
HAL Id: hal-01555560
https://inria.hal.science/hal-01555560

Submitted on 4 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Unification of Publish/Subscribe Systems and Stream
Databases

Joseph Sventek, Alexandros Koliousis

To cite this version:
Joseph Sventek, Alexandros Koliousis. Unification of Publish/Subscribe Systems and Stream
Databases. 13th International Middleware Conference (MIDDLEWARE), Dec 2012, Montreal, QC,
Canada. pp.292-311, �10.1007/978-3-642-35170-9_15�. �hal-01555560�

https://inria.hal.science/hal-01555560
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Unification of Publish/Subscribe Systems and
Stream Databases

The Impact on Complex Event Processing

Joseph Sventek and Alexandros Koliousis

School of Computing Science, University of Glasgow
{joseph.sventek,alexandros.koliousis}@glasgow.ac.uk

Abstract. There is increasing demand for complex event processing of
ever-expanding volumes of data in an ever-growing number of application
domains. Traditional complex event processing technologies, based
upon either stream database management systems or publish/subscribe
systems, are adept at handling many of these applications. However,
a growing number of hybrid complex event detection scenarios require
features of both technologies. This paper describes a unification of
publish/subscribe and stream database concepts to tackle all complex
event processing scenarios, with particular emphasis upon hybrid
scenarios. The paper describes the architecture for this unified system,
the automaton programming language that it supports, and the run-
time system that animates automata. Several examples of automata
that exploit the system’s unified nature are discussed. Raw automata
performance is characterised, and its relative performance against
Cayuga with respect to stock trend analysis is presented.

Keywords: complex event processing, user-defined functions, streams,
automata, publish, subscribe, cache

1 Introduction

There is increasing demand for complex event processing of ever-expanding
volumes of data in an ever-growing number of application domains. This
explosive growth is fueled by a number of trends in the industry: the availability
of inexpensive wireless sensor nodes, the rapid penetration of smart phones in
the mobile telephony market, and the growth in availability and sophistication
of cloud computing resources. The data deluge resulting from the convergence
of these trends dictates that we develop ever more functional and performant
complex event processing systems in order to mine the data for information of
business or personal importance.

Complex event processing is traditionally achieved using two different
technologies: stream database management systems, in which one is able to
look backward in time via select statements, and publish/subscribe systems, in
which one is able to look forward in time via subscriptions to notifications.

2 J. Sventek and A. Koliousis

Some event processing scenarios naturally fall into one or the other of these
categories; increasingly, there are a number of hybrid scenarios in which both
capabilities are required – i.e. the ability to process received notifications is
dependent upon access to global and local state representing historical and/or
active policy information that is crucial to the correct processing of the data.

This paper describes a unification of publish/subscribe and stream database
concepts to address these hybrid scenarios. At the same time, the resulting
system should also handle scenarios for which the unified nature is not required.
The keystone of this unified system is a topic-based, publish/subscribe cache
(henceforth, the Cache). Topics are organised in memory as either append-
only stream tables or static relational tables. Ad hoc select queries, enhanced
with time windows, can be presented to the cache at any time. An imperative
programming language – viz., the Glasgow Automaton Programming Language
(GAPL) – is used to program automata to detect complex event patterns over the
cached streams and relations. When registered against the cache, each automaton
subscribes to chosen topics and receives each event inserted into those topics
through the publish/subscribe infrastructure for further processing. Automata
can also access (modify) the relational tables, publish new tuples into stream
tables, and send events to external processes.

The remainder of the paper is organised as follows. Firstly, we describe related
work to place our system in context (§2). This is followed by a discussion of the
Cache architecture (§3), the automaton programming language (§4), and the
automaton execution model (§5). We then proceed with an evaluation of the
system’s performance from a number of perspectives, including a performance
comparison against Cayuga for several, relevant stock analysis queries (§6). The
paper concludes with a discussion of the impact that such a unified system has
on future complex event processing (§7), and future work (§8).

2 Related work

Codd’s relational model structures data into a mathematical object, a relational
database, where new information can be extracted using algebraic operators such
as projection, selection, union, or join [1]. The ordering of columns (attributes)
and rows (tuples) in a relational database is immaterial. On the other hand, data
streams are modelled as append-only databases supporting continuous queries
for which the relative temporal ordering of tuples is significant.

The continuous semantics of queries were first defined in Tapestry, a database
system for mail and bulletin board messages [2]. Roughly speaking, a continuous
query is a monotonic query – or, equivalently, a non-blocking query [3] – that
yields incremental results over a sliding time window whose duration is defined
by the current execution time and the last timestamp observed in the previous
result set. Fig. 1 shows a variant of the basic continuous query execution model,
as proposed in Tapestry. This model inspired the first generation of interactions
with the Cache, where continuous queries over network flow streams were used to
produce real-time visualisations of home networking traffic [4]. Fig. 1 also shows

Unification of publish/subscribe systems and stream databases 3

1 # Let T be a table with attribute x.
Set τ = −∞
Set S = ∅
FOREVER DO

5 S = {select x from T [since τ]}
Each tuple j in S has a timestamp tj.
τ = argmaxj∈S tj
Return results to user
Sleep for some period of time, t sec.

10 ENDLOOP

11 subscribe e to T; # A new tuple e of T.
subscribe p to Timer;
window S;
int period, τ;
initialization {

16 S = Window(sequence, SECS, t);
period = t;
τ = 0;

}
behavior {

if (currentTopic() == ‘T’)
22 append(S, Sequence(e.x), e.tstamp);

else { # The current topic is Timer.
τ += 1;
if (τ % period == 0) {

26 send(S); # Return results.
S = Window(sequence, SECS, t);

}
}

30 }

Fig. 1. The continuous query execution model [2] (left); and its equivalent Glasgow
automaton (right). Our [since τ] extension to select (line 5) guarantees to return all
tuples that have been inserted into table T in the last t seconds. On the other hand, the
automaton reacts upon every insertion of a tuple e to table T, populating a time-based
sliding window S of duration t (lines 16, 22). Every t seconds, the automaton sends
this window to its registering process (line 26).

an equivalent implementation of the continuous query model in GAPL, as an
introductory example to our automata and the unified nature of the Cache. The
nature of this unification, as well as our language features, will become apparent
in the subsequent sections.

Since TQL, Tapestry’s query language, numerous variants of SQL, the
language of Codd’s relations, have been introduced in the literature, capturing
those continuous semantics. CQL, for instance, the continuous query language of
the STREAM data management system [5], provides users with a comprehensive
list of time- or count-based sliding window operators to express non-monotonic
relations over stream attributes – in other words, stateful relations. Thus, it
became apparent to us that the use of sliding windows in stream processing
is two-fold. Apart from producing incremental results, sliding windows are also
used to maintain the intermediate state necessary for order-agnostic operators
– mainly, aggregation and join.

Closely related to this work are user-defined aggregate functions, e.g. like
those provisioned in Aurora’s SQuAl [6]. A user-defined aggregate function
consists of three parts: an initialization function that defines (local) state,
opening a window within which the computation takes place; an iteration
function that updates state; and a termination function that returns state, when
the window closes. User-defined aggregates have been proven to be a sufficient
extension to SQL for modeling complex patterns over data streams as finite
state machines [3]. At this point, two further analogies can be drawn between
user-defined functions and Glasgow automata.

4 J. Sventek and A. Koliousis

First, an automaton can not only update local state, but also append tuples to
other streams, locally (via a publish command) or remotely (via a send command).
Second, in contrast to other event query languages, state need not necessarily
be local: using associations, an automaton can modify relational tables, whose
current state is immediately available to the rest of the system.

Non-deterministic finite state automata, a computational model used in the
event query languages of Cayuga [7, 8] and SASE [9–11], further extend the
notion of user-defined aggregates by expressing complex patterns as composites
of ordered sequences of events. The FOLD operator of Cayuga, for example,
iterates over an a priori unknown sequence of events until a terminating
predicate is satisfied, maintaining aggregate statistics in the process; or, the skip

till next match operator of SASE maintains intermediate state in arrays in order
to express Kleene closures, an operator that has recently received considerable
attention in complex event detection [12]. For non-deterministic finite automata,
the complexity of a pattern lies in determining what comes “next” in event
processing [13]. But apart from folding (or skipping) events, it is hard to specify
patterns with branching in a Cayuga or SASE automaton. Indeed, a stream has
to be replicated and each branch of the pattern must be represented as a different
automaton. Finally, it is not always possible to express nested patterns, e.g. a
query that uses the local state maintained by another.

The Cache was first used as a stream database of network flows and related
policies that govern a home network. Network monitoring and management
scenarios have been featured heavily in stream database research. The Tribeca
query language [14], for example, supported demultiplexing and multiplexing
of packet streams. The demultiplexing of streams, while similar to the group

by SQL operator, enables processing of sub-streams beyond mere aggregate
statistics using pipes to transform streams at several stages. The importance of
multiplexing (merging) network streams has also been stressed in Gigascope, a
high-performance network monitoring tool [15]. Gigascope has a two-level query
architecture to process packets on high-speed links. High performance is achieved
by pushing low-level queries (e.g., protocol filtering or aggregation) closer to the
physical network interface. High-level queries then perform more complex tasks.

A number of packet stream processing algorithms focus on the frequency
of certain flow attributes, e.g. the throughput to (from) an IP address or a
transport port. The problem has been formally characterized as mining the
frequent items in data streams [16], and its applications to network monitoring
include finding the heaviest bandwidth consumers (heavy-hitters), or finding
the heaviest connection initiators (super-spreaders) [17]. These algorithms are
expressible, as we will demonstrate, in GAPL. Finally, modern traffic analysis
tools also query the implicit structure of flows in a traffic mix, in an attempt
to match application labels to the underlying flow patterns, and vice versa.
Thus, flow monitoring queries are not just mere counters of some traffic volume
metric, e.g. of the number of bytes or packets. Besides identifying frequent items,
patterns of temporally correlated flows are used for classification or intrusion
detection and are usually expressed as sequences of events [18].

Unification of publish/subscribe systems and stream databases 5

3 The Topic-based Publish/Subscribe Cache

There are many situations in which detection of interesting events requires the
ability to receive raw events as they occur and the ability to query, as well as
modify, global state. In many deployment scenarios, these actions need to be
done in real-time. This section describes a topic-based publish/subscribe cache
that facilitates such real-time processing.

A working system consists of our centralised Cache and a varying number
of applications that use it; the applications and the Cache interact through a
custom RPC mechanism. There are three distinct roles that applications can
assume with respect to this system:

– populate tables with raw events via insert commands;
– retrieve data from tables periodically via select commands; and/or
– register interest to be notified when complex event patterns are detected.

The Cache supports the usual SQL commands for creating tables and
inserting tuples into tables. The Cache supports two types of tables, ephemeral
tables, append-only streams for which the primary key is the time of insertion,
and persistent tables, time-varying relations for which the primary key is the
first defined field of the table schema. Tuples inserted into ephemeral tables are
stored in a circular memory buffer,1 while tuples inserted into persistent tables
are stored in the heap. For persistent tables, an on duplicate key update modifier
to the insert command is used to update, rather than append, a row in the heap,
while maintaining the temporal order of events. Thus, when retrieving tuples
from the Cache, the default order for either table type is the time of insertion,
unless overridden by an order by modifier.

For monitoring applications, the selection operator has been augmented with
appropriate time and count window extensions to reflect the continuous nature of
the events. Thus, apart from typical order by and group by operators, ad hoc select
queries over cached streams can use time interval expressions that narrow the
scope of results to a particular time period, e.g. select ∗ from table [since τ], where
τ is the timestamp of the last retrieved tuple. Typically, monitoring applications
submit such queries periodically.

The third role of applications, viz. reaction applications, is enabled by the
unification of this stream database view of events with a publish/subscribe
infrastructure, achieved as follows. Every table created in the Cache, whether
ephemeral or persistent, corresponds to a publish/subscribe topic with the same
name. Whenever a tuple is inserted into a table, that tuple is published as an
event to its associated topic. Applications can register automata (i.e., complex
event patterns) against the database. As new tuples are inserted into a table, all
automata that have subscribed to that topic will receive events for processing.
If, while processing an event, an automaton determines that it has detected a
pattern of interest, it may send information about the complex event to the
application that registered the automaton.

1 This is the reason that the component is called the Cache.

6 J. Sventek and A. Koliousis

Table 1. Description of data types.

Type Basics

int 64-bit integer
real Double-precision floating point
tstamp 64-bit unsigned integer (nsec since the epoch)
bool True or false
string Variable-length UTF-8 character array

Type Aggregates

sequence Ordered set of heterogeneous basic data type instances
map Map from an identifier to an instance of the bound type
window Collection of bound type instances, constrained either to a

fixed number of items or a fixed time interval
identifier Key used in maps
iterator Used to iterate over all instances in a map (keys) or window

(data values)

Additionally, during normal processing of events, an automaton may publish
(append, insert, or update) a new tuple into another table in the Cache, whether
ephemeral or persistent. This unity allows for complex patterns to be presented
as materialised views in the stream database and, vice versa, materialised views
to be used to derive complex patterns. A typical reaction application (e.g., a
policy management engine) registers one or more automata with the Cache.

4 The automaton programming language

4.1 Language design principles

Support for complex event pattern matching, requiring both consumption of raw
publish/subscribe events and access to static relations, dictated the following
features of the Glasgow Automaton Programming Language:

– the ability to subscribe to one or more topic streams over which raw events
are conveyed;

– the ability to publish raw or derived events to other publish/subscribe topics;
– the ability to store local state across many event deliveries to an automaton;
– the ability to query one or more persistent tables to access and/or modify

static, global relations; and
– the ability to send information about complex event occurrences back to an

automaton’s registering application.

Furthermore, one requires a small set of basic data types, a small set of aggregate
data structures, and a small set of control constructs to store and filter events
locally. The basic data types are described in Table 1. The language also defines
a minimal set of aggregate types, e.g. a sequence, a map, or a window, and types
required to manipulate these aggregate types, e.g. an iterator over a window.

Unification of publish/subscribe systems and stream databases 7

Every aggregate type is instantiated with a constructor. Note that a sequence
instance can contain heterogeneous basic type instances, while each map or
window instance is bound to a particular type, basic or aggregate. In fact,
the ability to instantiate windows of sequences or maps of sequences enables
the creation of ephemeral or persistent tables, respectively, that are truly local
within the context of an automaton thread. Finally, the language supports if then

else and while constructs. It also supports a typical set of operators for arithmetic,
conditional expressions, and assignment.

Overall, the C-like syntax for GAPL was chosen to facilitate the coding of
commonly-used stream processing algorithms (cf. §6.4), while enabling high-
performance filtering of events.

4.2 General form for an automaton

In its general form, an automaton program consists of subscriptions, associations,
declarations, an initialization clause, and a behavior clause – in that order.

Each automaton source starts with binding a local variable to each
publish/subscribe topic to which it wishes to be subscribed. Every time an event
is delivered on any subscribed topic, the bound local variable refers to the last
received event over that topic. Attribute values are assigned automatically to
variables with names and types being determined by the corresponding table
schema. These variables are accessed using the dot notation. For example,
variable e.x holds the value of attribute x of event e. The Cache provides a
built-in topic, Timer, which delivers a tuple every second consisting simply of a
timestamp data type attribute.2 All other topics must have been created earlier
by create table calls made by applications (or during Cache initialization, from a
configuration file). An automaton must always subscribe to at least one topic.

Associations are used to bind a local map variable to a persistent table in
the Cache. The automaton can then access and modify tuples in the associated
persistent table through calls to lookup() and insert() methods on that map
variable, respectively. Subsequent declarations in an automaton enable the
programmer to declare additional local variables needed for processing.

The initialization clause of an automaton is executed once, after successful
compilation. It is usually used to initialise local variables, but therein a
programmer can perform any actions supported by the language. The behavior
clause, on the other hand, is executed each time an event is delivered to any of
the subscribed topics.

4.3 Example hybrid automaton

This section describes an automaton that implements a hybrid application
scenario, one in which the the processing of events depends upon access to global
persistent policy state, taken from the current deployments of the Cache – i.e.,
as part of a home network router [4].

2 This is an example of punctuation-carrying heartbeat functionality [19].

8 J. Sventek and A. Koliousis

31 create table Flows (
proto integer,
saddr varchar(16), sport integer,
daddr varchar(16), dport integer,
npackets integer, nbytes integer)

32 create persistenttable Allowances (
ipaddress varchar(16) primary key,
nbytes integer)

33 create persistenttable Usage (
ipaddress varchar(16) primary key,
nbytes integer)

Fig. 2. Tables associated with the band-
width usage consumption automaton.

34 subscribe f to Flows;
associate a with Allowances;
associate b with Usage;
int n, limit;
identifier ip;
sequence s;
behavior {

ip = Identifier(f.daddr);
if (hasEntry(a, ip)) {

limit = seqElement(lookup(a, ip), 1);
if (hasEntry(b, ip))

n = seqElement(lookup(b, ip), 1);
else

n = 0;
n += f.nbytes;
s = Sequence(f.daddr, n);
if (n > limit)

send(s, limit, ‘limit exceeded’);
insert(b, ip, s);

}
54 }

Fig. 3. Bandwidth usage consumption
automaton.

Households occupied by multiple, sometimes unrelated adults (e.g., students
sharing a flat) often opt for broadband plans with rapidly escalating charges if a
per month bandwidth allowance is exceeded. These households wish to control
bandwidth consumption as it nears the monthly allowance. Additionally, it is
often the case that a single member of the household is usually the cause of
exceeding the monthly allowance; therefore, there is a desire to track the usage
of a subset of the members of the household.

The three tables used to demonstrate this functionality are shown in Fig. 2.
Table Flows is an ephemeral table populated with periodic aggregate statistics
of home networking traffic (i.e., per flow number of bytes and number of
packets accumulated every second). The other two tables are persistent. The
Allowances table is populated with a monthly download byte-limit per monitored
IP address using a network management utility; and the Usage table records
accumulated bandwidth usage, reset to zero by a network management utility
at an appropriate frequency.

Fig. 3 shows an automaton that tracks the bandwidth usage per monitored
IP address, generating a notification to the registering application (i.e., a policy-
based management system) when a limit has been exceeded. The automaton
subscribes to Flows events; and associates maps a and b with tables Allowances

and Usage, respectively. Upon receipt of each Flows event, it does the following:

– it generates an identifier ip from the flow’s destination address;
– if no entry for ip is found in Allowances, it stops processing;
– otherwise, it looks up an allowance for this ip address;
– if there is an entry for ip in table Usage, it fetches the accumulated usage;
– otherwise, it sets usage n to zero;
– it increments n by the number of bytes in the Flows tuple;

Unification of publish/subscribe systems and stream databases 9

– if ip’s limit is exceeded, it sends an event to the registering application; and
– it updates the usage for this IP address in the Cache.

5 Automaton execution model

When an application registers an automaton against the Cache, it provides
the source code for the automaton along with data required for the Cache to
create an RPC channel back to the registering application (i.e., a host, a port,
and a service name). The source code is then compiled into instructions for a
stack machine. If a compilation error is detected, information about the error
is communicated back to the registering application, and the RPC channel is
closed. Upon successful compilation, a new Pthread is created to animate the
automaton, and an identifier is returned instead; this identifier can be used by
the registering application to manage the automaton at a later time (e.g., to
unregister it).

When the Pthread is created, the byte code sequences resulting from the
compilation of the initialization and behavior clauses are bound to an instance
of a stack machine interpreter. The initialization sequence is executed once
and the thread then enters a continuous loop, awaiting an event on one of its
subscribed topics (a tuple insertion); the runtime system guarantees that tuples
are delivered to an automaton in strict time-of-insertion order. Upon receipt
of an event, the behavior sequence is executed. If an automaton executes a
send in the behavior sequence, an RPC call, containing the send() arguments,
is made to the registering application. If the automaton executes a publish in
the behavior sequence, a tuple is inserted into the table (topic) specified in
the publish() arguments, potentially triggering other automata to execute. The
default Pthread scheduling algorithm is used by the Cache and appropriate
conditional critical regions are used to guarantee safe execution amongst multiple
automata threads.

The runtime implements an aggressive garbage collection policy as soon as
it knows that heap allocated storage is no longer in use; the delete procedure can
be optionally invoked by code to advise when storage is no longer in use.

5.1 Optimizations enabled by the execution model

Many complex event processing systems based upon the stream database model
require the creation of multiple temporary event streams for their operators to
perform the requisite aggregations and disaggregations demanded by a pattern
matching logic. This leads to a very large number of operators that must be
scheduled, and a very large number of additional tuples that need to be delivered
to a directed acyclic graph of operators that represent the query. The imperative
structure of GAPL, together with the ability to declare and manipulate an
automaton’s local state, enable combinations of multiple operators into a single
automaton, thus reducing the scheduling stress on the Cache. The following
example, documented fully in [20], demonstrates this effect.

10 J. Sventek and A. Koliousis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

5

58

8

6

9

710

7

10

69

Fig. 4. The DEBS 2012 Grand Challenge query.

The DEBS 2012 Grand Challenge posed two complex queries with regards to
monitoring manufacturing equipment. Here we discuss the first query, illustrated
in Fig. 4. The query consists of fifteen operators (circles), generating nine
intermediate streams (squares). Operators 1 and 4 compute a state transition
by correlating consecutive events inserted into the initial stream 0; once a
pattern is detected by either of them, events are published to operator 7. In
turn, operator 7 looks for events in stream 5 followed by events in stream 8.
Since this logic is sequential, GAPL allows us to combine these three operators
together, in one automaton. Also, operators 10 and 11 have different functionality
but they maintain the same state, a 24-hour sliding window over stream 58. If
these operators were to be treated separately, then the same window would be
maintained twice. Since their logic is independent, this duplication can also be
avoided by merging them in one automaton. The other ten operators simply
replicate the aforementioned functionality but on different attributes. In fact,
our final solution merged all fifteen operators into a single automaton – i.e. one
execution thread – avoiding the use of intermediate streams all together. By
doing so, the throughput increased by 57% and the execution time decreased
significantly, as opposed to having one automaton per operator [20].

5.2 Multi-query optimizations

Sharing derived events amongst Glasgow automata is currently a programmer’s
task and it is achieved by explicitly publishing these events to intermediate
streams that are, in turn, accessible by other automata running in the context
of the Cache; it is not an automated process. Managing these events program-
matically, using basic or aggregate data type instances, is one of the key features
that enable high-performance event filtering.

A limitation, however, of user-defined optimisations is that multiple au-
tomata registrations are not open to multi-query optimisations possible in other
query engines. Cayuga, for example, merges equivalent automaton states into
a directed acyclic graph using YFilters [21, 7], whose edges represent static or
dynamic predicates that determine state transitions. This trade-off, where on one
hand scaling to thousands of queries requires multi-query optimisations, while
on the other hand high performance and expressiveness requires user-defined
optimisations, is an open research question; we explore it by investigating the
use of GAPL as an intermediate language between the two approaches.

Unification of publish/subscribe systems and stream databases 11

55 subscribe t to Timer;
int i;
int limit;
tstamp start;
int dt;

60 # built-in specific declarations, e.g. sequence s; int x;
initialization {

limit = 100000;
63 # built-in specific initialization, e.g. s = Sequence(‘A’, 1);

print(‘Start of <built-in> test’);
}
behavior {

i = 0;
start = tstampNow();
while (i < limit) {

70 # invoke built-in, e.g. x = seqElement(s, 1);
i += 1;

}
dt = tstampDiff(tstampNow(), start);
print(String(‘<built-in>: ’, float(dt)/100000000.0));

75 }

Fig. 5. Built-in cost template automaton.

6 Evaluation

Experiments are run on two AMD Athlon 64 dual core 2.7GHz processors with
4GB of RAM running Ubuntu Linux 2.6 and Windows 7, respectively. The
Cache is implemented as a multi-threaded process. Its main thread handles RPC
requests (e.g., tuple insertions, automaton registrations) from other processes
serially; new threads are created upon each successful automaton compilation.
The remainder of this section documents the performance of automata in this
environment.

6.1 Cost of Built-in functions

Automata are interpreted programs, thus it is important to characterise the costs
of invoking built-in functions in the language. The automaton template in Fig. 5
was used to measure the execution costs to invoke a representative set of the
built-in functions supported by the language. The built-in specific declarations
(line 60), initialization (line 63), and invocation (line 70) were incorporated into
the template as appropriate. The print function was used to display the results
on standard output; the number printed is the number of microseconds required
for each invocation of the built-in under test. Each automaton was executed for
two minutes on an unloaded machine.

Fig. 6 shows the minimum, 25-th, 50-th, 75-th percentiles, and maximum
of execution times recorded for each built-in.3 Several things are apparent from
this data:

3 The overhead of the while loop was subtracted from the values produced by the
automaton.

12 J. Sventek and A. Koliousis

 0.1

 1

 10

 100

seqElement hourInDay insert hasEntry lookup Identifier publish send

E
x
e
c
u
ti
o
n
 t

im
e
 (
µ

s
)

Fig. 6. The execution cost of built-in functions.

– the average cost of basic built-in functions (e.g. insert, lookup) is ∼ 3µs;
– identifier generation, which requires access to the heap and copying of strings,

is about twice as expensive as a basic built-in;
– publishing an event to another topic is about three times the basic built-in

cost; and
– sending an event to an external process takes ∼ 200µs.

6.2 Performance at Scale

As the number of simultaneously subscribed automata increases, one expects
the scheduling delay for each automaton to increase. Thus, it is important to
understand how the Cache performs as the number of automata and also the
frequency of tuple insertion scale up.

To stress the system, we vary the number of automata that subscribe to the
Flows topic (cf. §4.3). Independently, we vary the frequency of tuple insertion
into the Flows table. An important measure of the ability for the system to
handle the increased scale is the delay between when a tuple is inserted into the
table/topic, and when each subscribed automaton processes the event. This is
measured using the automaton in Fig. 7. For each automaton, a different value
is assigned to id (line 85); the subsequent log generated by the automaton is
analysed for mean and standard deviation of the average delay observed across
all automata, as well as for minimum and maximum delays observed (lines 91-
93). The independent parameters for the experimental runs are the number of
automata simultaneously subscribed and the cycle period of tuple insertion into
Flows, ∆t.

Fig. 8 displays the measured delay parameters for ∆t = 8ms. It is clear
that the average delay grows linearly as the number of automata scales from
one to eight. Note that, in the deployments to date, the typical number of flow
tuples inserted are approximately 100 events/second; ∆t = 8ms corresponds to
an insertion rate of 125 tuples/second. It is also important to note that it is
quite uncommon in our experience to have several automata subscribed to high
frequency topics like Flows.

Unification of publish/subscribe systems and stream databases 13

76 subscribe f to Flows;
real min, max, mean, dt;
int count, nsecs;
string id;
initialization {

min = 1000.;
max = 0.;
mean = 0.;
count = 0;

85 id = ‘A’;
}
behavior {

count += 1;
nsecs = tstampDiff(tstampNow(),

f.tstamp);
dt = float(nsecs)/1000000.;

91 mean = mean + (dt - mean) /
float(count);

if (dt > max) max = dt;
93 if (dt < min) min = dt;

if (count >= 1000) {
print(String(id, ‘:’, mean,

‘,’, min, ‘,’, max));
min = 1000.;
max = 0.;
mean = 0.;
count = 0;

}
101 }

Fig. 7. Performance at scale template
automaton.

 0

 0.05

 0.1

 0.15

 0.2

1 2 4 8

D
e
la

y
 (

m
s
)

automata

Fig. 8. Delay vs. # automata, ∆t = 8ms.

 0

 0.05

 0.1

 0.15

 0.2

4 8 16 32 64

D
e
la

y
 (

m
s
)

Ut (ms)

Fig. 9. Delay vs. event inter-arrival rate
with 4 automata running.

Fig. 9 shows the measured delay parameters for four automata as ∆t scales
from 4ms to 64ms (insertion rates of 250 events/second to 16 events/second).
The average and variance of the delay remain essentially constant across this
range of packet insertion rates.

Thus, the system scales well with number of automata and frequency of
tuple insertion. The linear growth in average and standard deviation of delay
with number of automata is consistent with scheduling increasing numbers of
Pthreads. The constancy of average and variance against insertion frequency
indicates that there is plenty of execution capacity in the Cache for the loads
presented.

6.3 Performance at stress

Another important measure of the capacity of the system is the maximal rate at
which it can absorb and generate RPC requests and responses. To measure this,
we executed the automaton of Fig. 10 to measure one-way and two-way stress
performance, with a single application performing insert calls into a Test table
as rapidly as possible. Note that to measure two-way stress performance, simply
uncomment line 117 in the automaton.

14 J. Sventek and A. Koliousis

102 subscribe t to Timer;
subscribe e to Test;
int count;
initialization {

count = 0;
print(‘Start of stress test’);

}
behavior {

if (currentTopic() == ‘Timer’) {
if (count > 0)

print(String(count,
‘events/sec’));

count = 0;
} else {

count += 1;
Uncomment for 2-way stress test:

117 # send(s);
}

119 }

Fig. 10. Performance at stress template
automaton.

 0

 1000

 2000

 3000

 4000

 5000

1 2 4 8 16

In
s
e
rt

s
/s

e
c

integer attributes

1-way
2-way

Fig. 11. Integer stress test.

 0

 1000

 2000

 3000

 4000

 5000

10
1

10
2

10
3

10
4

In
s
e
rt

s
/s

e
c

Buffer size (bytes)

1-way
2-way

Fig. 12. Character string stress test.

The performance as the number of integer fields in the Test table schema
varies from 1 to 16 is shown in Fig. 11. Fig. 12 shows the performance as the
number of characters in a schema consisting of a single varchar field varies from
1 to 10,000. The RPC system performs fragmentation/reassembly at 1024-byte
boundaries, so the drop with buffer size is to be expected.

6.4 Finding frequent items

This section evaluates the implementation of the “frequent” algorithm, a one-
pass algorithm for finding the top-k items in a data stream [16], as a Glasgow
automaton (Fig. 13). The algorithm stores k−1 out of n items, according to their
popularity; after processing n events, the approximate result set will contain at
least those items that have occurred n/k times. The input data to the automaton
are 264, 745 out-going HTTP requests (appended to an ephemeral table Urls) to
5,572 unique hosts, as logged by a router running in a small office environment at
the University of Glasgow. Fig. 14 shows the Zipfian frequency distribution of the
data set, where hosts are ranked by their popularity, a well-known characteristic
of Web traffic.

An alternative approach is to introduce the algorithm as a built-in procedure
in the language, a de facto approach in traditional query languages. Indeed, there

Unification of publish/subscribe systems and stream databases 15

120 subscribe e to Urls;
map T;
iterator i;
identifier id;
int count;
int k;
initialization {

k = k ;
T = Map(int);

}
behavior {

id = Identifier(e.host);
if (hasEntry(T, id)) {

count = lookup(T, id);
count += 1;
insert(T, id, count);

} else if (mapSize(T) < (k-1))
insert(T, id, 1);

else {
i = Iterator(T);
while(hasNext(i)) {

id = next(i);
count = lookup(T, id);
count -= 1;
if (count == 0)

remove(T, id);
else

insert(T, id, count);
}

}
150 }

Fig. 13. The frequent algorithm [16].

1

10

10
2

10
3

10
4

10
5

1 10 10
2

10
3

10
4

#
 r

e
q
u
e
s
ts

Rank

Fig. 14. Number of requests per Web page
ordered by popularity

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

10
1

10
2

10
3

C
o
e
ff

ic
ie

n
t

o
f

v
a
ri
a
ti
o
n

k

imperative
built-in

Fig. 15. Imperative vs. built-in execution
time of the frequent algorithm.

151 subscribe e to Urls;
map T;
initialization { T = Map(int); }

154 behavior { frequent(T, Identifier(u.host), k); }

Fig. 16. The frequent algorithm as a built-in function.

might be situations where, despite the efficient code generated from the GAPL
compiler, an interpreted solution may be insufficiently performant.

To demonstrate this, we also implemented the frequent algorithm as a built-
in function in the language and evaluated the two approaches – namely, the
automaton of Fig. 13 and the automaton of Fig. 16. From an algorithmic
perspective, the execution time of these automata is dominated by O(1)
operations (e.g. inserting into T) and O(k) operations (e.g., iterating over T). As
k increases, the number of O(1) operations increases, and the O(k) operations
become more expensive. Thus, it is expected that as k increases, the mean
execution time (µ) will decrease and the standard deviation (σ) will increase.
Fig. 15 shows the coefficient of variation (σ/µ) for both the imperative and the
built-in implementation of the frequent algorithm.

16 J. Sventek and A. Koliousis

P
ri
c
e

Time

A

B

C

D

E,F

Fig. 17. An M-shaped pattern in the dataset illustrated.

6.5 Comparison with Cayuga

This section evaluates the performance of the Cache against the Cayuga query
engine [7]. Most of the examples in the Cayuga distribution, as well as the data
sets provided, are related to complex event processing for stock market investors.
We evaluate three exemplar Cayuga queries against equivalent implementations
in GAPL. The dataset used contains 112,635 anonymised stock events whose
schema consists of a timestamp, an identifier as a company’s name, and a price.

The first query is an example of a basic built-in operator that simply publishes
incoming events to another stream. In the Cayuga Event Language (CEL), the
query is:

155 SELECT * FROM Stock PUBLISH T

The equivalent Glasgow automaton is one that subscribes to stream Stock and
publishes an event to another stream T with the same schema. I.e.,

156 subscribe s to Stock;
157 behavior { publish(‘T’, s); }

The second query is an example of a Cayuga automaton with multiple states
that detects a double-top formation in the price chart of any stock – this is a
well-known pattern amongst trade analysts, also known as an M-shaped pattern.
Fig. 17, for example, shows one of the M-shaped patterns found in the data set.
The CEL query that detects such patterns is illustrated in Fig. 18. Certain details
of the query have been omitted, while others have been simplified; we summarise
its functionality in the following.4

Starting from the innermost expression (lines 174-176), Cayuga correlates
two consecutive Stock events for the same company until the price rebounds.
The engine then attaches a new automaton instance to the next query state,
continuously iterating over an a priori unknown number of Stock events for the
same company, as long as its price monotonically increases. This is achieved
by the inner FOLD operator (line 177). Cayuga proceeds outwards in the query,
transiting to the next Cayuga automaton state, looking for a monotonic decrease
in that stock’s price, and so on, spawning new automaton instances along the
way and storing valleys and peaks of a given stock’s price in attributes A to F of
the resulting schema.

4 The complete queries summarised in Figures 18 and 19 are available at
www.dcs.gla.ac.uk/∼koliousa/middleware.html.

Unification of publish/subscribe systems and stream databases 17

158 SELECT Name, A, B, C, D, E, Price as F
FROM
FILTER {...} (# Price increases.
FILTER {...} (# Price decreases.
SELECT Name, A, B, C, D, Price as E
FROM
FILTER {...} (# Price increases.
SELECT Name, A, B, C, Price as D
FROM
FILTER {...} (# Price decreases.
SELECT Name, A, B, Price as C
FROM
FILTER {...} (# Price increases.
SELECT Name, A, Price as B
FROM
FILTER {...} (# Price decreases.

174 SELECT Name, Price as A
FROM Stocks

176 NEXT {$1.Name=$2.Name} Stock
177) FOLD{...} Stock # Price increasing.

) FOLD{...} Stock # Price decreasing.
) FOLD{...} Stock # Price increasing.
) FOLD{...} Stock # Price decreasing.
) NEXT {$1.Name = $2.Name} Stock

182) PUBLISH T

Fig. 18. M-shaped pattern in Cayuga.

183 subscribe s to Stock;
map m;
identifier id;
sequence stock;
real a, ..., f, previous; # Prices
bool A, ..., F; # States
initialization { m = Map(sequence); }
behavior {

id = Identifier(s.id);
if (! hasEntry(m, id)) {

Init states & prices for stock id
stock = Sequence(s.price, false, ...);
insert(m, id, stock);

} else {
stock = lookup(m, id);
previous = seqElement(stock, 0);
A is the 1st element, B the 2nd, etc.
...
if (previous < s.price) {

Monitor increasing...
} else if (previous > s.price) {

Monitor decreasing...
}

}
207 }

Fig. 19. M-shaped pattern in GAPL.

208 subscribe s to Stock;
map stocks;
identifier id;
sequence tuple, updated;
initialization { stocks = Map(sequence); }
behavior {

id = Identifier(s.id);
if (! hasEntry(stocks, id)) {

New run; set count to 1.
tuple = Sequence(s.price, s.time, 1,

s.price, s.time);
insert(stocks, id, tuple);
publish(‘Folded’, ‘create’, s.id,

tuple);
} else { # Existing run; update.

tuple = lookup(stocks, id);
if (s.price > seqElement(tuple, 3)) {

Price is increasing;
Incr. count (l. 228)
updated = Sequence(

seqElement(tuple, 0),
seqElement(tuple, 1),

228 seqElement(tuple, 2) + 1,
s.price, s.time);

insert(stocks, id, updated);
publish(‘Folded’, ‘change’,

s.id, updated);
} else {

remove(stocks, id);
publish(‘Folded’, ‘remove’,

s.id, tuple);
}

}
237 }

238 subscribe f to Folded;
map m;
window w;
identifier id;
sequence s;
iterator i;
initialization { m = Map(window); }
behavior {

id = Identifier(f.id);
if (f.command == ‘create’) {

w = Window(sequence, ROWS, 1000);
s = Sequence(f.price1, f.time1,

f.count, f.price2, f.time2);
append(w, s);
insert(m, id, w);

} else if (f.command == ‘change’) {
w = lookup(m, id);
s = Sequence(f.price1, f.time1,

f.count, f.price2, f.time2);
append(w, s);

} else { # Removed from map stocks.
w = lookup(m, id);
i = Iterator(w);
while (hasNext(i)) {

s = next(i);
publish(‘T’, s);

}
remove(m, id);

}
265 }

Fig. 20. Detecting sequences of increasing stock prices.

18 J. Sventek and A. Koliousis

 1

 10

 100

 1000

Q1 Q2 Q3

W
a
ll-

c
lo

c
k
 t

im
e
 (

s
e
c
)

Cayuga
Cache

Fig. 21. Benchmarking against Cayuga.

Our implementation (simplified) is shown in Fig. 19. The automaton main-
tains booleans A to F, together with their associated price values (a to f), in
a map of sequences; each entry represents a small state machine for a given
stock. Once all states A to F for a stock are true, then the M-shaped pattern has
been detected. Depending on the current stock price, the algorithm backtracks
to previous states or proceeds to the next (ascending or descending price runs)
accordingly. Note here that our solution is algorithmic, using the if then else

constructs of GAPL.

The final query is an example use of the FOLD operator to perform aggregate
computations across multiple iterations. The CEL query has the form:

266 SELECT *
FROM (
SELECT *, 1 AS counter FROM Stock
) FOLD {$1.Name = $2.Name, $.Price < $2.Price, $.counter + 1 AS counter} Stock

270 PUBLISH T

The desired behaviour is to detect continuous runs of increasing prices for each
stock, and to display the sequence of events that constituted each run. This has
been implemented using the two Glasgow automata illustrated in Fig. 20. The
automaton on the left maintains a map entry (a sequence) for a given company
(s.id) as long as its price is monotonically increasing. At the end of each run, i.e.,
when the stock’s price decreases, the sequence contains the current lowest price,
the start time, the length of the run, and current highest price, and the end
time. In order to also display the sequence of events that constitute each run,
we publish to another topic, Folded, and implement a custom state management
system – with states create, change, and remove – in the automaton on the right.

Fig. 21 shows the results from comparing the execution time of the three CEL
queries with their equivalent implementations in the automaton programming
language. The Cayuga engine best compiles in Microsoft’s Visual Studio, thus
the experiments were run on a Windows platform. The Cayuga execution times
are the elapsed time after all events have been loaded into memory and until
all events have been processed. The Cache was never provisioned for post-hoc
analysis of in-memory data: all events are processed in real-time. For a fair
comparison, we derive our timings by first appending all events in a window,
and then iterate over the window and execute the queries.

Unification of publish/subscribe systems and stream databases 19

For the first query, the performance improvement against Cayuga is an order
of magnitude. This strengthens the argument of the efficacy of the automa-
ton execution model and the efficient unification of the publish/subscribe
infrastructure with the data stream management code. For the second query, the
automaton detects the pattern twice as fast as Cayuga. This is another example
of the ability to implement multiple state machines under a single execution
thread, which contributes to this performance enhancement. Finally, for the third
query, our implementation is dramatically faster (×50) than Cayuga’s equivalent.

7 The impact on complex event processing

We have proposed an algorithmic, imperative approach to complex event
processing. The first impact of this work is Turing completeness, something that
was proposed from a theoretical basis in [3]. Some event languages have a solid
background in event calculi and result in one-line expressions that are compact
implementations, but are not open to user optimizations – apart from physical
query execution plans. For example, there is a large body of complex event
language research on Kleene closures [9]. Although not explicitly documented
here, we have implemented SASE’s Kleene closure operator (e.g., based on
partition contiguity) with a map of windows in GAPL.

Our experiences thus far are that the imperative programming style of GAPL
enables it to be used in many domains: home network management [4], industrial
applications [20], and, given the present comparisons to Cayuga, stocks. In
addition to its expressiveness, this imperative model has been shown more
performant than a declarative event language (CEL). Thus, it may be viewed
as an intermediate language between SQL-like queries (logical query plans) and
their execution interpretation (physical query plans).

8 Conclusions

It is clear that the automaton language, as integrated into the Cache, provides a
very high-performance complex event processing capability. It can be criticized
for its imperative, C-like structure, in terms of usability by individuals wanting
to deploy their own automata. We have started to investigate compilation of
stream expressions for complex event patterns, such as Cayuga’s, into equivalent
automata. An alternative approach is to compile stream expressions directly into
instructions for the stack machine that underlies the Cache.

In comparing with Cayuga, we have determined that we need to be able to
create streams on the fly. This will enable exploration of the dynamic demulti-
plexing of streams, as lately discussed in [22]. We continue our comparative
endeavours with the Linear Road Benchmark [23].

References

1. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13 (1970) 377–387

20 J. Sventek and A. Koliousis

2. Terry, D., Goldberg, D., Nichols, D., Oki, B.: Continuous queries over append-only
databases. In: Proceedings of the ACM SIGMOD. (1992)

3. Law, Y.N., Wang, H., Zaniolo, C.: Query languages and data models for database
sequences and data streams. In: Proceedings of the VLDB. (2004)

4. Sventek, J., Koliousis, A., Dulay, N., Pediaditakis, D., Rodden, T., Lodge, T.,
Sharma, O., Sloman, M., Bedwell, B., Glover, K., Mortier, R.: An Information
Plane Architecture Supporting Home Network Management. In: Proceedings of
the IFIP/IEEE IM. (2011)

5. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. The VLDB Journal 15 (2006) 121–142

6. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S.,
Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for
data stream management. The VLDB Journal 12 (2003) 120–139

7. Demers, A., Gehrke, J., Hong, M., Riedewald, M., White, W.: Towards expressive
publish/subscribe systems. In: Proceedings of the EDBT. (2006)

8. Brenna, L., Demers, A., Gehrke, J., Hong, M., Ossher, J., Panda, B., Riedewald,
M., Thatte, M., White, W.: Cayuga: a high-performance event processing engine.
In: Proceedings of the ACM SIGMOD. (2007)

9. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching
over event streams. In: Proceedings of the ACM SIGMOD. (2008)

10. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: Proceedings of the ACM SIGMOD. (2006)

11. Gyllstrom, D., Agrawal, J., Diao, Y., Immerman, N.: On supporting kleene closure
over event streams. In: Proceedings of the IEEE ICDE. (2008)

12. Mozafari, B., Zeng, K., Zaniolo, C.: From regular expressions to nested words:
unifying languages and query execution for relational and XML sequences. Proc.
VLDB Endow. 3(1-2) (2010) 150–161

13. White, W., Riedewald, M., Gehrke, J., Demers, A.: What is “next” in event
processing? In: Proceedings of the ACM PODS. (2007)

14. Sullivan, M., Heybey, A.: Tribeca: a system for managing large databases of
network traffic. In: Proceedings of the USENIX ATEC. (1998)

15. Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.: Gigascope: a stream
database for network applications. In: Proceedings of the ACM SIGMOD. (2003)

16. Cormode, G., Hadjieleftheriou, M.: Finding the frequent items in streams of data.
Commun. ACM 52 (2009) 97–105

17. Sekar, V., Reiter, M.K., Zhang, H.: Revisiting the case for a minimalist approach
for network flow monitoring. In: Proceedings of ACM IMC. (2010)

18. Kandula, S., Chandra, R., Katabi, D.: What’s going on?: learning communication
rules in edge networks. In: Proceedings of the ACM SIGCOMM. (2008)

19. Johnson, T., Muthukrishnan, S., Shkapenyuk, V., Spatscheck, O.: A heartbeat
mechanism and its application in Gigascope. In: Proceedings of the VLDB. (2005)

20. Koliousis, A., Sventek, J.: DEBS Grand Challenge: Glasgow automata illustrated.
In: Proceedings of the ACM DEBS. (2012)

21. Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.: Path sharing and
predicate evaluation for high-performance XML filtering. ACM Trans. Database
Syst. 28(4) (2003) 467–516

22. Zeitler, E., Risch, T.: Massive scale-out of expensive continuous queries. PVLDB
4(11) (2011) 1181–1188

23. Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A.S., Ryvkina, E.,
Stonebraker, M., Tibbetts, R.: Linear road: a stream data management benchmark.
In: Proceedings of the VLDB. (2004)

