initially confined to their explicitly recorded properties, John is 

aware of all registered facts. 

2.3 Main Features of the Plan-generator 

The plan generator follows a backward chaining strategy. For a fact F (or not F) that 

is part of a given goal, it checks whether it is already true (or false) at the current 



   

state. If this is not the case, it looks for an operation Op declared to add (or delete) the 

fact as part of its effects. Having found such operation, it then checks whether the pre-

condition Pr of Op currently holds – if not, it tries, recursively, to satisfy Pr. More-

over, the plan generator must consider the so-called frame problem [5]. 

In view of the needs of the information-gathering package, we specified 

pre_state(Op,S) as one more effect of every operation Op, which allows to capture 

in S the prefix of operation Op, i.e. the entire plan sequence, starting at the initial state, 

to which Op will be appended. Indeed, sequence S supplies a convenient operational 

denotation of the state immediately before the event denoted by Op, to which we may, 

in particular, apply the holds predicate to find out who was present at some place 

associated with the occurrence of the event. This is important, in particular, because  

(at least for the time being) we assume that, to watch an event, a character should be 

at the place where the event occurs. 

 Like goals, pre-conditions are denoted by conjunctions of literals. We distinguish, 

and treat differently, three cases for the positive or negative facts involved: 

1. facts which, in case of failure, should be treated as goals to be tried recursively by 

the plan generator; 

2. facts to be tested immediately before the execution of the operation, but which will 

not be treated as goals: if they fail the operation simply cannot be applied; 

3. facts that are not declared as added or deleted by any of the predefined operations. 

Note that the general format of a pre-condition clause for operation Op is precond(Op, 

Pr) :- B. In cases (1) and (2), a fact F (or not F) must figure in Pr, with the distinc-

tion that the barred notation /F (or /(not F)) will be used in case (2). Case (3) is 

handled in a particularly efficient way. Since it refers to facts that are invariant with 

respect to the operations, such facts can be included in the body B of the clause, being 

simply tested against the current state when the clause is selected.  

An example is the precondition clause of operation tell(A,B,F), where character 

A tells something to character B. We require that the two characters should be together 

at the same place, and, accordingly, the Pr argument shows two terms containing the 

same variable L to express this location requirement, but the term for B is barred: 

/current_place(B,L), which does not happen in A's case. The difference has an in-

tuitive justification: character A, who is the agent of the operation, has to either al-

ready be present or to go to the place L where B is, but the latter would just happen to 

be there for some other reason. 

The proper treatment of (1) and (2) is somewhat tricky, because of the backward 

chaining strategy of the planning algorithm. Suppose the pre-condition Pr of opera-

tion Op is tested at a state S1. If it fails, the terms belonging to case (1) will cause a 

recursive call whereby one or more additional operations will be inserted so as to 

move from S1 to a state S2 where Op itself can be included. But it is only at S2, not at 

S1, that the barred terms in case (2) ought to be tested, and so the test must be delayed 

until the return from the recursive call, when the plan sequence reaching S2 will be 

fully instantiated. Delayed evaluation is also needed, as one would expect, for instan-

tiating the pre_state predicate mentioned before. 

Once generated, a plan can be processed via the execute command, thus effecting 

the desired state transition, i.e. adding and/or deleting facts to/from the current data-



base state. As a side effect, the log(S) clause (initially set as log(start)) is updated 

by appending to S the plan executed. At any time, the entire story thus far composed 

can be narrated, in pseudo-natural language, by entering ":- log.". 

To finish this partial review of the plan features, we remark that the planning algo-

rithm plans(G,P) can be called in more than one way. More often G is given, as the 

goal, and P is a variable to which a generated plan will be assigned as output. How-

ever an inverse usage has been provided, wherein P is given and G is a variable. In this 

case, the algorithm will check whether P is executable in view of the initial state and 

of the interplay of pre- and post-conditions, and, if so, assign its net effects (a con-

junction of F and not F terms) to G.  

2.4 Templates for pseudo-natural language generation 

Both for facts and events, we resort to templates for description and narration in 

pseudo-natural language. The template device allows, to begin with, to list all proper-

ties registered in the initial database state (or in the current state reached by executing 

a plan), via the facts predicate. The templates for operations and facts are combined 

in a way that favours a fairly readable style. Consider, as an example, operation 

tell(A,B,F), in which A tells fact F to B. Suppose fact F corresponds to a property of 

character C. Concerning the identity of the three characters, we can distinguish three 

situations: 

 They are all distinct: tell('John','Peter',hair_colour('Mary',red)) 

 C is the same as A: tell('Mary','Peter',hair_colour('Mary',red)) 

 C is the same as B: tell('John','Mary',hair_colour('Mary',red)) 

The def_template algorithm that drives the application of the templates produces for 

the above events: 

John tells Peter: "- Mary has red hair". 

Mary tells Peter: "- My hair is red". 

John tells Mary: "- Your hair is red". 

The algorithm duly uses gender information, rendering for example  

infer('Mary',citizen('Mary','UK')) as: 

Mary infers that she is a citizen of UK. 

Negative facts in the several operations, and the occurrence of variables in the ask 

operation, are treated as expected by the algorithm. So, again for the hair_colour 

property, one will have, respectively: 

tell('John','Laura',not hair_colour('Laura',red)) 

   John tells Laura: "- Your hair is not red". 

ask('John','Laura',hair_colour('Laura',X)) 

   John asks Laura: "- What is the colour of your hair?". 

ask('John','Laura',hair_colour(X,red))) 

   John asks Laura: "- Who has red hair?". 

Analogous templates are provided for rendering in pseudo-natural language the in-

formation-package facts, such as told, asked, sensed, watched, inferred, supposed, 

believes and trusts.  These templates are generic and can be used in different story 

contexts. 



   

3  The information gathering events 

Our information gathering events change the current state by adding clauses that rep-

resent when facts are believed, told, asked, sensed, watched, inferred and supposed by 

characters. They were modeled by a generic schema of the corresponding operations, 

which extends the set of pre-conditions in accordance with context-dependent rules. 

In this section such schema is described. 

3.1 Communication events 

In the Computer Science community, communication between characters immediately 

brings to mind the communication processes executed by software agents in multi-

agent environments [6]. In particular, the Agent Communication Language consists of 

formally specified operations similarly defined by their pre-conditions and post-

conditions [7]. However software agents differ from fictional characters (and, ironi-

cally, from human beings in general) in that they are supposed to only transmit infor-

mation on which they believe, to agents that still lack such information and need it in 

order to play their role in the execution of some practical service. 

In contrast, certain characters are prone to lie, either for their benefit or even out of 

habit. In general they may ignore the conversational maxims prescribed by philoso-

phers of language, such as [8]. The bare specification of our tell(A,B,F) operation 

does not even require that A has any notion of the fact F to be transmitted to B. It is 

enough that both characters are at the same local L; if they are not, a cur-

rent_place(A,L) sub-goal is recursively activated, which may cause the displace-

ment of the teller (character A) to L, where B currently is (note the "/" sign before cur-

rent_place(B,L), as showed in section 2.3, to indicate that B would not be expected 

to move). And the only necessary effect of the operation is merely that F is told by A 

to B. Whether or not B will believe in F will depend on the execution of the agree 

operation, which in turn depends on whether or not B trusts A.  

The ask operation is similarly defined, and its effect is just that A has asked F from 

B, who may respond or not. The fundamental character-dependent conditioners are 

established, respectively, by separate will_tell and will_ask clauses. These clauses 

specify the conditions for telling or asking about a fact within a certain story context. 

Such conditions are automatically considered as part of the pre-conditions of an event 

tell or ask by the planning algorithm. 

Example 1: Mary is willing to ask John about his current whereabouts. She asks, 

he replies and, since she trusts him, adopts the belief that he is in London. 

Goal: believes(Mary, current_place(John, A)) 

Mary asks John: "- Where are you?". John tells Mary: "- I am now in 

London". Mary agrees with John. 

3.2 Perception events 

Perception is the faculty whereby people keep contact with the world through their 

five senses (sight, hearing, touch, smell and taste). At the present stage of our work 

we do not make such distinctions, and merely consider a generic sense operation to 

apprehend any sort of fact, with a variant version that makes provision for defective 



sensing. For correct sensing of a positive or negative fact F, F must be successfully 

tested. Distorted sensing is accompanied by a side-remark on the true fact. In any 

case, besides the effect that F was sensed by the character, a belief clause is imme-

diately added, since direct perception does not depend on a third party who might not 

be trusted. 

The watch(W,O) operation was harder to implement, requiring the inclusion of the 

already mentioned pre_state(O,S) clause as an extra feature, where O is the opera-

tion witnessed by W, and S denotes the state previous to the application of O (i.e. the 

sub-sequence of the generated plan that precedes O). It becomes possible then to check 

the location of character W at the time when O happens. 

As before, the definitions are left to be completed by conditioners, respectively 

sense_rule and watch_rule clauses. For sense, it is required that, to ascertain a posi-

tive or negative fact F involving an entity instance E currently at place L, a character W 

must be at L, either originally or as the result of pursuing current_place(W,L) as a 

sub-goal. For watch, normally applicable to action events only, the current_place 

requirements depend on what is being watched, which justifies their being left to the 

special watch_rule clauses, to which the current_place(W,L) information, checked 

as described before, is passed. For instance, go(A,L1,L2) can be watched partly by 

persons at L1 (origin) and partly by those present at L2 (destination). Naturally the 

agent (character A) is able to watch the action in its entirety.  

Example 2: Peter obtains three different indications concerning the colour of 

Mary's hair. Only the first, supplied by trustworthy John, was correct. Laura was ly-

ing, and Peter himself, being daltonic, failed to perceive the true colour.  

Goal: believes(Peter, hair_colour(Mary, A)) 

John tells Peter: "- Mary has red hair". Peter agrees with John.  

Laura goes from Manchester to London. Laura tells Peter: "- Mary has 

blond hair". Peter agrees with Laura.  

Peter wrongly senses that Mary has green hair -- in fact Mary has red 

hair. 

3.3 Reasoning events 

Deduction, induction and abduction are complementary reasoning strategies. For 

deduction, if there is a rule A  B and the antecedent A is known to hold, it is legiti-

mate to infer that the consequent B holds. In the case of induction (fundamental to the 

natural sciences), the systematic occurrence of B whenever A occurs may justify the 

adoption of rule A  B.  Abduction is a non-guaranteed but nevertheless most useful 

resource in many uncertain situations: given the rule A  B, and knowing that B 

holds, one may suppose that A also holds. This is a type of reasoning habitually per-

formed by medical doctors, who try to diagnose an illness in view of observed symp-

toms. The trouble is, of course, that it is often the case that more than one illness may 

provoke the same symptom ─ in other words: there may exist other applicable rules 

A
1
  B, A

2
  B, ..., A

n
  B, suggesting different justifications for the occurrence of 

B. In abduction, one is led to formulate hypotheses rather than the firm conclusions 

issuing from deduction over deterministic rules. 

Our infer and suppose operations utilize, respectively, deduction and abduction. 

The conditioners for both can be the same rules of inference (inf_rules) to be trav-



   

ersed forward in the former case or backward in the latter. In the case of infer over a 

rule P=>F adopted by character A, the antecedent P furnishes the beliefs to be tested as 

pre-condition, whereas A's belief in F will be acquired as an added effect (another 

addition being an inferred clause) upon a successful evaluation of P. Conversely, in 

the case of suppose, the belief on the consequent will motivate the addition of a belief 

in some fact present in the logical expression of the antecedent.  

We must stress that the inference rules adopted by the characters in a given story 

do not have to be scientifically established rules. Informally, in our example, the rules 

are: 

1. if person A was born in a country B, and A's domicile is also in B, 

then A is a citizen of B. 

2. if person A is daltonic, and says that the colour of B's hair is C1, 

but a daltonic when looking at an object coloured C2 would mistakenly 

perceive that colour as C1, then the colour of B's hair is C2. 

3. if person A was observed departing from location L to some other lo-

cation, then A is no longer at L. 

4. if person A was observed arriving at location L, coming from some 

other location, then A is currently at L. 

Rules 3 and 4 are trivial, representing a more general case: watching an event from an 

appropriate place allows the observer to conclude that the direct and indirect effects of 

the event should hold. We point that rule 1 does not really cover the legal citizenship 

requirements prevailing in most countries, and rule 2 represents a naive understanding 

(taking red for green and vice-versa) of one variety of colour blindness (cf. [9]). 

 Example 3: As a goal that, so we thought, should fail, we enquired how red-

haired Mary could come to believe that her hair was not red. The planner found a 

solution using inference in a most devious way: John gives Peter the correct informa-

tion, which he transmits to Mary. However, having first noticed that Peter is daltonic, 

Mary is led to apply our (naive) inference rule dealing with red-green colour blind-

ness. 

Goal: believes(Mary, hair_colour(Mary, A)), not A=red 

Mary senses that Peter is daltonic. John tells Peter: "- Mary has red 

hair". Peter agrees with John. Mary asks Peter: "- What is the colour of 

my hair?". Peter tells Mary: "- Your hair is red". Mary infers that she 

has green hair. 

4  Higher-level facilities  

In order to analyze composed plots and the resulting beliefs, we have implemented a 

set of higher-level facilities. In the current prototype, the predicates implementing the 

higher-level facilities are, so to speak, external to the narrative, to be applied as an 

instrument of analysis after plot composition. Future work may promote their inclu-

sion in the repertoire of events, especially in the context of detective stories, where 

the critical examination of past facts and events plays a fundamental role. In this way 

the analysis of the plot so far might become part of the narrative (more on that in 

section 6). To run the higher-level facilities with a specific application, a number of 

clauses must be specified. The facilities and the corresponding additional information 

necessary to use them are described in the sequel. 



4.1 Surveying and ranking multiple beliefs 

Since multiple beliefs about the same fact are allowed, one needs a device to rank 

them on the basis of their provenance. The survey predicate collects all beliefs of a 

character about an indicated fact, together with their provenance (operation whereby 

they were acquired) and puts them in decreasing order with respect to the appropriate 

weights. These must have been declared by a conditioner; for the example below, we 

shall assume the following one: weights('Peter', hair_colour(X,Y), 

[1:sensed('Peter',_), 2:told('John',['Peter',_])]).  

Example 4: Peter collects all possible inputs on the colour of Mary's hair. He then 

ranks the results, according to his pre-defined list of weights based on provenance. As 

far as hair-colour is concerned, what he hears from John is ranked (weight 2) above 

the evidence of his own defective eyesight (weight 1). He trusts Laura, but never 

thought of assigning a weight to her opinion (weight 0 is the default). By using our 

facility to survey and rank Peter’s beliefs towards Mary’s hair color, the following 

output can be obtained.  

Surveying: hair_colour(Mary, A) 

sensed(Peter, hair_colour(Mary, green)) 

told(John, [Peter, hair_colour(Mary, red)]) 

told(Laura, [Peter, hair_colour(Mary, blond)]) 

Ranking the results:  

2:hair_colour(Mary, red) 

1:hair_colour(Mary, green) 

0:hair_colour(Mary, blond) 

Another stricter surveying facility, when collecting the various inputs rejects those 

that cause the activation of any violate_rule. Such rules play a central role in the 

higher-level facility described in the next section. 

4.2 Validating a belief 

Certain beliefs may not make sense in that they violate some natural law, or legal 

norm or even some convention of the chosen story genre. An elementary kind of vio-

lation refers to the schema definition itself: e.g. instances of a relationship are not 

acceptable if not declared between existing instances of the entity classes over which 

the relationship was defined. Also, similarly to naive inferences, a violate_rule 

established for a story genre may reflect its conventions, rather than the real world.  

The violations predicate, illustrated below, checks a given expression in view of 

the established violate_rules. If a rule is violated more than once, the rule identifier 

will be repeated an equal number of times in the resulting list. 

In our example, both violate_rules are about the citizen relationship. Accord-

ing to rule r1, any instance thereof is considered not valid if the first parameter is not 

a person or the second is not a country, whereas rule r2 excludes the possibility of 

plural citizenship (although such cases are often encountered in practice). 

Example 5: When checking a belief corresponding to the conjunction of the facts 
citizen('Mary','UK'), citizen('Mary','London'), citizen('Mickey','USA'), 

rule r1 is activated twice: London is not a country and Mickey is not a person. A 

violation related to rule r2 is also detected, since there should be no more than one 

clause declaring Mary's citizenship. 



   

4.3 Recognizing a library plan from events observed 

Typical plans can be extracted from previously existing plots, and, after their parame-

ters are consistently replaced by variables, be stored under this plan-pattern form in a 

library, for future reference. Our tiny example library comprises two short plans: 

lib([start=>go(A,L1,L2)=>go(B,L1,L2)=>sense(A,current_place(B,L2)),  

  start=>go(A,L1,L2)=>go(A,L2,L1)]). 

In the former, two characters A and B follow the same itinerary and, next, A senses that 

they are now together at place L2. The latter just shows A leaving from and returning 

to the same place. 

One of the uses of a library is to match one or more observed events against each 

plan-pattern. If all the observations supplied, ideally in a small number, unify with 

plan events that must lie in the same sequence but do not have to be contiguous, one 

gains the following complementary benefits: (1) anticipating what the characters are 

trying to achieve in the long run and (2) extending the few events to a larger plot, 

consisting of the matching plan pattern, with some (or all) variables instantiated as a 

consequence of unification.  

To obtain further intuitive understanding of what (1) means, take the commonplace 

example of a person being observed to hail a taxi and go to an airport. These observa-

tions would match a plan-pattern with events such as buying an air ticket, hailing a 

taxi, loading a number of bags on the taxi, going to the airport, etc., etc., checking-in, 

boarding the plane, etc. But they might also match a similar plan in which the person 

would be going to the airport not to embark but to meet another person in an arriving 

flight. The fact that the same observations can match alternative plans shows that 

recognition can, in general, be hypothetical.  

On the other hand, a prospective author would have, in view of (2), one or more 

possible plots obtained by extending an initial fragmentary sketch. So, curiously, both 

plan-generation (as shown in the previous sections) and plan-recognition provide 

useful story composition strategies. Indeed plan-recognition brings to mind the notion 

of reuse, and in the literary domain is in consonance with the remark in [10] that "any 

text is a new tissue of past citations".  

Example 6: Two observed go(X,Y,Z) events are matched against the given li-

brary of typical plans. The first event is fully instantiated, whereas the second seems 

to result from a vague observation: the only clue is that the agent was either John 

himself or a woman. With the first option, the library plan wherein the same character 

travels forward and then backward is recognized; with the second, the recognized plan 

is that two different characters embark on the same trip, and the former notices the 

presence of the latter when they have both reached their destination. Calling the plan-

generator to validate the plans has the effect of restricting the choice of the female 

character to Mary, who happens to be initially in London as required. By using our 

facility to recognize plans the following output can be obtained.  

Observed: [go(John, London, Manchester), go(A, B, C)]assuming that A was 

either John himself or some person of the female genderLibrary plans 

recognized - and executable: 

John goes from London to Manchester. John goes from Manchester to Lon-

don.  

John goes from London to Manchester. Mary goes from London to Manches-

ter. John senses that Mary is now in Manchester. 



4.4 Recognizing a pattern in a generated plan 

Pattern-matching can also take an opposite direction, working on an existing plot and 

checking whether it contains some not necessarily contiguous subsequence to which a 

pattern may be matched. Both verifying that the match succeeds and, if so, extracting 

the matching subsequence are relevant to the analysis of plots. 

Example 7: A pattern expressing a going and returning trip performed by some 

character is matched using our facility against an existing plot, which, among its 

events, contains an instance of the pattern ─ which is duly found. The following out-

put can then be displayed.  

Applying the pattern: [go(A, B, C), go(A, C, B)] 

to the given sequence: start=>go(John, London, Manchester)=> 

go(Laura, Manchester, London)=>go(John, Manchester, London) 

one finds: [go(John, London, Manchester), go(John, Manchester, London)] 

5  Related work 

Within the Interactive Storytelling area, the problem of controlling the diversity and 

coherence of the stories has been tackled by means of the specification of reactive 

behaviour, such as in Façade [11],  or by means of deliberative planning, such as in 

[12-14], where techniques such as hierarchical task networks-HTN [15] and partial-

order planning are applied. In our Logtell tool [3], partial-order planning and HTN 

are combined to conciliate flexibility and efficiency and to treat nondeterministic 

events. In this paper, we propose a generic approach to deal with information gather-

ing events that could be adapted to different story contexts. In order to simplify the 

reasoning process about beliefs, we have resorted to a simpler backward chaining 

linear planner, and used logic programming to infer pre-conditions and post-

conditions of the events. As we intend to incorporate this approach to Logtell, it will 

be adapted to deal with partially-ordered nondeterministic events.  

Reasoning about beliefs in order to perform actions is a major characteristic of the 

Belief–Desire–Intention (BDI) software model [16]. The model's architecture pur-

ports to implement the principal aspects of the theory of human practical reasoning 

originally proposed by Bratman [17]. Efforts to formulate logical models to define 

and reason about BDI agents have led to formal logical descriptions such as BDICTL 

[18] and, more recently, LORA (the Logic Of Rational Agents) [19]. In [20], beliefs, 

and their respective strengths, are recognized from the surface form of utterances, 

from discourse acts, and from the explicit and implicit acceptance of previous utter-

ances. Communicative operations can be performed with the aid of the Knowledge 

Query and Manipulation Language (KQML) [21]. ACL is a proposed standard lan-

guage for agent communications in multi-agent systems, whose semantics are based 

on the BDI model of agency [7]. KQML and ACL define a set of performatives (op-

erations performed by the agents) and, more fundamentally, rely on speech act theory 

[22-23].  In our approach, we explicitly reason about beliefs in order to achieve goals 

of the characters, and such goals can be generated by means of goal-inference rules, 

which can represent each character’s desires. In spite of the similarities with BDI 

models, there is a fundamental difference: instead of being concerned about the actual 



   

communication between software agents, we are focused on creating coherent plots in 

which characters’ actions can be justified by their beliefs. 

Regarding the use of templates, one important issue in applied Natural Language 

Generation (NLG) is deciding between the usage of complete NLG systems, or the 

option – which we favoured in our current work – for template-based approaches 

[24]. Although some scholars have stressed the disadvantages of template-based sys-

tems in comparison to full-fledged NLG systems [25-26], some more recent studies 

do not concur with this point of view [27]. In fact, they are considered Turing-

equivalent computational systems [25]. Reiter [28] compares the two techniques, 

showing the advantages in each case. Indeed, template-based approaches are easier to 

implement, and generate texts more quickly than traditional approaches. Yet, on the 

other hand, rigid templates are inflexible and difficult to reuse. An Augmented Tem-

plate-Based approach is proposed in [29] as a means of yielding templates that should 

prove more flexible and reusable. 

There surely exists a good deal of interesting research about the automatic genera-

tion of texts for different purposes, in some cases with the use of templates (cf., for 

example, [30-31]). More specifically, NLG methods have been applied to interactive 

storytelling systems (e.g. [32-34]). However we still find that the automatic rendering 

of a given plot in a high quality text is more often than not a complex task [35].  

6  Concluding remarks 

Besides the simple-minded example used as illustration, we have already applied 

some of the information-gathering events to enhance the Swords-and-Dragons genre 

that runs in Logtell, by dropping the unrealistic omniscience assumption. Now a dam-

sel watches the villainous Draco kidnapping Princess Marian, runs to tell Sir Brian 

about the mischief, and he infers that, as a kidnapped victim, she should have been 

carried to the villain's dwelling, whereto he promptly rides to rescue his beloved.  

But the availability of information-gathering events will, probably after further 

elaboration, open the way to more sophisticated genres. In particular, we have been 

examining the requirements of detective stories. It has been convincingly argued [36] 

that such narratives actually contain two stories: one covers the crime and the other 

the investigation. The first story ends before the second begins. And the characters of 

the story of the investigation do not predominantly act ─ they learn ─, which is well 

within the scope of the package discussed here. 

Future work should extend the repertoire of events to contemplate other speech 

acts, for example to allow a character C1 to solicit or to order another character C2 to 

execute an action of C1's interest, which C2, but not C1, is empowered and in a posi-

tion to perform. Moreover, in stories of even moderate complexity, behaviour should 

be characterized as a decision-making process affecting the participation of each 

character in every kind of event, either involving physical action or the information-

gathering activities of the present study ─ and this process hinges on both cognitive 

and emotional considerations [37- 42], further influenced by the goals and plans of 

the other characters [43]. We have done some initial work on drives, attitudes, emo-

tions, and mutual interferences among agents [44], but a full integration within the 

Logtell system still remains to be achieved.  



References 

1. Fikes, R.E.; Nilsson, N.J. (1971). "STRIPS: A new approach to the application of theorem 

proving to problem solving". Artificial Intelligence , 2(3-4). 

2. Camanho, M.M; Ciarlini, A.E.M.; Furtado, A.L; Pozzer, C.T.; Feijó, B. (2008). "Conciliat-

ing coherence and high responsiveness in interactive storytelling". Proc. of the 3rd Inter-

national conference on Digital Interactive Media in Entertainment and Arts, pp. 427-434. 

3. Silva, F.A.G.; Ciarlini, A.E.M.; Siqueira, S.W.M. (2010). “Nondeterministic Planning for 

Generating Interactive Plots”. Proc. Ibero-American Conference on Artificial Intelligence, 

162, Bahía Blanca, Argentina, 1-5 November. 

4. Batini, C.; Ceri, S.; Navathe, S. (1992). Conceptual Design – an Entity-Relationship Ap-

proach. Benjamin Cummings. 

5. Lloyd, W. (1987). Foundations of Logic Programming. Springer. 

6. Sadek, M.D. (1990). “Logical task modelling for man-machine dialogue”. In: Proceedings 

of the eighth AAAI conference, Boston, MA. 

7. FIPA Review of FIPA Specifications (2006). At http://www.fipa.org/subgroups/ROFS-

SG-docs/ROFS-Doc.pdf. 

8. Grice,H.P. (1975). "Logic and conversation". In: P. Cole, J.L. Morgan (Eds.), Syntax and 

Semantics, Speech Acts, vol. 3, Academic Press, New York. 

9. Dalton, J. (1798). "Extraordinary facts relating to the vision of colours: with observations". 

Memoirs of the Literary and Philosophical Society of Manchester 5: 28–45. 

10. Barthes, R. (1981). "The Theory of the Text". In Untying the Text: A Post-Structural 

Reader. R. Young (ed.). Boston: Routledge, 31-47. 

11. Mateas, M.; Stern, A. (2005). “Structuring content in the Facade interactive drama archi-

tecture”. In: Proc. Artificial Intelligence and Interactive Digital Entertainment Conference 

(AIIDE). 

12. Cavazza, M.; Charles, F.; Mead, S. (2002). “Character-based interactive storytelling”. 

IEEE Intelligent Systems, special issue on AI in Interactive Entertainment, 17(4):17-24. 

13. Young, R. (2001). “An overview of the mimesis architecture: Integrating narrative control 

into a gaming environment”. In: Working notes of the AAAI Spring Symposium on Artifi-

cial Intelligence and Interactive Entertainment, pp. 78-81, Stanford, CA. AAAI Press. 

14. Riedl, M.; Young, R.M. (2006). “From Linear Story Generation to Branching Story 

Graphs”. IEEE Computer Graphics and Applications 26(3), 23–31. 

15. Erol, K.; Hendler, J.; Nau, D. S. (1994). “UMCP: A sound and complete procedure for hi-

erarchical task-network planning”. In: Proceedings of the International Conference on AI 

Planning Systems (AIPS), pp. 249-254. 

16. Rao, A.S.; Georgeff, M.P. (1995). “BDI-agents: From Theory to Practice”. In Proceedings 

of the First International Conference on Multiagent Systems (ICMAS'95), San Francisco. 

17. Bratman, M.E. (1999). Intention, Plans, and Practical Reason. CSLI Publications. 

18. Dastani, M., van der Torre, L. (2002). “An extension of BDICTL with functional depend-

encies and components”. In: Procs. of LPAR'02. LNCS 2514, Springer. 

19. Wooldridge, M. (2000). Reasoning About Rational Agents. The MIT Press. ISBN 0-262-

23213-8. 

20. Carberry, S.; Lambert, L. (1999). “A Process Model for Recognizing Communicative Acts 

and Modeling Negotiation Subdialogues”. Computational Linguistics 25(1):1--53. 

21. Finin, T.; Weber, J.; Wiederhold, G.; Gensereth, M.; Fritzzon, R.; McKay, D.; McGuire, 

J.; Pelavin, R.; Shapiro, S.; Beck, C. (1993). DRAFT Specification of the KQML Agent-

Communication Language (PostScript), June 15. At 

http://www.cs.umbc.edu/KQML/kqmlspec.ps. 

22. Searle, J.R. (1969). Speech Acts An Essay in the Philosophy of Language, Cambridge Uni-

versity Press, Cambridge. 

http://www.fipa.org/subgroups/ROFS-SG-docs/ROFS-Doc.pdf
http://www.fipa.org/subgroups/ROFS-SG-docs/ROFS-Doc.pdf
http://www.cs.umbc.edu/KQML/kqmlspec.ps


   

23. Winograd, T.; Flores, F. (1986). Understanding Computers and Cognition: A New Foun-

dation for Design, Ablex Publishing Corp, (Norwood). 

24. Reiter, E.; Dale, R. (2000). Building Natural Language Generation Systems. Cambridge 

University Press, Cambridge. 

25. Reiter, E.; Dale, R. (1997). “Building applied natural language generation systems”. 

Nat. Lang. Eng., Vol. 3, pp. 57-87. 

26. Busemann, S. and Horacek, H. (1998). “A flexible shallow approach to text generation”. 

In: Proceedings of the Ninth International Workshop on Natural Language Generation, 

pages 238–247: Niagara-on-the-Lake, Ontario, Canada. 

27. van Deemter, K.; Krahmer, E.; Theune, M. (2005).  “Real versus Template-Based Natu-

ral Language Generation: A False Opposition?”. Comput. Linguist., Vol. 31, pp. 15-24. 

28. Reiter, E. (1995) NLG vs. Templates.  CoRR, Vol. cmp-lg/9504013.  

29. McRoy, S.W.; Channarukul, S.; Ali, S.S. (2003). “An augmented template-based approach 

to text realization”. Nat. Lang. Eng., Vol. 9, pp. 381-420. 

30. Stenzhorn, H. (2002). “ XtraGen: A Natural Language Generation System Using XML- 

And Java-Technologies”. In: Proceedings of the 2nd workshop on NLP and XML - Vol-

ume 17, pp. 1-8. 

31. Piwek, P. (2003). “A flexible pragmatics-driven language generator for animated agents”. 

In: Proceedings of the tenth conference on European chapter of the Association for Com-

putational Linguistics - Volume 2, pp. 151-154. 

32. Gervás, P.; Díaz-Agudo, B.; Peinado, F.; Hervás, R. (2005). “Story plot generation based 

on CBR”. Knowledge-Based Systems, Vol. 18(4-5), pp. 235 – 242. 

33. Szilas, N. (2007). “A Computational Model of an Intelligent Narrator for Interactive Nar-

ratives”. Applied Artificial Intelligence, Vol. 21(8), pp. 753-801. 

34. Montfort, N. (2007). Generating narrative variation in interactive fiction.  PhD disser-

tation, Computer and Information Science - University of Pennsylvania. 

35. Callaway, C.B. and Lester, J.C. (2002). “Narrative prose generation”. Artificial Intelli-

gence 139 (2) 213–252. 

36. Todorov, T. (1977). The Poetics of Prose. Cornell University Press.  

37. Brave, S.; Nass, C. (2008) “Emotion in Human-Computer Interaction”. In: A. Sears & 

J.Jacko (eds.) The Human-Computer Interaction Handbook, pp. 77–92. 

38. Loewenstein, G.; Lerner, J.S. (2003). "The role of affect in decision making". In Handbook 

of Affective Sciences. Davidson, R.J.; Scherer, K.R.; Goldsmith, H.H. (eds.). Oxford Uni-

versity Press, pp. 619-642. 

39. McCrae, R.R.; Costa, P.T. (1987). "Validation of a five-factor model of personality across 

instruments and observers". J. Pers. Soc. Psychol., 52, pp. 81-90. 

40. Goldberg, L.R. (1992). "The Development of Markers for the Big-Five Factor Structure". 

Psychological Assessment, v4, n1 pp. 26-42. 

41. O'Rorke, P.; Ortony, A. (1994). "Explaining Emotions". Cognitive Science, 18, 2, pp. 283-

323. 

42. Ortony, A. (2003). "On making believable emotional agents believable". In Emotions in 

Humans and Artifacts. Trappl, R.; Petta, P.; Payr, S. (eds). The MIT Press, pp. 189-211. 

43. Willensky, R. (1983). Planning and Understanding - a Computational Approach to Hu-

man Reasoning. Addison-Wesley. 

44. Barbosa, S.D.J.; Furtado, A.L.; Casanova, M.A.C. (2010). "A Decision-making Process for 

Digital Storytelling". Proc. IX Symposium on Computer Games and Digital Entertainment 

- Track: Computing.  


